MALAYA JOURNAL OF MATEMATIK

Malaya J. Mat. **12(02)**(2024), 229–232. http://doi.org/10.26637/mjm1202/008

The outer-independent edge-vertex domination in trees

KIJUNG KIM*1

¹ Department of Mathematics Education, Daegu Catholic University, 38430, Republic of Korea.

Received 18 July 2021; Accepted 15 January 2024

Abstract. Let G = (V, E) be a finite simple graph. A vertex $v \in V$ is edge-vertex dominated by an edge $e \in E$ if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of G is a subset $D \subseteq E$ such that every vertex of G is edge-vertex dominated by an edge of D. A subset $D \subseteq E$ is called an *outer-independent edge-vertex dominating set* of G if D is an edge-vertex dominating set of G and the set $V(G) \setminus I(D)$ is independent, where I(D) is the set of vertices incident to an edge of D. The *outer-independent edge-vertex domination number* of G, denoted by $\gamma_{ev}^{oi}(G)$, is the smallest cardinality of an outer-connected edge-vertex dominating set of G. In this paper, we study outer-independent edge-vertex domination numbers. In particular, we prove that $\frac{n-l+1}{3} \leq \gamma_{ev}^{oi}(T) \leq \frac{2n-s-2}{3}$ for every tree T of order $n \geq 3$ with l leaves and s support vertices. We also characterize the trees attaining the bounds.

AMS Subject Classifications: 05C69.

Keywords: edge-vertex dominating set, outer independent edge-vertex dominating set.

Contents

1	Introduction and Terminology	229
2	Main Result 1	230
3	Main Result 2	231

1. Introduction and Terminology

Let G = (V, E) be a finite simple graph with vertex set V(G) and edge set E(G). The cardinality of V is called the *order* of G. The set $N(v) = \{u \in V(G) \mid uv \in E(G)\}$ is called the *open neighborhood* of $v \in V(G)$. The *degree* of $v \in V(G)$ is the cardinality of N(v). We denote it by $deg_G(v)$. The *distance* between two distinct vertices in G is the length of a shortest path between them. The *diameter* of G is denoted by diam(G). A *diametral path* of G is a path with the length which equals diam(G).

Let T be a tree. A vertex v of T is called *leaf* if $deg_T(v) = 1$. A *support vertex* is a vertex adjacent to a leaf. A *weak support vertex* is a support vertex that is adjacent to exactly one leaf. A *rooted tree* T differentiates one vertex r called the root. For a vertex $v(\neq r) \in V(T)$, the parent of v is the neighbor of v placed on the unique (r, v)-path, while a child of v is any other neighbor of v. We denote the set of children of v by C(v). A descendant of v is a vertex $w \neq v$ such that v is contained in the unique (r, w)-path. In particular, every child of v is also a descendant of v. We denote the set of descendants of v by D(v). The subtree induced by $D(v) \cup \{v\}$ is denoted by T_v . The *star* is a complete bipartite graph $K_{1,t}$. The *double star* is the graph obtained by joining the centers of two stars $K_{1,p}$ and $K_{1,q}$. Subdividing an edge e is to delete e, add a new vertex x, and join x to the ends of e. A *healthy spider* $S_{t,t}$ is the graph obtained from a star $K_{1,t}$ by subdividing each edges of $K_{1,t}$. For a subset $S \subseteq V(G)$, G - S denotes the subgraph of G induced by $V(G) \setminus S$.

