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Caratheodory’s Theorem for B−1-convex Sets
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Abstract

In this article, our main concept is B−1−convexity that is a new abstract convexity type. For the
B−1−convex sets, Caratheodory’s Theorem which is one of the most important results in convexity theory is
proved and its corollary is given.
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1 Introduction

Caratheodory’s Theorem is the fundamental dimensionality result in convexity theory, and it is the source
of many other results in which dimensionality is prominent. It is used to prove Helly’s Theorem, concerning
intersections of convex sets, as well as various results about infinite systems of linear inequalities.

If S is a subset of Rn, the convex hull of S can be obtained by forming all convex combinations of elements
of S. According to the classical theorem of Caratheodory, it is not really necessary to form combinations
involving more than n + 1 elements at a time. One can limit attention to convex combinations λ1x1 + λ2x2 +

... + λmxm such that m ≤ n + 1 (or even to combinations such that m = n + 1, if one does not insist on the
vectors xi being distinct).

B−1-convexity is an abstract convexity type ([5–7]). In 2012, B−1-convexity is introduced in [1]. Then,
B−1−convex sets and their properties examined in [2, 4]. The applications of B−1-convexity to Mathematical
Economy is investigated in [3]. Separation of B−1−convex sets by B−1−measurable maps is studied in [8].

In this paper, we examine Caratheodory’s Theorem for B−1−convex sets. As being in classic convexity, this
theorem is significant in B−1−convexity and it has applications to the Optimization Theory and Mathematical
Economy. Since it is used for proving Helly’s and Radon Theorems which are thought to be examined for
B−1−convexity in next studies, we need to express Caratheodory’s Theorem for B−1−convex sets.

The outline of this article is as follows: In Section 2, we recall some definitions and theorems about
B−1−convexity. Then, we prove the Caratheodory’s Theorem for B−1−convex sets and its corollary in last
section.

2 B−1−convexity

For r ∈ Z−, the map x → ϕr(x) = x2r+1 is a homeomorphism from K = R \ {0} to itself; x = (x1, x2, ..., xn)→
Φr(x) = (ϕr(x1), ϕr(x2), ..., ϕr(xn)) is homeomorphism from Kn to itself.
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For a finite nonempty set A =
{

x(1), x(2), ..., x(m)
}
⊂ Kn the Φr-convex hull (shortly r-convex hull) of A,

which we denote Cor(A) is given by

Cor(A) =

{
Φ−1

r

(
m

∑
i=1

tiΦr(x(i))

)
: ti ≥ 0,

m

∑
i=1

ti = 1

}
.

We denote by
m
∧

i=1
x(i) the greatest lower bound with respect to the coordinate-wise order relation of

x(1), x(2), ..., x(m) ∈ Rn, that is:

m
∧

i=1
x(i) =

(
min

{
x(1)1 , x(2)1 , ..., x(m)

1

}
, ..., min

{
x(1)n , x(2)n , ..., x(m)

n

})
where, x(i)j denotes jth coordinate of the point x(i).

Thus, we can define B−1-polytopes as follows:

Definition 2.1. [1] The Kuratowski-Painleve upper limit of the sequence of sets {Cor(A)}r∈Z− , denoted by Co−∞(A)

where A is a finite subset of Kn, is called B−1-polytope of A.

The definition of B−1-polytope can be expressed in the following form in
Rn

++ = {(x1, ..., xn) ∈ Rn : xi > 0, i = 1, 2, ..., n}.

Theorem 2.1. [1] For all nonempty finite subsets A =
{

x(1), x(2), ..., x(m)
}
⊂ Rn

++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =

{
m
∧

i=1
tix(i) : ti ≥ 1, min

1≤i≤m
ti = 1

}
.

Next, we give the definition of B−1-convex sets.

Definition 2.2. [1] A subset U of Kn is called a B−1-convex if for all finite subsets A ⊂ U the B−1-polytope Co−∞(A)

is contained in U.

