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The outer-independent edge-vertex domination in trees
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Abstract. Let G = (V,E) be a finite simple graph. A vertex v ∈ V is edge-vertex dominated by an edge e ∈ E if e is
incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of G is a subset D ⊆ E such that
every vertex of G is edge-vertex dominated by an edge of D. A subset D ⊆ E is called an outer-independent edge-vertex
dominating set of G if D is an edge-vertex dominating set of G and the set V (G) \ I(D) is independent, where I(D) is the
set of vertices incident to an edge of D. The outer-independent edge-vertex domination number of G, denoted by γoi

ev(G),
is the smallest cardinality of an outer-connected edge-vertex dominating set of G. In this paper, we study outer-independent
edge-vertex domination numbers. In particular, we prove that n−l+1

3
≤ γoi

ev(T ) ≤ 2n−s−2
3

for every tree T of order n ≥ 3

with l leaves and s support vertices. We also characterize the trees attaining the bounds.
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1. Introduction and Terminology

Let G = (V,E) be a finite simple graph with vertex set V (G) and edge set E(G). The cardinality of V is
called the order of G. The set N(v) = {u ∈ V (G) | uv ∈ E(G)} is called the open neighborhood of v ∈ V (G).
The degree of v ∈ V (G) is the cardinality of N(v). We denote it by degG(v). The distance between two distinct
vertices in G is the length of a shortest path between them. The diameter of G is denoted by diam(G). A
diametral path of G is a path with the length which equals diam(G).

Let T be a tree. A vertex v of T is called leaf if degT (v) = 1. A support vertex is a vertex adjacent to a
leaf. A weak support vertex is a support vertex that is adjacent to exactly one leaf. A rooted tree T differentiates
one vertex r called the root. For a vertex v(̸= r) ∈ V (T ), the parent of v is the neighbor of v placed on the
unique (r, v)-path, while a child of v is any other neighbor of v. We denote the set of children of v by C(v). A
descendant of v is a vertex w ̸= v such that v is contained in the unique (r, w)-path. In particular, every child of
v is also a descendant of v. We denote the set of descendants of v by D(v). The subtree induced by D(v) ∪ {v}
is denoted by Tv . The star is a complete bipartite graph K1,t. The double star is the graph obtained by joining
the centers of two stars K1,p and K1,q . Subdividing an edge e is to delete e, add a new vertex x, and join x to the
ends of e. A healthy spider St,t is the graph obtained from a star K1,t by subdividing each edges of K1,t. For a
subset S ⊆ V (G), G− S denotes the subgraph of G induced by V (G) \ S.
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A vertex v ∈ V (G) is edge-vertex dominated by an edge e ∈ E(G) if e is incident with v or e is incident
with a vertex adjacent to v (See [2]). An edge-vertex dominating set of G is a subset D ⊆ E(G) such that
every vertex of G is edge-vertex dominated by an edge of D (See [2]). A subset D ⊆ E(G) is called an outer-
independent edge-vertex dominating set (OIEVDS) of G if D is an edge-vertex dominating set of G and the set
V (G) \ I(D) is independent, where I(D) is the set of vertices incident to an edge of D. The outer-independent
edge-vertex domination number of G, denoted by γoi

ev(G), is the smallest cardinality of an outer-connected edge-
vertex dominating set of G. A γoi

ev(G)-set is an OIEVDS of G with the cardinality γoi
ev(G).

Edge-vertex domination in graphs was introduced and studied in [2, 4]. Recently, variations of
outer-independent and edge-vertex domination were given in [1, 5, 6]. In this paper, we study outer-independent
edge-vertex domination numbers. We prove that n−l+1

3 ≤ γoi
ev(T ) ≤ 2n−s−2

3 for every tree T of order n ≥ 3

with l leaves and s support vertices. We also characterize the trees attaining the bounds.
Finally, we give a lemma whose proof follows from straightforward observation.

Lemma 1.1. The following holds.

1. Every support vertex of T is incident to an edge of every γoi
ev(T )-set.

2. For every tree T with diameter at least three, there exists a γoi
ev(T )-set whose elements are not incident to

any leaf.

2. Main Result 1

In this section, we prove that if T is a tree of order n ≥ 3 with l leaves, then n−l+1
3 ≤ γoi

ev(T ). We also give a
characterization of all trees with n−l+1

3 = γoi
ev(T ).

First of all, we introduce a family T of trees that be obtained from T1, . . . , Tm (m ≥ 1) of trees such that T1

is a path P4 with two support vertices u, v, and let S(T1) = {uv}. If m ≥ 2, then Ti+1 be obtained recursively
from Ti by one of the following two operations for 1 ≤ i ≤ m− 1.

Operation O1 :
(i) Attach a vertex by joining it to a vertex incident to edges of S(Ti).
(ii) Set S(Ti+1) = S(Ti).

Operation O2 :
(i) Attach a path P3 := uvw by joining u to a leaf of Ti.
(ii) Set S(Ti+1) = S(Ti) ∪ {uv}.