^{*}Corresponding author. Email address: kkim@cu.ac.kr (Kijung Kim)

Kijung Kim

A vertex $v \in V(G)$ is edge-vertex dominated by an edge $e \in E(G)$ if e is incident with v or e is incident with a vertex adjacent to v (See [2]). An edge-vertex dominating set of G is a subset $D \subseteq E(G)$ such that every vertex of G is edge-vertex dominated by an edge of D (See [2]). A subset $D \subseteq E(G)$ is called an *outerindependent edge-vertex dominating set* (OIEVDS) of G if D is an edge-vertex dominating set of G and the set $V(G) \setminus I(D)$ is independent, where I(D) is the set of vertices incident to an edge of D. The *outer-independent edge-vertex domination number* of G, denoted by $\gamma_{ev}^{oi}(G)$, is the smallest cardinality of an outer-connected edgevertex dominating set of G. A $\gamma_{ev}^{oi}(G)$ -set is an OIEVDS of G with the cardinality $\gamma_{ev}^{oi}(G)$.

Edge-vertex domination in graphs was introduced and studied in [2, 4]. Recently, variations of outer-independent and edge-vertex domination were given in [1, 5, 6]. In this paper, we study outer-independent edge-vertex domination numbers. We prove that $\frac{n-l+1}{3} \leq \gamma_{ev}^{oi}(T) \leq \frac{2n-s-2}{3}$ for every tree T of order $n \geq 3$ with l leaves and s support vertices. We also characterize the trees attaining the bounds.

Finally, we give a lemma whose proof follows from straightforward observation.

Lemma 1.1. The following holds.

- 1. Every support vertex of T is incident to an edge of every $\gamma_{ev}^{oi}(T)$ -set.
- 2. For every tree T with diameter at least three, there exists a $\gamma_{ev}^{oi}(T)$ -set whose elements are not incident to any leaf.

2. Main Result 1

In this section, we prove that if T is a tree of order $n \ge 3$ with l leaves, then $\frac{n-l+1}{3} \le \gamma_{ev}^{oi}(T)$. We also give a characterization of all trees with $\frac{n-l+1}{3} = \gamma_{ev}^{oi}(T)$.

First of all, we introduce a family \mathcal{T} of trees that be obtained from T_1, \ldots, T_m $(m \ge 1)$ of trees such that T_1 is a path P_4 with two support vertices u, v, and let $S(T_1) = \{uv\}$. If $m \ge 2$, then T_{i+1} be obtained recursively from T_i by one of the following two operations for $1 \le i \le m - 1$.

Operation \mathcal{O}_1 :

(i) Attach a vertex by joining it to a vertex incident to edges of $S(T_i)$.

(ii) Set $S(T_{i+1}) = S(T_i)$.

Operation \mathcal{O}_2 :

(i) Attach a path P₃ := uvw by joining u to a leaf of T_i.
(ii) Set S(T_{i+1}) = S(T_i) ∪ {uv}.

Proposition 2.1. If a tree T belongs to \mathcal{T} , then $\gamma_{ev}^{oi}(T) = \frac{n-l+1}{3}$.

Proof. We use the induction on the number of operations performed to construct the tree T. If $T = T_1 \cong P_4$, then $\gamma_{ev}^{oi}(T) = 1$. Let m be a positive integer. Suppose that every tree T' constructed by m-1 operations satisfies $\gamma_{ev}^{oi}(T') = \frac{n'-l'+1}{3}$. Let $T = T_{m+1}$ be a tree constructed by m operations.

First, we assume that T is obtained from T' by Operation \mathcal{O}_1 . Then n = n' + 1 and l = l' + 1. It is easy to see that S(T') = S(T) is an OIEVDS of T. Thus, $\gamma_{ev}^{oi}(T) = \gamma_{ev}^{oi}(T') = \frac{n'-l'+1}{3} = \frac{n-1-(l-1)+1}{3} = \frac{n-l+1}{3}$.

Second, we assume that T is obtained from T' by Operation \mathcal{O}_2 . Then n = n' + 3 and l = l'. It is easy to see that $S(T) = S(T') \cup \{uv\}$ is an OIEVDS of T and $\gamma_{ev}^{oi}(T) = \gamma_{ev}^{oi}(T') + 1$ Thus, $\gamma_{ev}^{oi}(T) = \gamma_{ev}^{oi}(T') + 1 = \frac{n'-l'+1}{3} + 1 = \frac{n-l+1}{3}$.

