Malaya ${\mathcal M}$ T ${\mathcal M}$ Journal of an international journal of mathematical sciences with Matematik computer applications...

On the Biordered set of Rings

P. G. Romeo*a*,[∗] and R. Akhila*^b*

^a,*^b Department of Mathematics, Cochin University of Science and Technology, Kochi, Kerala, INDIA.*

Abstract

www.malayajournal.org

In [\[4\]](#page-4-0) K.S.S. Nambooripad introduced biordered sets as a partial algebra (E, ω^r, ω^l) where ω^r and ω^l are two quasiorders on the set *E* satisfying biorder axioms; to study the structure of a regular semigroup. Later in [\[2\]](#page-4-1) David Esdown showed that the set of idempotents of a regular semigroup forms a regular biordered set. Here we extend the idea of biordered sets into rings and discussed some of its properties.

Keywords: Biordered set, Sandwitch set.

2010 MSC: 20M10. **COLLECT 2010 MSC: 20M10. COLLECT 2012 MJM.** All rights reserved.

1 Introduction

The set of idempotent elements in a semigroup *S* usually denoted as *E*(*S*) and is important structural objects which can be used effectively in analyzing the structure of the semigroup. The concept of biordered set was originally introduced by Nambooripad[1972, 1979] to describe the structure of the set of idempotents of a semigroup in general and that of a regular semigroup in particular. A biordered set is a partial algebra (partial semigroup) together with two quasi orders on the domain of definition of the partial binary operation. Nambooripad identified a partial binary operation on the set of idempotents *E*(*S*) of a semigroup *S* arising from the binary operation in *S*, defined two quasi orders on *E*(*S*) and the resulting structure is abstracted as a biordered set. later on david Esdown showed that any biordeed set arises as the set of idempotents of a semigroup (see[\[2\]](#page-4-1)).

In this paper we discuss the biordered sets which are the set of idempotents of a ring and we provide certain examples of such biordered sets.

2 Preliminaries

First we recall some basic definitions regarding semigroups, biorderede sets and rings needed in the sequel. A set *S* in which for every pair of elements $a, b \in S$ there is an element $a \cdot b \in S$ which is called the product of *a* by *b* is called a groupoid. A groupoid *S* is a semigroup if the binary operation on *S* is associative. An element $a \in S$ is called regular if there exists an element $a' \in S$ such that $aa'a = a$, if every element of *S* is regular then *S* is a regular semigroup. An element *e* ∈ *S* such that *e* · *e* = *e* is called an idempotent and the set of all idempotents in *S* will be denoted by *E*(*S*).

2.1 Biordered Sets

By a partial algebra *E* we mean a set together with a partial binary operation on *E*. Then $(e, f) \in D_E$ if and only if the product *ef* exists in the partial algebra *E*. If *E* is a partial algebra, we shall often denote the underlying set by *E* itself; and the domain of the partial binary operation on *E* will then be denoted by *D*_E. Also, for brevity, we write $ef = g$, to mean $(e, f) \in D_E$ and $ef = g$. The dual of a statement *T* about a **partial algebra** *E* is the statement T^* obtained by replacing all products *ef* by its left-right dual *fe*. When *D*_{*E*} is symmetric, T [∗] is meaningful whenever *T* is. On *E* we define

$$
\omega^r = \{(e, f) : fe = e\} \omega^l = \{(e, f) : ef = e\}
$$

and $\mathcal{R}=\omega^r\cap(\omega^r)^{-1}$, $\mathcal{L}=\omega^l\cap(\omega^l)^{-1}$, $\;\omega=\omega^r\cap\omega^l$. The data required to specify a biordered set *E* consists of a pair of quasiorders *ω^r* and *ω^l* . We will refer to *ω^r* as the right quasiorder of *E* and, *ω^l* as the left quasiorder of *E*.

Definition 2.1. *Let E be a partial algebra. Then E is a biordered set if the following axioms and their duals hold:*

1. ω^r and ω^l are quasi orders on E and

$$
D_E = (\omega^r \cup \omega^l) \cup (\omega^r \cup \omega^l)^{-1}
$$

- *2. f* ∈ *ω^r* (*e*) ⇒ *f* R *f eωe*
- *3.* $g\omega^l f$ and $f, g \in \omega^r(e) \Rightarrow g e \omega^l f e$.
- *4.* $g\omega^r f \omega^r e \Rightarrow gf = (ge)f$
- *5.* $g\omega^l f$ and f , $g \in \omega^r(e) \Rightarrow (fg)e = (fe)(ge)$.

