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Abstract

In this article, an efficient modification of the Picard iteration method (PIM) is presented by using
Chebyshev polynomials. Special attention is given to study the convergence of the proposed method. The
proposed modification is tested for some examples to demonstrate reliability and efficiency of the introduced
method. A comparison between our numerical results against the conventional numerical method,
fourth-order Runge-Kutta method (RK4) is given. From the presented examples, we found that the proposed
method can be applied to wide class of non-linear ordinary differential equations.
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1 Introduction

Many different approximate methods have recently introduced to solve non-linear problems of differential
equations, such as, variational iteration method ([3], [8], [18], [19], [22]), Adomian decomposition method ([1],
[10], [23]), homotopy perturbation method ([6], [20]) and spectral collocation method ([6], [17]). The Adomian
decomposition method provides solutions as a series by employing the so-called Adomian’s polynomials
which are related to the derivatives of the nonlinearities; therefore, these nonlinearities must be analytical
functions of the dependent variables and this has often been ignored in the literature, for the existence
and the uniqueness of solutions to, for example, initial-value problems in ODEs is ensured under much
milder conditions ([4], [14]). However, the decomposition method may be formulated in a manner that
does not require that the nonlinearities be differentiable with respect to the dependent variables and their
derivatives [15]. Other techniques also require that the nonlinearities be analytical functions of the dependent
variable and provide either convergent series or asymptotic expansions to the solution include perturbation
methods [13], the homotopy perturbation technique and the homotopy analysis procedure [21].

By way of contrast, iterative techniques for solving a large class of linear or non-linear differential
equations without the tangible restriction of sensitivity to the degree of the non-linear term and also it
reduces the size of calculations besides, its interactions are direct and straightforward. These techniques
include the well-known Picard fixed-point iterative procedure.

In this paper, we present a modification of PIM. This modification depends on the useful properties of the
Chebyshev polynomials. Special attention is given to study the convergence analysis of the proposed method.
Convergence analysis is reliable enough to estimate the maximum absolute error of the solution given by PIM.
To guarantee this study, effectively employ this modification to a certain class of non-linear ODEs. Therefore,
this modification of PIM has been widely used for solving non-linear problems to overcome the shortcoming
of other methods.
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The rest of this paper is organized as follows: Section 2 is assigned to the analysis of the standard PIM.
Section 3 is assigned to the convergence study of the proposed method. In section 4, some test problems have
been solved by the modified PIM, to illustrate the efficiency of the proposed method. In finally, the paper ends
with the conclusions in section 5.

2 Picard iteration method

To illustrate the analysis of PIM, we limit ourselves to consider the following non-linear first order ODE in
the type ([5], [9], [16])

u′(x) = R u + N(u), u(0) = c, 0 < x < a, (2.1)

here R is a linear bounded operator i.e., it is possible to find a number m1 > 0 such that ||R u|| ≤ m1||u||.
The non-linear term N(u) is Lipschitz continuous with |N(u)− N(v)| ≤ m2 |u− v|, ∀ x ∈ J = [0, a], for any
constant m2 > 0.
The PIM gives the possibility to write the solution of Eq.(2.1) in the following iteration formula

up(x) = u(0) +
∫ x

0
[R up−1(τ) + N(up−1(τ)) ]dτ, p ≥ 1. (2.2)

The successive approximations up, p ≥ 0, of the solution u(x) will be readily obtained upon using any
selective function u0. The initial values of the solution are usually used for selecting the zeroth approximation
u0. In this technique we obtain a sequence of components of the solution u(x). Consequently, the exact
solution may be obtained by using

u(x) = lim
p→∞

up(x). (2.3)

3 Convergence analysis

In this section, the sufficient conditions are presented to guarantee the convergence of PIM, when applied
to solve non-linear ODEs, where the main point is that we prove the convergence of the recurrence sequence
([2], [12]), which is generated by using PIM.

