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On the Biordered set of Rings
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Abstract

In [4] K.S.S. Nambooripad introduced biordered sets as a partial algebra (E, ωr, ωl) where ωr and ωl are
two quasiorders on the set E satisfying biorder axioms; to study the structure of a regular semigroup. Later in
[2] David Esdown showed that the set of idempotents of a regular semigroup forms a regular biordered set.
Here we extend the idea of biordered sets into rings and discussed some of its properties.
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1 Introduction

The set of idempotent elements in a semigroup S usually denoted as E(S) and is important structural
objects which can be used effectively in analyzing the structure of the semigroup. The concept of biordered
set was originally introduced by Nambooripad[1972, 1979] to describe the structure of the set of idempotents
of a semigroup in general and that of a regular semigroup in particular. A biordered set is a partial algebra
(partial semigroup) together with two quasi orders on the domain of definition of the partial binary operation.
Nambooripad identified a partial binary operation on the set of idempotents E(S) of a semigroup S arising
from the binary operation in S, defined two quasi orders on E(S) and the resulting structure is abstracted as
a biordered set. later on david Esdown showed that any biordeed set arises as the set of idempotents of a
semigroup (see[2]).

In this paper we discuss the biordered sets which are the set of idempotents of a ring and we provide
certain examples of such biordered sets.

2 Preliminaries

First we recall some basic definitions regarding semigroups, biorderede sets and rings needed in the sequel.
A set S in which for every pair of elements a, b ∈ S there is an element a · b ∈ S which is called the product
of a by b is called a groupoid. A groupoid S is a semigroup if the binary operation on S is associative. An
element a ∈ S is called regular if there exists an element a′ ∈ S such that aa′a = a, if every element of S is
regular then S is a regular semigroup. An element e ∈ S such that e · e = e is called an idempotent and the set
of all idempotents in S will be denoted by E(S).

2.1 Biordered Sets

By a partial algebra E we mean a set together with a partial binary operation on E. Then (e, f ) ∈ DE
if and only if the product e f exists in the partial algebra E. If E is a partial algebra, we shall often denote
the underlying set by E itself; and the domain of the partial binary operation on E will then be denoted by
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DE. Also, for brevity, we write e f = g, to mean (e, f ) ∈ DE and e f = g. The dual of a statement T about a
partial algebra E is the statement T∗ obtained by replacing all products e f by its left-right dual f e. When DE
is symmetric, T∗ is meaningful whenever T is. On E we define

ωr = {(e, f ) : f e = e} ωl = {(e, f ) : e f = e}

andR = ωr ∩ (ωr)−1, L = ωl ∩ (ωl)−1, ω = ωr ∩ωl . The data required to specify a biordered set E consists
of a pair of quasiorders ωr and ωl . We will refer to ωr as the right quasiorder of E and, ωl as the left quasiorder
of E.

Definition 2.1. Let E be a partial algebra. Then E is a biordered set if the following axioms and their duals hold:

1. ωr and ωl are quasi orders on E and

DE = (ωr ∪ωl) ∪ (ωr ∪ωl)−1

2. f ∈ ωr(e)⇒ fR f eωe

3. gωl f and f , g ∈ ωr(e)⇒ geωl f e.

4. gωr f ωre⇒ g f = (ge) f

5. gωl f and f , g ∈ ωr(e)⇒ ( f g)e = ( f e)(ge).

We shall often write E =< E, ωl , ωr > to mean that E is a biordered set with quasiorders ωl , ωr. The
relation ω defined is a partial order and

ω ∩ (ω)−1 ⊂ ωr ∩ (ωl)−1 = 1E.

Definition 2.2. Let M(e, f ) denote the quasi ordered set (ωl(e) ∩ ωr( f ),<) where < is defined by g < h ⇔
egωreh, and g f ωlh f . Then the set

S(e, f ) = {h ∈ M(e, f ) : g < h forall g ∈ M(e, f )}

is called the sandwich set of e and f .

1. f , g ∈ ωr(e)⇒ S( f , g)e = S( f e, ge)

The biordered set E is said to be regular if S(e, f ) 6= ∅ ∀e, f ∈ E

A ring is a set R together with two binary operations ′+′,′ ·′ with the following properties.

1. The set (R,+) is an abelian group.

2. The set (R, ·) is a semigroup.

3. The operation · is distributive over +.

3 Biordered set of a Ring

Let (R,+, .) be a ring. An element e ∈ R is a multiplicative idempotent if e · e = e and an additive
idempotent if e + e = e and e is an idempotent in the ring R if and only if e is both an additive and a
multiplicative idempotent. Denote E as the set of all multiplicative idempotents in R. In (R,+, ·) define

a⊕ b = a + b− ab.