We shall often write $E~=< E$, ω^l , $\omega^r>$ to mean that E is a biordered set with quasiorders ω^l , $\omega^r.$ The relation *ω* defined is a partial order and

$$
\omega \cap (\omega)^{-1} \subset \omega^r \cap (\omega^l)^{-1} = 1_E.
$$

Definition 2.2. Let $\mathcal{M}(e,f)$ denote the quasi ordered set $(\omega^l(e) \cap \omega^r(f),<)$ where $<$ is defined by $g~<~h~\Leftrightarrow~$ $eg\omega^r$ eh, and $gf\omega^l$ h f . Then the set

$$
S(e,f) = \{ h \in M(e,f) : g < h \text{ for all } g \in M(e,f) \}
$$

is called the sandwich set of e and f .

1. $f, g \in \omega^r(e) \Rightarrow S(f, g)e = S(fe, ge)$

The biordered set *E* is said to be regular if $S(e, f) \neq \emptyset$ $\forall e, f \in E$

A ring is a set *R* together with two binary operations $'+$,', $'$,' with the following properties.

- 1. The set $(R, +)$ is an abelian group.
- 2. The set (R, \cdot) is a semigroup.
- 3. The operation \cdot is distributive over $+$.

3 Biordered set of a Ring

Let $(R, +, \cdot)$ be a ring. An element $e \in R$ is a multiplicative idempotent if $e \cdot e = e$ and an additive idempotent if $e + e = e$ and e is an idempotent in the ring R if and only if e is both an additive and a multiplicative idempotent. Denote *E* as the set of all multiplicative idempotents in *R*. In $(R, +, \cdot)$ define

$$
a\oplus b=a+b-ab.
$$

It is easy to see that \oplus is an associative binary operation on *R* and both the additive reduct (R, \oplus) and the multiplicative reduct (R, \cdot) are semigroups. Further it can be seen that every multiplicative idempotent in (R, \cdot) is an additive idempotent in (R, \oplus) and hence the set of multiplicative idempotents *E* of (R, \cdot) coinsides with the set of additive idempotents of E^\oplus $(R,\oplus).$

Lemma 3.1. *Let e*, *f be idempotents in R then,*

$$
e \oplus f = e \Longleftrightarrow f \omega^r e
$$

$$
e \oplus f = f \Longleftrightarrow e \omega^l f
$$

Proof. Suppose $e \oplus f = e$, then

$$
e + f - ef = e \Rightarrow f - ef = 0 \Rightarrow f = ef \Rightarrow f\omega^r e.
$$

Conversely, let $f\omega^r e$ then, $ef = f$. Consider $e \oplus f$, we have

$$
e \oplus f = e + f - ef = e + f - f = e.
$$

Similarly, let $e \oplus f = f$ then by definition,

$$
e + f - ef = f \Rightarrow e - ef = 0 \Rightarrow ef = e \Rightarrow e\omega^{1}f.
$$

Conversely, assume that $e\omega^l F$ then $ef = e$. Therefore,

$$
e \oplus f = e + f - ef = e + f - e = f
$$

It is easy to observe that the domain of both the binary operations · and ⊕ coincides and we denote this domain by D, for $(e,f)\in D$ either $(e,f)\in\omega^r\cup\omega^l$ or $(f,e)\in\omega^r\cup\omega^l$. In the first case either $f\oplus e=e$ or $e\oplus f=e.$ If $f\oplus e=e, (e\oplus f)^2=(e\oplus f)\oplus (e\oplus f)=e\oplus (f\oplus e)\oplus f=e\oplus e\oplus f=e\oplus f$ and so $e\oplus f\in E^{\oplus}.$ Thus $e\oplus f\in E^\oplus$ whenever $(e,f)\in\omega^r\cup\omega^l.$ Similarly, it can be seen that $e\oplus f\in E^\oplus$ when $(f,e)\in\omega^r\cup\omega^l.$ Thus, by restricting the operation in (R, \oplus, \cdot) to *D* we obtain the partial algebra (D, \oplus) defining the operations in the ring *R* to (*D*, ⊕), we obtain a partial algebra on *E* [⊕]. Now in the light of the biorder axioms we have the following Proposition.