Lemma 3.1. Let A : U → V be a bounded linear operator and let {up} be a convergent sequence in U with limit u,
then up → u in U implies that A(up)→ A(u) in V [12].

Now, to prove the convergence of the sequence of solution using the Picard iteration method, we will
rewrite Eq.(2.2) in an operator form as follows

up = A[up−1], (3.4)

where the operator A takes the following form

A [u] = u(0) +
∫ x

0
[R u + N(u) ] dτ. (3.5)

Theorem 3.1. Assume that X be a Banach space and A : X → X is a nonlinear mapping, and suppose that

|| A[u]− A[v] || ≤ α ||u− v||, ∀ u, v ∈ X, (3.6)

for any constant α = (m1 + m2)a (0 < α < 1) where m1, m2 and a are defined above. Then A has a unique fixed point.
Furthermore, the sequence (2.2) using PIM with an arbitrary choice of u(0) ∈ X, converges to the fixed point of A and

||up − uq|| ≤
αq

1− α
||u1 − u0||. (3.7)

Proof. Denoting (C[J], ||.||) Banach space of all continuous functions on J with the norm defined by

||u(x)|| = max
x∈J
|u(x)|.
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We are going to prove that the sequence {up} is a Cauchy sequence in this Banach space

‖up − uq‖ = max
x∈J
| up − uq |

= max
x∈J

∣∣∣ ∫ x

0
[ R (up−1 − uq−1) + N(up−1)− N(uq−1) ] dτ

∣∣∣
≤ max

x∈J

∫ x

0
[ |R (up−1 − uq−1)|+ |N(up−1)− N(uq−1)| ] dτ

≤ max
x∈J

∫ x

0
[ (m1 + m2)(up−1 − uq−1) ] dτ

≤ α||up−1 − uq−1||.

Let, p = q + 1 then

‖uq+1 − uq‖ ≤ α ‖uq − uq−1‖ ≤ α2 ‖uq−1 − uq−2‖ ≤ ... ≤ αq ‖u1 − u0‖.

From the triangle inequality we have

||up − uq|| ≤ ||uq+1 − uq||+ ||uq+2 − uq+1||+ ... + ||up − up−1||

≤ [ αq + αq+1 + ... + αp−1 ] ||u1 − u0||

≤ αq[ 1 + α + α2 + ... + αp−q−1 ] ||u1 − u0||

≤ αq[
1− αp−q−1

1− α
] ||u1 − u0||.

Since 0 < α < 1 so, (1− αp−q−1) < 1 then

||up − uq|| ≤
αq

1− α
||u1 − u0||.

But ||u1 − u0|| < ∞ so, as q → ∞ then ||up − uq|| → 0. We conclude that {up} is a Cauchy sequence in C[J]
so, the sequence converges and the proof is complete.

Theorem 3.2. The maximum absolute error of the approximate solution up to problem (2.1) is estimated to be

max
t∈J
|uexact − up| ≤ β, (3.8)

where β =
αq a [m1 ||u0||+ k ]

1− α
, k = max

x∈J
|N(u0)|.

Proof. From Theorem 1 and inequality (3.7) we have

||up − uq|| ≤
αq

1− α
||u1 − u0||,

as p→ ∞ then up → uexact and

||u1 − u0|| = max
x∈J

∣∣∣ ∫ x

0
[ R u0 + N(u0) ] dτ

∣∣∣ ≤ max
x∈J

∫ x

0
[ |R u0|+ |N(u0)| ] dτ ≤ a [m1 ||u0||+ k ],

so, the maximum absolute error in the interval J is

||uexact − up|| = max
x∈J
|uexact − up| ≤ β.

This completes the proof.