Proposition 2.1. If a tree T belongs to T , then γoi
ev(T ) =

n−l+1
3 .

Proof. We use the induction on the number of operations performed to construct the tree T . If T = T1
∼= P4,

then γoi
ev(T ) = 1. Let m be a positive integer. Suppose that every tree T ′ constructed by m−1 operations satisfies

γoi
ev(T

′) = n′−l′+1
3 . Let T = Tm+1 be a tree constructed by m operations.

First, we assume that T is obtained from T ′ by Operation O1. Then n = n′ + 1 and l = l′ + 1. It is easy to
see that S(T ′) = S(T ) is an OIEVDS of T . Thus, γoi

ev(T ) = γoi
ev(T

′) = n′−l′+1
3 = n−1−(l−1)+1

3 = n−l+1
3 .

Second, we assume that T is obtained from T ′ by Operation O2. Then n = n′ + 3 and l = l′. It is easy to
see that S(T ) = S(T ′) ∪ {uv} is an OIEVDS of T and γoi

ev(T ) = γoi
ev(T

′) + 1 Thus, γoi
ev(T ) = γoi

ev(T
′) + 1 =

n′−l′+1
3 + 1 = n−3−l+1

3 + 1 = n−l+1
3 . ■

Theorem 2.2. Let T be a tree of order n ≥ 3 with l leaves. Then n−l+1
3 ≤ γoi

ev(T ) with equality if and only if
T ∈ T .

Proof. If T = P3, then clearly n−l+1
3 = 2

3 < γoi
ev(T ) = 1. Assume that the order of T is at least 4. If T is a

star, then n−l+1
3 = 2

3 < γoi
ev(T ) = 1. If T is a double star, then n−l+1

3 = 1 = γoi
ev(T ). By using Operation O1

repeatably, we have T ∈ T .
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Now assume that diam(T ) ≥ 4. We use the induction on the order of T . Suppose that every tree T ′ of order
n′(< n) satisfies n′−l′+1

3 ≤ γoi
ev(T

′) with equality only if T ′ ∈ T .
Among all of diametrical paths in T , we choose x0x1 . . . xd so that it maximizes degT (xd−1). Root T at x0.

We divide our consideration into four cases.

Case 1. degT (xd−1) ≥ 3.
Let u (̸= xd) be a leaf adjacent to xd−1. Let T ′ = T −{u}. Then n = n′ +1 and l = l′ +1. It is easy to see

that any γoi
ev(T

′)-set D is an OIEVDS of T . Applying the induction hypothesis to T ′, we have n′−l′+1
3 ≤ γoi

ev(T
′).

Thus, n−l+1
3 = n′−l′+1

3 ≤ γoi
ev(T

′) ≤ γoi
ev(T ). If n−l+1

3 = γoi
ev(T ), then n′−l′+1

3 ≤ γoi
ev(T

′) and T ′ ∈ T . By
Operation O1, we have T ∈ T .

Case 2. degT (xd−1) = 2 and degT (xd−2) ≥ 3.
Assume that there exists a support vertex v ∈ C(xd−2) \ {xd−1}. Let T ′ = T − Tv . Then n = n′ + 2

and l = l′ + 1. It is easy to see that γoi
ev(T

′) ≤ γoi
ev(T ) − 1. Applying the induction hypothesis to T ′, we have

n′−l′+1
3 ≤ γoi

ev(T
′). Thus, n−2−(l−1)+1

3 = n′−l′+1
3 ≤ γoi

ev(T
′) ≤ γoi

ev(T )− 1 and so n−l+1
3 < γoi

ev(T ).
Assume that there exists a leaf u ∈ C(xd−2). Let T ′ = T − {u}. Then n = n′ + 1 and l = l′ + 1. It

is easy to see that γoi
ev(T

′) = γoi
ev(T ). Applying the induction hypothesis to T ′, we have n′−l′+1

3 ≤ γoi
ev(T

′).
Thus, n−1−(l−1)+1

3 = n′−l′+1
3 ≤ γoi

ev(T
′) ≤ γoi

ev(T ) and so n−l+1
3 ≤ γoi

ev(T ). If n−l+1
3 = γoi

ev(T ), then
n′−l′+1

3 ≤ γoi
ev(T

′) and T ′ ∈ T . By Operation O1, we have T ∈ T .

Case 3. degT (xd−1) = 2, degT (xd−2) = 2 and degT (xd−3) ≥ 3.
Let T ′ = T−Txd−2

. Then n = n′+3 and l = l′+1. It is easy to see that γoi
ev(T

′) ≤ γoi
ev(T )−1. Applying the

induction hypothesis to T ′, we have n′−l′+1
3 ≤ γoi

ev(T
′). Thus, n−3−(l−1)+1

3 = n′−l′+1
3 ≤ γoi

ev(T
′) ≤ γoi

ev(T )−1

and so n−l+1
3 < γoi

ev(T ).