Proposition 3.1. *Let e*, *f* , *g be idempotents in R. Then*

f \Rightarrow *e* $\omega f \oplus e\mathcal{L}f$ $2.$ $g\omega^{l} f$, $e \in \omega^{l}(f) \cap \omega^{l}(g) \Rightarrow e \oplus g\omega^{l} e \oplus f$ *3.* $e\omega^I f \omega^I g \Rightarrow (f \oplus e) \oplus g = f \oplus g$ *4.* $f\omega^r g$, $e \in \omega^l(f) \cap \omega^l(g) \Rightarrow e \oplus (f \oplus g) = (e \oplus f) \oplus (e \oplus g)$

Proof. (1) $e\omega^1 f$, so $e(f \oplus e) = e(f + e - fe) = e$ and $(f \oplus e)e = (f + e - fe)e = e$ that is $e\omega(f \oplus e)$. Also $(f \oplus e)f = (f + e - fe)f = f + ef - fef = f + e - fe = f \oplus e$ and $f(f \oplus e) = f(f + e - fe) = f$ that is $f \oplus e\mathcal{L}f$.

(2) $g\omega^l f$ and $e \in \omega^l(f) \cap \omega^l(g)$. Therefore,

$$
(e \oplus g) \cdot (e \oplus f) = (e + g - eg) \cdot f = e \oplus g
$$

Thus, $(e \oplus g) \omega^l (e \oplus f)$.

(3) $e\omega^I f \omega^I g$, we have $e \oplus f = f$, $f \oplus g = g$ and $e \oplus g = g$. Therefore,

$$
f \oplus g = f \oplus (e \oplus g) = (f \oplus e) \oplus g
$$

(4) Since $f\omega^r g$, $e \in \omega^l(f) \cap \omega^l(g)$ we have, $f \oplus g = g$, $e \oplus f = f$ and $e \oplus g = g$. Therefore,

$$
e \oplus (f \oplus g) = (e \oplus f) \oplus g = (e \oplus f) \oplus (e \oplus g).
$$

Next we proceed to define the addictive sandwich set of the biordered set *E* ⊕.

Proposition 3.2. *For e,* $f \in E^{\oplus}$ *, let*

$$
\tilde{M}(e,f) = \{ g \in E_{\mathscr{R}} : e \in \omega^r(g) \text{ and } f \in \omega^l(g), \prec \}
$$

where \prec *is defined by h* \prec *g* \Longleftrightarrow *hg* = *gh* = *h*. *Then M*(*e, f*) *is a quasiordered set and the set*

$$
\tilde{S}(e,f) = \{ h \in \tilde{M}(e,f) : h \prec g \text{ for all } g \in \tilde{M}(e,f) \}
$$

is called the addictive sandwich set of e and f (in that order).

Proof. For $g, h \in \tilde{M}(e, f)$, then both gh and hg in $\tilde{M}(e, f)$ also $h \prec h$ and if $h \prec g, g \prec k$ then $h \prec k$. Thus $\tilde{M}(e, f)$ is a quasiordered set and $\tilde{S}(e, f)$ are minimal elements of $\tilde{M}(e, f)$. \Box

Lemma 3.2. *For any idempotents* $e, f \in R$ *and* $h \in \tilde{S}(e, f)$ *then* $f \oplus h \oplus e = h$ *.*

Proof. Since $h \in \tilde{S}(e, f)$, we have $he = e$ and $fh = f$ thus

$$
f \oplus h \oplus e = (f \oplus h) + e - (f \oplus h)e
$$

= $f + h - f + e - (f + h - fh)e$
= h .

Remark 3.1. *For any two idempotents e,* $f \in R$ *and e* $\neq f$ *then* $\tilde{S}(e, f)$ *and* $S(e, f)$ *are disjoint.*

Example 3.1. *A complemented distributive lattice is called a Boolean lattice. Let* (*L*, ∨, ∧) *be a Boolean lattice. Then* (*L*, +, ·) *where e* + *f* = *e* ∨ *f* and *e* · *f* = *e* ∧ *f is a ring. Now define* ⊕ *on* (*L*, +, ·) *as follows*