Theorem 2.2. Let T be a tree of order $n \ge 3$ with l leaves. Then $\frac{n-l+1}{3} \le \gamma_{ev}^{oi}(T)$ with equality if and only if $T \in \mathcal{T}$.

Proof. If $T = P_3$, then clearly $\frac{n-l+1}{3} = \frac{2}{3} < \gamma_{ev}^{oi}(T) = 1$. Assume that the order of T is at least 4. If T is a star, then $\frac{n-l+1}{3} = \frac{2}{3} < \gamma_{ev}^{oi}(T) = 1$. If T is a double star, then $\frac{n-l+1}{3} = 1 = \gamma_{ev}^{oi}(T)$. By using Operation \mathcal{O}_1 repeatably, we have $T \in \mathcal{T}$.

Now assume that $diam(T) \ge 4$. We use the induction on the order of T. Suppose that every tree T' of order n'(< n) satisfies $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$ with equality only if $T' \in \mathcal{T}$.

Among all of diametrical paths in T, we choose $x_0x_1 \dots x_d$ so that it maximizes $deg_T(x_{d-1})$. Root T at x_0 . We divide our consideration into four cases.

Case 1. $deg_T(x_{d-1}) \ge 3$.

Let $u \neq x_d$ be a leaf adjacent to x_{d-1} . Let $T' = T - \{u\}$. Then n = n' + 1 and l = l' + 1. It is easy to see that any $\gamma_{ev}^{oi}(T')$ -set D is an OIEVDS of T. Applying the induction hypothesis to T', we have $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$. Thus, $\frac{n-l+1}{3} = \frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T') \leq \gamma_{ev}^{oi}(T)$. If $\frac{n-l+1}{3} = \gamma_{ev}^{oi}(T)$, then $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$ and $T' \in \mathcal{T}$. By Operation \mathcal{O}_1 , we have $T \in \mathcal{T}$.

Case 2. $deg_T(x_{d-1}) = 2$ and $deg_T(x_{d-2}) \ge 3$.

Assume that there exists a support vertex $v \in C(x_{d-2}) \setminus \{x_{d-1}\}$. Let $T' = T - T_v$. Then n = n' + 2

Assume that there exists a support vertex $v \in C(x_{d-2}) \setminus \{x_{d-1}\}$. Let $T = T - I_v$. Then n = n' + 2and l = l' + 1. It is easy to see that $\gamma_{ev}^{oi}(T') \leq \gamma_{ev}^{oi}(T) - 1$. Applying the induction hypothesis to T', we have $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$. Thus, $\frac{n-2-(l-1)+1}{3} = \frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T') \leq \gamma_{ev}^{oi}(T) - 1$ and so $\frac{n-l+1}{3} < \gamma_{ev}^{oi}(T)$. Assume that there exists a leaf $u \in C(x_{d-2})$. Let $T' = T - \{u\}$. Then n = n' + 1 and l = l' + 1. It is easy to see that $\gamma_{ev}^{oi}(T') = \gamma_{ev}^{oi}(T)$. Applying the induction hypothesis to T', we have $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$. Thus, $\frac{n-1-(l-1)+1}{3} = \frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T') \leq \gamma_{ev}^{oi}(T)$ and so $\frac{n-l+1}{3} \leq \gamma_{ev}^{oi}(T)$. If $\frac{n-l+1}{3} = \gamma_{ev}^{oi}(T)$, then $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$ and $T' \in \mathcal{T}$. By Operation \mathcal{O}_1 , we have $T \in \mathcal{T}$.

Case 3. $deg_T(x_{d-1}) = 2$, $deg_T(x_{d-2}) = 2$ and $deg_T(x_{d-3}) \ge 3$.