Our main goal in this paper is concerned with the implementation of PIM and its modification which have
efficiently used to solve a certain class of ODEs. To achieve this goal, at the beginning of implementation of
PIM, we use the orthogonal Chebyshev polynomials to expand the functions in the non-homogeneous term
in the considered differential equation [17].
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4 Solution procedure using the modified PIM

In this section, an efficient modification of PIM is presented by using Chebyshev polynomials.
The well known Chebyshev polynomials [17] are defined on the interval [−1, 1] and can be determined with
the aid of the following recurrence formula

Tn+1(z) = 2z Tn(z)− Tn−1(z), n = 1, 2, ... .

The first three Chebyshev polynomials are T0(z) = 1, T1(z) = z, T2(z) = 2z2 − 1.

Theorem 4.3. The error in approximating f (x) by the sum of its first m terms is bounded by the sum of the absolute
values of all the neglected coefficients. If

fm(x) =
m

∑
k=0

ck Tk(x), (4.9)

then, for all f (x), all m, and all x ∈ [−1, 1], we have

ET(m) ≡ | f (x)− fm(x)| ≤
∞

∑
k=m+1

|ck|. (4.10)

Proof. The Chebyshev polynomials are bounded by one, that is, |Tk(x)| ≤ 1 for all x ∈ [−1, 1] and for all k.
This implies that the k-th term is bounded by |ck|. Subtracting the truncated series from the infinite series,
bounding each term in the difference, and summing the bounds gives the theorem.

For more details about the definition of the Chebyshev polynomials and its properties see ([7], [11], [17]).
Now, in order to use these polynomials on the interval [0, 1] we define the so called shifted Chebyshev
polynomials by introducing the change of variable z = 2x − 1. Let the shifted Chebyshev polynomials
Tn(2x− 1) be denoted by T∗n (x). Then T∗n (x) can be obtained as follows

T∗n+1(x) = 2(2x− 1) T∗n (x)− T∗n−1(x), n = 1, 2, ... . (4.11)

Now, we use the shifted Chebyshev expansion to expand f (x) in the following form

f (x) ≈ fm(x) =
m

∑
k=0

ck T∗k (x), (4.12)

where the constant coefficients ck are defined by

ck =
2

π hk

∫ 1

0

f (x) T∗k (x)
√

x− x2
dx, h0 = 2, hk = 1, k = 1, 2, .... (4.13)

Now, the proposed modification will implement to solve the following two initial non-linear ordinary
differential equations.

Model problem 1

Consider the following non-linear ordinary differential equation

u′′(x) + x u′(x) + x2 u3(x) = f (x), x ∈ [0, 1], (4.14)

where f (x) = (2 + 6x2)ex2
+ x2 e3x2

and subject to the following initial conditions

u(0) = 1, u′(0) = 0. (4.15)

The exact solution of this problem is u(x) = ex2
.

The procedure of the solution follows the following two steps:
Step 1. Expand the function f (x) using shifted Chebyshev polynomials:

Using the above consideration, the function f (x) can be approximated by eight terms (m = 8) of the shifted
Chebyshev expansion (4.12) as follows

fC(x) ≈ 2.00232− 0.358488 x + 18.0328 x2 − 86.4534 x3 + 416.556 x4 − 1042.66 x5

+ 1502.72x6 − 1134.64x7 + 366.624x8.
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Step 2. Implementation of PIM:
To solve Eq.(4.14) by the PIM we reduce this equation to the following system of first order ODEs

u′(x) = v(x), (4.16)

v′(x) = −x v(x)− x2 u3(x) + f (x), (4.17)

with the following initial conditions u(0) = 1, v(0) = 0.
Now, the PIM gives the possibility to write the solution of the system (4.16)-(4.17) with the aid of the following
iteration formula

un+1(x) = u0 +
∫ x

0
vn(τ)dτ, n ≥ 0, (4.18)

vn+1(x) = v0 −
∫ x

0
[τ vn(τ) + τ2 u3

n(τ)− f (τ) ]dτ, n ≥ 0. (4.19)