$$
e \oplus f = (e \wedge f') \vee (e' \wedge f)
$$

 $\cos e \oplus f = (e + f) - ef$ and $\mathscr{L} = (L, \oplus)$ *is a semigroup and we denote the addictive idempotent set by* E^{\oplus} *. It should be noted that the set of multiplicative idempotents E and the set of all addictive idempotent set E*[⊕] *coincides with L and* L *(ie., the lattice is a band with respect to both* · *and* ⊕*. Let us now describe the biordered set E as follows:* ω^r and ω^l , defined by e $\omega^r f \Rightarrow f\wedge e=e$ and e $\omega^l f\Rightarrow e\wedge f=e$ are quasiorders and $\omega=\omega^r\cap\omega^l$ is a partial order. Since e $\wedge f=f\wedge e$ we have $\omega^r=\omega^l=\omega$ on E. Also $M(e,f)=(\omega^l(e)\cap\omega^r(f),<)$ where $g\,<\,h\,\Leftrightarrow\,$ $e g \omega^r e h$, $g f \omega^l h f$, and $S(e, f)$ the maximal elements of $M(e, f)$, thus $S(e, f) = \{e \wedge f\}.$

Next we define the addictive sandwitch set E[⊕] *as follows*

$$
\tilde{M}(e,f) = \{g : e\omega^r g \text{ and } f\omega^l g, \prec\}
$$

where h \prec *g means* $hg = gh = h$, thus we have $\tilde{M}(e, f) = \{e \vee f\}$ and

$$
\tilde{S}(e,f) = \{e \vee f\}.
$$

Example 3.2. *Consider the real quarternions* $Q = \{q = q_0 + q_1i + q_2j + q_3j \mid q_i \in R\}$ *. It is well known that with respect to the usual additin and multplication defined by the rule i* $^2 = j^2 = k^2 = -1$ *and ij* $= -ji = k$ *, jk* $= -kj =$ *i*, *ki* = −*ik* = *j is a noncommutative skewfield. The idempotent set is*

$$
E_Q = \{e = (0,0,0,0), f = (1,0,0,0)\}
$$

then $\omega^l(e) = \{e\}$ *and* $\omega^r(f) = \{e, f\}$ *, so* $M(e, f) = \{e\} = S(e, f)$ *. Now for q,r* \in *Q define q* \oplus *r* = *q* + *r* − *qr, it is easy to obseve that* $\mathcal{Q} = (Q, \oplus)$ *is a semigroup and* $E_{\mathcal{Q}} = E_Q$ *. The additive sandwitch set of* Q *is described as follows.*

$$
\tilde{M}(e,f) = \{ g \in E_{\mathcal{R}} : e \in \omega^r(g) \text{ and } f \in \omega^l(g), \prec \}
$$

 s *ince* $e \in \omega^l(f)$ *and* $f \in \omega^r(f)$ *, we have* $\tilde{M}(e,f) = \{f\}$ *Also since*

$$
\tilde{S}(e,f) = \{ h \in \tilde{M}(e,f) : h \prec g \text{ for all } g \in \tilde{M}(e,f) \}
$$

we have $\tilde{S}(e, f) = \{f\}.$

Example 3.3. *Consider the set* $\mathcal{M}_2(\mathcal{Z})$ of 2×2 *matrices with integer entries. This is a non-commutative ring with usual addition and multiplication of matrices. The possible idempotents E_R <i>in this ring are*

$$
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}
$$

\nLet $e = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, f = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \in (E_{\mathcal{R}r} \cdot)$. then
\n
$$
\omega^l(e) = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ and } \omega^r(f) = \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}
$$

\nThus $M(e, f) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \langle \} \text{ and so } S(e, f) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$
\nNow we proceed to describe the additive sandwich set, we have
\n
$$
\tilde{M}(e, f) = \left\{ g : e \in \omega^r(g), f \in \omega^l(g), \prec \right\}
$$

where h $\prec g$ *means hg* = *gh* = *h. Thus* $\tilde{M}(e, f) = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \prec \right\}$. *Thus*

$$
\tilde{S}(e,f) = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]
$$

References

- [1] A. H. Clifford and G. B. Preston (1964): The Algebraic Theory of Semigroups, Volume 1 Math. Surveys of the American. Math. Soc.7, Providence, R. I.
- [2] David Easdown (1985): Biordered sets comes from Semigroups : Journal of Algebra, 96, 581-591, 87d:06020.
- [3] J. M. Howie (1976): An Introduction To Semigroup Theory, Academic Press Inc. (London). ISBN: 75-46333
- [4] K.S.S. Nambooripad (1979): Structure of Regular Semigroups (MEMOIRS, No.224), American Mathematical Society, ISBN-13: 978-0821 82224

Received: November 24, 2015; *Accepted*: April 15, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/