Let $T' = T - T_{x_{d-2}}$. Then n = n'+3 and l = l'+1. It is easy to see that $\gamma_{ev}^{oi}(T') \le \gamma_{ev}^{oi}(T) - 1$. Applying the induction hypothesis to T', we have $\frac{n'-l'+1}{3} \le \gamma_{ev}^{oi}(T')$. Thus, $\frac{n-3-(l-1)+1}{3} = \frac{n'-l'+1}{3} \le \gamma_{ev}^{oi}(T') \le \gamma_{ev}^{oi}(T) - 1$ and so $\frac{n-l+1}{3} < \gamma_{ev}^{oi}(T)$.

Case 4. $deg_T(x_{d-1}) = 2$, $deg_T(x_{d-2}) = 2$ and $deg_T(x_{d-3}) = 2$.

Let $T' = T - T_{x_{d-2}}$. Then n = n' + 3 and l = l'. It is easy to see that $\gamma_{ev}^{oi}(T') \leq \gamma_{ev}^{oi}(T) - 1$. Applying the induction hypothesis to T', we have $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$. Thus, $\frac{n-3-l+1}{3} = \frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T') \leq \gamma_{ev}^{oi}(T) - 1$ and so $\frac{n-l+1}{3} \leq \gamma_{ev}^{oi}(T)$. If $\frac{n-l+1}{3} = \gamma_{ev}^{oi}(T)$, then $\frac{n'-l'+1}{3} \leq \gamma_{ev}^{oi}(T')$ and $T' \in \mathcal{T}$. By Operation \mathcal{O}_2 , we have $T \in \mathcal{T}$.

3. Main Result 2

In this section, we prove that if T is a tree of order $n \ge 3$ with s support vertices, then $\gamma_{ev}^{oi}(T) \le \frac{2n-s-2}{3}$. We also give a characterization of all trees with $\gamma_{ev}^{oi}(T) = \frac{2n-s-2}{3}$.

Theorem 3.1. Let T be a tree of order $n \ge 3$ with s support vertices. Then $\gamma_{ev}^{oi}(T) \le \frac{2n-s-2}{3}$ with equality if and only if T is a healthy spider.

Proof. If $T = P_3$, then clearly $\gamma_{ev}^{oi}(T) = 1$ and T is a healthy spider. Assume that the order of T is at least 4. If T is a star, then $\gamma_{ev}^{oi}(T) = 1 < \frac{2n-s-2}{3}$. If T is a double star, then $\gamma_{ev}^{oi}(T) = 1 < \frac{2n-s-2}{3} = \frac{2n-4}{3}$.

Now assume that $diam(T) \ge 4$. We use the induction on the order of T. Suppose that every tree T' of order n'(< n) satisfies $\gamma_{ev}^{oi}(T') \le \frac{2n'-s'-2}{3}$ with equality only if T' is a healthy spider. Among all of diametrical paths in T, we choose $x_0x_1 \dots x_d$ so that it maximizes $deg_T(x_{d-1})$. Root T at x_0 . We divide our consideration into three cases.

Case 1. $deg_T(x_{d-1}) \ge 3$.

Let $u \neq x_d$ be a leaf adjacent to x_{d-1} . Let $T' = T - \{u\}$. Then n = n' + 1 and s = s'. It is easy to see that any $\gamma_{ev}^{oi}(T')$ -set is an OIEVDS of T. So, $\gamma_{ev}^{oi}(T) \leq \gamma_{ev}^{oi}(T')$. Applying the induction hypothesis to T', we have $\gamma_{ev}^{oi}(T') \leq \frac{2n'-s'-2}{3}$. Thus, $\gamma_{ev}^{oi}(T) \leq \gamma_{ev}^{oi}(T') \leq \frac{2n-s-2}{3} < \frac{2n-s-2}{3}$.

Case 2. $deg_T(x_{d-1}) = 2$ and $deg_T(x_{d-2}) = 2$.