It is easy to see that ⊕ is an associative binary operation on R and both the additive reduct (R,⊕) and the
multiplicative reduct (R, ·) are semigroups. Further it can be seen that every multiplicative idempotent in
(R, ·) is an additive idempotent in (R,⊕) and hence the set of multiplicative idempotents E of (R, ·) coinsides
with the set of additive idempotents of E⊕ (R,⊕).
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Lemma 3.1. Let e, f be idempotents in R then,

e⊕ f = e⇐⇒ f ωre
e⊕ f = f ⇐⇒ eωl f

Proof. Suppose e⊕ f = e, then

e + f − e f = e⇒ f − e f = 0⇒ f = e f ⇒ f ωre.

Conversely, let f ωre then, e f = f . Consider e⊕ f , we have

e⊕ f = e + f − e f = e + f − f = e.

Similarly, let e⊕ f = f then by definition,

e + f − e f = f ⇒ e− e f = 0⇒ e f = e⇒ eωl f .

Conversely, assume that eωl F then e f = e. Therefore,

e⊕ f = e + f − e f = e + f − e = f

It is easy to observe that the domain of both the binary operations · and ⊕ coincides and we denote this
domain by D, for (e, f ) ∈ D either (e, f ) ∈ ωr ∪ ωl or ( f , e) ∈ ωr ∪ ωl . In the first case either f ⊕ e = e or
e⊕ f = e. If f ⊕ e = e, (e⊕ f )2 = (e⊕ f )⊕ (e⊕ f ) = e⊕ ( f ⊕ e)⊕ f = e⊕ e⊕ f = e⊕ f and so e⊕ f ∈ E⊕.
Thus e⊕ f ∈ E⊕ whenever (e, f ) ∈ ωr ∪ ωl . Similarly, it can be seen that e⊕ f ∈ E⊕ when ( f , e) ∈ ωr ∪ ωl .
Thus, by restricting the operation in (R,⊕, ·) to D we obtain the partial algebra (D,⊕) defining the operations
in the ring R to (D,⊕), we obtain a partial algebra on E⊕. Now in the light of the biorder axioms we have the
following Proposition.

Proposition 3.1. Let e, f , g be idempotents in R. Then

1. eωl f ⇒ eω f ⊕ eL f

2. gωl f , e ∈ ωl( f ) ∩ωl(g)⇒ e⊕ gωle⊕ f

3. eωl f ωl g⇒ ( f ⊕ e)⊕ g = f ⊕ g

4. f ωrg, e ∈ ωl( f ) ∩ωl(g)⇒ e⊕ ( f ⊕ g) = (e⊕ f )⊕ (e⊕ g)

Proof. (1) eωl f , so e( f ⊕ e) = e( f + e − f e) = e and ( f ⊕ e)e = ( f + e − f e)e = e that is eω( f ⊕ e). Also
( f ⊕ e) f = ( f + e − f e) f = f + e f − f e f = f + e − f e = f ⊕ e and f ( f ⊕ e) = f ( f + e − f e) = f that is
f ⊕ eL f .

(2) gωl f and e ∈ ωl( f ) ∩ωl(g). Therefore,

(e⊕ g) · (e⊕ f ) = (e + g− eg) · f = e⊕ g

Thus, (e⊕ g)ωl(e⊕ f ).

(3) eωl f ωl g, we have e⊕ f = f , f ⊕ g = g and e⊕ g = g. Therefore,

f ⊕ g = f ⊕ (e⊕ g) = ( f ⊕ e)⊕ g.

(4) Since f ωrg, e ∈ ωl( f ) ∩ωl(g) we have, f ⊕ g = g, e⊕ f = f and e⊕ g = g. Therefore,

e⊕ ( f ⊕ g) = (e⊕ f )⊕ g = (e⊕ f )⊕ (e⊕ g).

Next we proceed to define the addictive sandwich set of the biordered set E⊕.
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Proposition 3.2. For e, f ∈ E⊕, let

M̃(e, f ) = {g ∈ ER : e ∈ ωr(g) and f ∈ ωl(g),≺}

where ≺ is defined by h ≺ g⇐⇒ hg = gh = h. Then M̃(e, f ) is a quasiordered set and the set

S̃(e, f ) =
{

h ∈ M̃(e, f ) : h ≺ g for all g ∈ M̃(e, f )
}

is called the addictive sandwich set of e and f (in that order).