We start with initial approximations u0 = 1, v0 = 0, and by using the above iteration formulae (4.18)-(4.19),
we can directly obtain the components of the solution.
Now, the first three components of the solution u(x) of Eq.(4.14) by using (4.18)-(4.19) are

u0(x) = 1,

u1(x) = 1,

u2(x) = 1 + 1.00116x2 − 0.059748x3 + 1.4194x4 − 4.32267x5 + 13.8852x6 − 24.8252x7

+26.8343x8 − 15.7589x9 + 4.0736x10 + ...,

u3(x) = 1 + 1.00116x2 − 0.059748x3 + 1.25254x4 − 4.31371x5 + 13.6959x6 − 24.3106x7 + 25.3466x8

−13.3453x9 + 1.68833x10 + 1.28936x11 − 0.308606x12 + ....

Now, also to perform PIM, we can expand the function f (x) using Taylor series at the point x = x0 as follows

f (x) ≈
m

∑
k=0

f (k)(x0)

k!
(x− x0)

k, (4.20)

for an arbitrary integer number m.
If we expand the function f (x) by the Taylor series (4.20) about the point x0 = 0 with eight terms, we have

fT(x) ≈ 2 + 9 x2 + 10 x4 + 7.83 x6 + 5.58333 x8 + O(x9).

So, the first three components of the solution by using (4.18)-(4.19) are

u0(x) = 1,

u1(x) = 1,

u2(x) = 1 + x2 + 0.666667x4 + 0.333333x6 + 0.139881x8 + 0.062037x10,

u3(x) = 1 + x2 + 0.5x4 + 0.244444x6 + 0.104167x8 + 0.0496032x10 − 0.00469978x12 .

Also, to solve the same problem (4.14) using the fourth-order Runge-Kutta method, we used its corresponding
system of ODEs (4.16)-(4.17).

The absolute errors between the function f (x) and its approximation by using the Taylor expansion (Top)
and the Chebyshev expansion (Bottom) are presented in figure 1.
The absolute error between the exact solution u(x) and the approximate solution uC(x) = u4(x) (after four
iterations) and using the Chebyshev expansion for f (x) with m = 8 is presented in figure 2(Right). Also,
the absolute error between the exact solution u(x) and the approximate solution uT(x) = u4(x) (after four
iterations) using the Taylor expansion for f (x) with eight terms is presented in figure 2(Left).
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Figure 1: The absolute error: | f (x)− fT(x)| (Top) and | f (x)− fC(x)| (Bottom).

Figure 2: The absolute error |u(x)− uT(x)| (Left) and |u(x)− uC(x)| (Right).

Also, the figure 3 presents a comparison between the exact solution u(x), with the numerical solution uRK4
using fourth-order Runge-Kutta and the approximate solution of our proposed method uC(x). From this
figure, we can see that the two methods are in excellent agreement with the exact solution.

Figure 3: Comparison between the exact solution u(x), uRK4 and the approximate solution
of the proposed method uC(x).



Khader and Mahdy /An efficient modification of PIM... 459

Model problem 2

Consider the following non-linear ordinary differential equation

u′′ + u u′ = f (x), x ∈ [0, 1], (4.21)

where f (x) = x sin(2x2)− 4x2sin(x2) + 2 cos(x2) with the following initial conditions

u(0) = 0, u′(0) = 0. (4.22)

The exact solution of this problem is u(x) = sin(x2).
The procedure of the solution follows the following two steps:
Step 1. Expand the function f (x) using shifted Chebyshev polynomials:

Using the above consideration, the function f (x) can be approximated by eight terms (m = 8) of the
expansion (4.12) as follows

fC(x) ≈ 2− 0.0003 x + 0.008 x2 + 1.892 x3 − 4.308 x4 − 2.399 x5 + 4.682 x6 − 6.276 x7 + 3.025 x8.