Kijung Kim

Let $T' = T - \{x_{d-2}, x_{d-1}, x_d\}$. It is easy to see that $\gamma_{ev}^{oi}(T) = \gamma_{ev}^{oi}(T') + 1$, $s - 1 \le s' \le s$ and n = n' + 3. Applying the induction hypothesis to T', we have $\gamma_{ev}^{oi}(T') \le \frac{2n'-s'-2}{3}$. Thus, $\gamma_{ev}^{oi}(T) - 1 = \gamma_{ev}^{oi}(T') \le \frac{2n'-s'-2}{3} \le \frac{2n-6-s+1-2}{3}$ and so $\gamma_{ev}^{oi}(T) < \frac{2n-s-2}{3}$.

Case 3. $deg_T(x_{d-1}) = 2$ and $deg_T(x_{d-2}) \ge 3$.

Assume that there exists a leaf $c \in C(x_{d-2})$. Let $T' = T - \{v\}$. By the argument as in Case 1, we have $\gamma_{ev}^{oi}(T) < \frac{2n-s-2}{3}$.

Assume that there exists a support vertex $c \in C(x_{d-2}) \setminus \{x_{d-1}\}$. By the assumption, c is weak and has a child w. Let $T' = T - T_c$. It is easy to see that $\gamma_{ev}^{oi}(T) = \gamma_{ev}^{oi}(T') + 1$, s = s' + 1 and n = n' + 2. Applying the induction hypothesis to T', we have $\gamma_{ev}^{oi}(T') \le \frac{2n'-s'-2}{3}$. Thus, $\gamma_{ev}^{oi}(T) - 1 = \gamma_{ev}^{oi}(T') \le \frac{2n'-s'-2}{3} = \frac{2n-4-s+1-2}{3}$ and so $\gamma_{ev}^{oi}(T) \le \frac{2n-s-2}{3}$.

Now we assume that $T_{x_{d-2}}$ is a healthy spider $S_{t,t}$. Let $T' = T - V(T_{x_{d-2}})$. It is easy to see that $\gamma_{ev}^{oi}(T) \leq \gamma_{ev}^{oi}(T') + t$, $s - t \leq s'$ and n = n' + 2t + 1. If $|V(T')| \geq 3$, then by the induction hypothesis on T', we have $\gamma_{ev}^{oi}(T') \leq \frac{2n'-s'-2}{3}$. Thus, $\gamma_{ev}^{oi}(T) - t \leq \gamma_{ev}^{oi}(T') \leq \frac{2n'-s'-2}{3} = \frac{2n-4t-2-s+t-2}{3}$ and so $\gamma_{ev}^{oi}(T) < \frac{2n-s-2}{3}$. If |V(T')| = 2, then clearly $\gamma_{ev}^{oi}(T) = \frac{2n-s-2}{3}$ and T is a healthy spider.

References

- [1] N. DEHGARDI, M. CHELLALI, Outer independent Roman domination number of trees, *Commun. Comb. Optim.*, **6**(2) (2021), 273–286.
- [2] J. LEWIS, Vertex-edge and edge-vertex parameters in graphs, Ph.D thesis, Clemson university, 2007.
- [3] B. KRISHNAKUMARI, Y.B. VENKATAKRISHNAN, M. KRZYWKOWSKIYZ, On trees with total domination number equal to edge-vertex domination number plus one, *Proc Math Sci*, **126** (2016), 153–157.
- [4] K.W. PETERS, Theoretical and algorithmic results on domination and connectivity, Ph.D thesis, Clemson university, 1986.
- [5] I. LAMPROU, I. SIGALAS, V. ZISSIMOPOULOS, Improved budgeted connected domination and budgeted edgevertex domination, *Theoret. Comput. Sci.*, 858 (2021), 1–12.
- [6] D.A. MOJDEH, I. PETERIN, B. SAMADI, I.G. YERO, On three outer-independent domination related parameters in graphs, *Discrete Appl. Math.*, **294** (2021), 115–124.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