Proof. For g, h ∈ M̃(e, f ), then both gh and hg in M̃(e, f ) also h ≺ h and if h ≺ g, g ≺ k then h ≺ k. Thus
M̃(e, f ) is a quasiordered set and S̃(e, f ) are minimal elements of M̃(e, f ).

Lemma 3.2. For any idempotents e, f ∈ R and h ∈ S̃(e, f ) then f ⊕ h⊕ e = h.

Proof. Since h ∈ S̃(e, f ), we have he = e and f h = f thus

f ⊕ h⊕ e = ( f ⊕ h) + e− ( f ⊕ h)e

= f + h− f + e− ( f + h− f h)e

= h.

Remark 3.1. For any two idempotents e, f ∈ R and e 6= f then S̃(e, f ) and S(e, f ) are disjoint.

Example 3.1. A complemented distributive lattice is called a Boolean lattice. Let (L,∨,∧) be a Boolean lattice. Then
(L,+, ·) where e + f = e ∨ f and e · f = e ∧ f is a ring. Now define ⊕ on (L,+, ·) as follows

e⊕ f = (e ∧ f ′) ∨ (e′ ∧ f )

so e⊕ f = (e + f )− e f and L = (L,⊕) is a semigroup and we denote the addictive idempotent set by E⊕. It should
be noted that the set of multiplicative idempotents E and the set of all addictive idempotent set E⊕ coincides with L and
L (ie., the lattice is a band with respect to both · and ⊕. Let us now describe the biordered set E as follows:
ωr and ωl , defined by eωr f ⇒ f ∧ e = e and eωl f ⇒ e ∧ f = e are quasiorders and ω = ωr ∩ ωl is a partial
order. Since e ∧ f = f ∧ e we have ωr = ωl = ω on E. Also M(e, f ) = (ωl(e) ∩ ωr( f ), <) where g < h ⇔
egωreh, g f ωlh f , and S(e, f ) the maximal elements of M(e, f ), thus S(e, f ) = {e ∧ f }.
Next we define the addictive sandwitch set E⊕ as follows

M̃(e, f ) = {g : eωrg and f ωl g,≺}

where h ≺ g means hg = gh = h, thus we have M̃(e, f ) = {e ∨ f } and

S̃(e, f ) = {e ∨ f } .

Example 3.2. Consider the real quarternions Q = {q = q0 + q1i + q2 j + q3 j | qi ∈ R}. It is well known that with
respect to the usual additin and multplication defined by the rule i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj =
i, ki = −ik = j is a noncommutative skewfield. The idempotent set is

EQ = {e = (0, 0, 0, 0), f = (1, 0, 0, 0)}

then ωl(e) = {e} and ωr( f ) = {e, f }, so M(e, f ) = {e} = S(e, f ).
Now for q, r ∈ Q define q⊕ r = q + r− qr, it is easy to obseve that Q = (Q,⊕) is a semigroup and EQ = EQ. The
additive sandwitch set of Q is described as follows.

M̃(e, f ) = {g ∈ ER : e ∈ ωr(g) and f ∈ ωl(g),≺}

since e ∈ ωl( f ) and f ∈ ωr( f ), we have M̃(e, f ) = { f } Also since

S̃(e, f ) =
{

h ∈ M̃(e, f ) : h ≺ g for all g ∈ M̃(e, f )
}
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we have S̃(e, f ) = { f }.

Example 3.3. Consider the set M2(Z) of 2× 2 matrices with integer entries. This is a non-commutative ring with
usual addition and multiplication of matrices. The possible idempotents ER in this ring are[

0 0
0 0,

]
,
[

1 0
0 1

]
,
[

1 0
0 0

]
,
[

0 0
0 1

]
,
[

1 1
0 0

]
,
[

1 0
1 0

]
,
[

0 1
0 1

]
,
[

0 0
1 1

]

Let e =
[

0 1
0 1

]
, f =

[
0 0
1 1

]
∈ (ER , ·). then

ωl(e) = {
[

0 1
0 1

]
,
[

0 1
0 0

]
,
[

0 0
0 1

]
} and ωr( f ) = {

[
0 0
1 1

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]
}

Thus M(e, f ) = {
[

0 0
0 1

]
,<} and so S(e, f ) =

[
0 0
0 1

]
,

Now we proceed to describe the addictive sandwitch set, we have

M̃(e, f ) = {g : e ∈ ωr(g), f ∈ ωl(g),≺}

where h ≺ g means hg = gh = h. Thus M̃(e, f ) = {
[

1 0
0 1

]
,
[

0 1
1 0

]
,≺}.

Thus

S̃(e, f ) =
[

1 0
0 1

]
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