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Abstract

A complete set of relations is established between the first and second Zagreb index of a graph and of its
congraph. Formulas for the Zagreb indices of several derived graphs are also obtained.
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1 Introduction

The graphs considered in this paper are assumed to be simple, i.e., to possess no directed or weighted
edges and no self–loops. Let G be such a graph with vertex set V(G) and edge set E(G). If |V(G)| = p and
|E(G)| = q, then we say that G is a (p, q)-graph. The edge connecting the vertices x and y will be denoted by
xy.

The set of vertices of G, adjacent to a vertex v will be denoted by NG(v). The degree of the vertex v, denoted
by d(v) = dG(v), is the number of first neighbors of v, that is dG(v) = |NG(v)|.

Let G be a graph with vertex set V(G) and edge set E(G). The common neighborhood graph (congraph) of G,
denoted by con(G), is the graph with vertex set V(con(G)) = V(G), in which two vertices are adjacent if and
only if they have a common neighbor in G. In other words, for every x, y ∈ V(G),

xy ∈ E(con(G))⇐⇒ NG(x) ∩ NG(y) 6= ∅ .

The concept of common neighborhood graphs originates from the study of a special kind of graph energy [2].
The basic properties of these derived graphs were established soon after that [1, 3]. Also, various mathematical
properties of congraphs have been discovered [8, 13, 14].

Two old and most studied degree–based graph invariants are the so-called first and second Zagreb indices,
defined as

M1(G) = ∑
v∈V(G)

d(v)2 and M2(G) = ∑
uv∈E(G)

d(u) d(v) .

For details on their history, mathematical properties and chemical applications, we refer to [4, 5, 9–12] and the
references cited therein.

The so-called forgotten topological index is defined as [6, 7]

F = F(G) = ∑
v∈V(G)

d(v)3 .
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In [15], Li and Zheng introduced the first general Zagreb index as

Mk
1(G) = ∑

v∈V(G)

d(v)k

where k ∈ N ∪ {0}. Obviously, M0
1(G) = |V(G)|, M1

1(G) = 2|E(G)|, M2
1(G) = M1(G), and M3

1(G) = F(G).
Also, in [16], the the second general Zagreb index was defined as

Mk
2(G) = ∑

uv∈E(G)

[
d(u) d(v)

]k

where k ∈N∪ {0}. Obviously M0
2(G) = |E(G)| and M1

2(G) = M2(G).

We now define two new degree–based graph invariants, pertaining to congraphs:

Ξ1(G) = ∑
v∈V(G)

dG(v) dcon(G)(v) and Ξ2(G) = ∑
uv∈E(con(G))

dG(u) dG(v) .

Throughout this paper, we use standard graph–theoretical notation. G denoted the complement of the
graph G. As usual, Pn, Cn, and Kn, are, respectively, the n-vertex path, cycle, and complete graph. In addition,
Kn,m is the complete bipartite graph with n + m vertices. Recall that K1,n−1 is called the star and often denoted
by Sn.

In this paper, we investigate some properties of congraphs and the Zagreb indices of congraphs and
establish relations between the Zagreb indices of congraphs and several degree–based invariants of the parent
graphs.

2 Degree–related properties of common neighborhood graph

Lemma 2.1. Let G be a simple (p, q)-graph and let con(G) be a (p, q′)-graph. Then, for every v ∈ V(G) the following
holds.

(1) dcon(G)(v) =

∣∣∣∣∣ ⋃
u∈NG(v)

NG(u) \ {v}
∣∣∣∣∣ = |Ncon(G)(v)| .

(2) If G has no cycles of size 4, then dcon(G)(v) + dG(v) = ∑
u∈NG(v)

dG(u).

(3) If dG(u) + dG(v) > p holds for every u, v ∈ V(G), then con(G) ∼= Kp .

(4) If G has no cycles of size 3, then con(G) is a subgraph of G.

Proof.
(1) From the definition of a congraph we have

u ∈ Ncon(G)(v)⇐⇒ uv ∈ E(con(G))⇐⇒ NG(u) ∩ NG(v) 6= ∅ .

Then there exists a ∈ NG(v) and a ∈ NG(u) such that

a ∈ NG(v) and u ∈ NG(a)

implies
Ncon(G)(v) =

⋃
u∈NG(v)

NG(u) \ {v} .