Case 4. degT (xd−1) = 2, degT (xd−2) = 2 and degT (xd−3) = 2.
Let T ′ = T − Txd−2

. Then n = n′ + 3 and l = l′. It is easy to see that γoi
ev(T

′) ≤ γoi
ev(T )− 1. Applying the

induction hypothesis to T ′, we have n′−l′+1
3 ≤ γoi

ev(T
′). Thus, n−3−l+1

3 = n′−l′+1
3 ≤ γoi

ev(T
′) ≤ γoi

ev(T ) − 1

and so n−l+1
3 ≤ γoi

ev(T ). If n−l+1
3 = γoi

ev(T ), then n′−l′+1
3 ≤ γoi

ev(T
′) and T ′ ∈ T . By Operation O2, we have

T ∈ T . ■

3. Main Result 2

In this section, we prove that if T is a tree of order n ≥ 3 with s support vertices, then γoi
ev(T ) ≤ 2n−s−2

3 . We
also give a characterization of all trees with γoi

ev(T ) =
2n−s−2

3 .

Theorem 3.1. Let T be a tree of order n ≥ 3 with s support vertices. Then γoi
ev(T ) ≤ 2n−s−2

3 with equality if
and only if T is a healthy spider.

Proof. If T = P3, then clearly γoi
ev(T ) = 1 and T is a healthy spider. Assume that the order of T is at least 4. If

T is a star, then γoi
ev(T ) = 1 < 2n−s−2

3 . If T is a double star, then γoi
ev(T ) = 1 < 2n−s−2

3 = 2n−4
3 .

Now assume that diam(T ) ≥ 4. We use the induction on the order of T . Suppose that every tree T ′ of order
n′(< n) satisfies γoi

ev(T
′) ≤ 2n′−s′−2

3 with equality only if T ′ is a healthy spider. Among all of diametrical paths
in T , we choose x0x1 . . . xd so that it maximizes degT (xd−1). Root T at x0. We divide our consideration into
three cases.

Case 1. degT (xd−1) ≥ 3.
Let u (̸= xd) be a leaf adjacent to xd−1. Let T ′ = T − {u}. Then n = n′ + 1 and s = s′. It is easy to see

that any γoi
ev(T

′)-set is an OIEVDS of T . So, γoi
ev(T ) ≤ γoi

ev(T
′). Applying the induction hypothesis to T ′, we

have γoi
ev(T

′) ≤ 2n′−s′−2
3 . Thus, γoi

ev(T ) ≤ γoi
ev(T

′) ≤ 2n′−s′−2
3 < 2n−s−2

3 .

Case 2. degT (xd−1) = 2 and degT (xd−2) = 2.
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Let T ′ = T − {xd−2, xd−1, xd}. It is easy to see that γoi
ev(T ) = γoi

ev(T
′) + 1, s − 1 ≤ s′ ≤ s and

n = n′ + 3. Applying the induction hypothesis to T ′, we have γoi
ev(T

′) ≤ 2n′−s′−2
3 . Thus, γoi

ev(T ) − 1 =

γoi
ev(T

′) ≤ 2n′−s′−2
3 ≤ 2n−6−s+1−2

3 and so γoi
ev(T ) <

2n−s−2
3 .

Case 3. degT (xd−1) = 2 and degT (xd−2) ≥ 3.
Assume that there exists a leaf c ∈ C(xd−2). Let T ′ = T − {v}. By the argument as in Case 1, we have

γoi
ev(T ) <

2n−s−2
3 .

Assume that there exists a support vertex c ∈ C(xd−2)\{xd−1}. By the assumption, c is weak and has a child
w. Let T ′ = T−Tc. It is easy to see that γoi

ev(T ) = γoi
ev(T

′)+1, s = s′+1 and n = n′+2. Applying the induction
hypothesis to T ′, we have γoi

ev(T
′) ≤ 2n′−s′−2

3 . Thus, γoi
ev(T ) − 1 = γoi

ev(T
′) ≤ 2n′−s′−2

3 = 2n−4−s+1−2
3 and

so γoi
ev(T ) ≤ 2n−s−2

3 .
Now we assume that Txd−2

is a healthy spider St,t. Let T ′ = T − V (Txd−2
). It is easy to see that γoi

ev(T ) ≤
γoi
ev(T

′) + t, s − t ≤ s′ and n = n′ + 2t + 1. If |V (T ′)| ≥ 3, then by the induction hypothesis on T ′, we have
γoi
ev(T

′) ≤ 2n′−s′−2
3 . Thus, γoi

ev(T )− t ≤ γoi
ev(T

′) ≤ 2n′−s′−2
3 = 2n−4t−2−s+t−2

3 and so γoi
ev(T ) <

2n−s−2
3 . If

|V (T ′)| = 2, then clearly γoi
ev(T ) =

2n−s−2
3 and T is a healthy spider. ■
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