By Theorem 2.1, we can reformulate the above definition for subsets of Rn
++:

Theorem 2.2. [1] A subset U of Rn
++ is B−1-convex if and only if for all x(1), x(2) ∈ U and all λ ∈ [1, ∞) one has

λx(1) ∧ x(2) ∈ U.

Definition 2.3. Given a set S ⊂ Kn, the intersection of all the B−1-convex subsets of Kn containing S is called the
B−1-convex hull of S and is denoted by B−1[S].

3 Caratheodory’s Theorem for B−1-convex Sets

Lemma 3.1. In Rn
++, a set of the form ∏n

i=1 [xi, yi] is a B−1-convex set.

Proof. If A ⊂ ∏n
i=1 [xi, yi] then Φr (A) ⊂ ∏n

i=1

[
x2r+1

i , y2r+1
i

]
, from the convexity of a product of intervals we

obtain, after taking the inverse image by Φr, Cor(A) ⊂ ∏n
i=1 [xi, yi] and therefore Co−∞(A) ⊂ ∏n

i=1 [xi, yi].

We denote by 〈L〉m, the family of nonempty subsets of L of cardinality at most m.

Theorem 3.3. (Carathedory’s Theorem) If L is a compact subset of Rn
++ then

Co−∞(L) =
⋃

A∈〈L〉n+1

Co−∞(A)

Consequently, for all subsets L of Rn
++,

B−1 [L] =
⋃

A∈〈L〉n+1

B−1 [A] =
⋃

A∈〈L〉n+1

Co−∞(A) ;

and, if L is compact, B−1 [L] = Co−∞(L).
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Proof. If x ∈ Co−∞(L) then there is a sequence
(
xrk

)
rk∈N

with xrk ∈ Co−rk (L), ∀k ∈ N which converges to x.

But from Caratheodorys theorem, there is, for each k, a set of points x1
k , x2

k , ..., xn+1
k in L and a set of numbers

ρ1
k , ρ2

k , ..., ρn+1
k in [1,+∞) such that

n+1

∑
j=1

(
ρ

j
k

)−2rk+1
= 1

and

Φ−rk

(
xrk

)
=

n+1

∑
j=1

(
ρ

j
k

)−2rk+1
Φ−rk

(
xj

k

)
or, for i = 1, 2, ..., n,

xrk ,i =

(
n+1

∑
j=1

(
ρ

j
kxj

k,i

)−2rk+1
) 1
−2rk+1

Since L is compact we can without loss of generality assume that each of the sequences
(

xj
k

)
k∈N

,

j = 1, 2, ..., n + 1 converges in L to a point xj, and also that each of the sequences ρ
j
k, j = 1, 2, ..., n + 1

converges in L to a point ρj in [1,+∞). Taking into account that all the numbers involved are positive we
have

lim
k→∞

(
n+1

∑
j=1

(
ρ

j
kxj

k,i

)−2rk+1
) 1
−2rk+1

= min
1≤j≤n+1

{
ρjxj

i

}
moreover

min
1≤j≤n+1

{
ρj
}
= 1 .

Taking the limit componentwise we obtain x = ∧n+1
j=1 ρjxj, with ρj ≥ 1 for all j and min1≤j≤n+1

{
ρj} = 1. We

have shown that x ∈ Co−∞(A) with A =
{

x1, x2, ..., xn+1} ⊂ L. The last formula follows from B−1 [A] =

Co−∞(A) for all finite sets A, B−1 [L] =
⋃

A∈〈L〉
Co−∞(A) and the first part applied to the finite sets A ∈ 〈L〉.

Corollary 3.1. If L is a compact subset of Rn
++ then B−1 [L] is compact.

Proof. If L ⊂ ∏n
i=1 [ai, bi] then Co−∞(L) ⊂ ∏n

i=1 [xi, yi]; Co−∞(L) is therefore compact. The equality B−1 [L] =
Co−∞(L) concludes the proof.
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