Step 2. Implementation of PIM:
To solve Eq.(4.21) by the PIM we reduce this equation to the following system of ODEs

u′(x) = v(x), (4.23)

v′(x) = −u(x) v(x) + f (x), (4.24)

with the following initial conditions u(0) = 0, v(0) = 0.
According to PIM we can construct the following iteration formula

un+1(x) = u0 +
∫ x

0
[vn(τ)]dτ, n ≥ 0. (4.25)

vn+1(x) = v0 −
∫ x

0
[un(τ) vn(τ)− f (τ) ]dτ, n ≥ 0. (4.26)

Therefore, the first three components of the solution u(x) of Eq.(4.21) using (4.25)-(4.26) are

u0(x) = 0,

u1(x) = x2 + 0.1 x5 − 0.166667 x6 − 0.0185185 x9 + 0.00833333 x10 + ...,

u2(x) = x2 − 0.166667 x6 − 0.012 x8 + 0.008333 x10 − 0.0004545 x11 + 0.002932 x12 + ...,

u3(x) = x2 − 0.1667 x6 + 0.0083 x10 + 0.0011 x11 − 0.0017 x13 + 0.00003 x14 − 0.0003 x15 + ...,

Now, if we expand the function f (x) by the Taylor series (4.20) with eight terms, we have

fT(x) ≈ 2 + 2 x3 − 5 x4 − 1.33333 x7 + 0.75 x8 + O(x9).

So, the first three components of the solution u(x) of Eq.(4.21) using (4.25)-(4.26) are

u0(x) = 0,

u1(x) = x2 − 0.00004 x3 + 0.0007 x4 + 0.0946 x5 − 0.1436 x6 − 0.0571 x7 + 0.0836 x8 + ...,

u2(x) = x2 − 0.00004 x3 + 0.0007 x4 − 0.0054 x5 − 0.143585 x6 − 0.0572 x7 + 0.0718 x8 + ...,

u3(x) = x2 − 0.00004 x3 + 0.0007 x4 − 0.0054 x5 − 0.1436 x6 − 0.0572 x7 + 0.0843 x8 + ... .

Figure 4 presents the absolute error between the function f (x) and its approximation by using the Taylor
expansion (Top) and the Chebyshev expansion (Bottom).
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Figure 4: The absolute error: | f (x)− fT(x)| (Top) and | f (x)− fC(x)| (Bottom).

Figure 5: The absolute error: |u(x)− uT(x)| (Left) and |u(x)− uC(x)| (Right).

Figure 6: Comparison between the exact solution u(x), uRK4 and the approximate solution
of the proposed method uC(x).

The absolute error between the exact solution u(x) and the approximate solution uC(x) ' u4(x) (after four
iterations) using the Chebyshev expansion for f (x) with m = 8 is presented in figure 5(Right). Also, the
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absolute error between the exact solution u(x) and the approximate solution uT(x) ' u4(x) (after four
iterations) using the Taylor expansion for f (x) with eight terms is presented in figure 5(Left). Also, the
figure 6 presents a comparison between exact solution u(x), with the numerical solution uRK4 using fourth-
order Runge-Kutta and the approximate solution of the proposed method uC(x). From these figures, we can
conclude that the proposed method is in excellent agreement with the exact solution.

5 Conclusion

In this article, we used the properties of the shifted Chebyshev polynomials to introduce an efficient
modification of PIM. Also, we presented comparative solutions with the proposed method and fourth-order
Runge-Kutta method. From the introduced model problems, we can conclude that the proposed idea can be
applied to solve the non-linear models of ordinary differential equations. Also, the obtained results
demonstrate reliability and efficiency of the proposed method and achieve the convergence study of the
method. From the resulting numerical solution we can conclude that the solution using this modification
converges faster and is in excellent conformance with the exact solution. An interesting point about PIM is
that only few iterations or, even in some special cases, one iteration, lead to exact solution or solution with
high accuracy. Finally, all the obtained numerical results are done by using Matlab 8.
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