(2) For every u, w ∈ NG(v), we have v ∈ NG(u)∩ NG(w). We can easily see that NG(u)∩ NG(w) = {v}, since,
if there exist a ∈ NG(u)∩ NG(w) such that a 6= v, it would follow that au, vu, aw, vw ∈ E(G), that is we would
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have a cycle of size 4, which is a contradiction. Also, by

dcon(G)(v) =

∣∣∣∣∣∣ ⋃
u∈NG(v)

NG(u) \ {v}

∣∣∣∣∣∣ =
∣∣∣∣∣∣ ⋃
u∈NG(v)

(NG(u) \ {v})

∣∣∣∣∣∣
= ∑

u∈NG(v)
|NG(u) \ {v}| = ∑

u∈NG(v)
(|NG(u)| − 1)

=

 ∑
u∈NG(v)

d(u)

− |NG(v)| =

 ∑
u∈NG(v)

d(u)

− d(v)

the claim (2) in Lemma 2.1 follows.
(3) It suffices to show that NG(u) ∩ NG(v) 6= ∅ for every u, v ∈ V(G). Otherwise, we would have

p ≥ |NG(u) ∪ NG(v)| = |NG(u)|+ |NG(v)| = d(u) + d(v) > p

which is a contradiction. Hence, it follows that uv ∈ E(con(G)) that is con(G) ∼= Kp .
(4) It is enough to show that E(con(G)) ⊆ E(G). Hence, for every uv ∈ E(con(G)), we have NG(u) ∩

NG(v) 6= ∅. That is there exist a ∈ NG(u) ∩ NG(v). Then au, av ∈ E(G), but uv /∈ E(G), otherwise G would
have a cycle of size 3. Hence, uv ∈ E(G).

Theorem 2.1. Let G be a (p, q)-graph. In the congraph of G, for every u, v ∈ V(G), if d(u) + d(v) > p then:

(1) Ξ1(G) = 2q (p− 1)

(2) Ξ2(G) = 2q2 − 1
2 M1(G) .

Proof. By Lemma 2.1, con(G) ∼= Kp .

(1)

Ξ1(G) = ∑
v∈V(G)

dG(v) dcon(G)(v) = ∑
v∈V(G)

dG(v) (p− 1)

= (p− 1) ∑
v∈V(G)

dG(v) = 2q(p− 1).

(2)

Ξ2(G) = ∑
uv∈E(con(G))

d(u) d(v) = ∑
uv∈E(Kp)

d(u) d(v) =
1
2 ∑

u,v∈V(G), u 6=v
d(u) d(v)

=
1
2

 ∑
u∈V(G)

d(u) ∑
v∈V(G)

d(v)− ∑
v∈V(G)

d(v)2

 =
1
2
[
2q · 2q−M1(G)

]

= 2q2 − 1
2

M1(G) .

Theorem 2.2. Let G be a (p, q)-graph and have no cycles of size 4. Also, let con(G) be a (p, q′)-graph. Then,

q′ =
1
2 ∑

v∈V(G)

dG(v)2 − q =
1
2

M1(G)− q . (2.1)
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Proof. First we show that NG(u) ∩ NG(w) = {v} holds for every u, w ∈ NG(v). Otherwise, if there would
exist a ∈ NG(u) ∩ NG(v), then it is easy to see that G has a cycle of size 4, which is a contradiction. Hence, by
Lemma 2.1 we get dcon(G)(v) + dG(v) = ∑

u∈NG(v)
dG(u). Thus,

∑
v∈V(G)

dcon(G)(v) + ∑
v∈V(G)

dG(v) = ∑
v∈V(G)

∑
u∈NG(v)

dG(u)

and
2q′ + 2q = ∑

v∈V(G)

dG(v)2

from which Eq. (2.1) follows.

Theorem 2.3. Let G be a (p, q)-graph having no cycles of size 4. Also, let con(G) be a (p, q′)-graph. Then,

(1) M1(con(G)) = F + 2 Ξ2(G)− 4M2(G) + M1(G);

(2) M2(G) = 1
2
[
Ξ1(G) + M1(G)

]
.

Proof. By Lemma 2.1, we have:
(1)

M1(con(G)) = ∑
v∈V(con(G))

dcon(G)(v)
2 = ∑

v∈V(G)

 ∑
u∈NG(v)

d(u)− d(v)

2

= ∑
v∈V(G)

 ∑
u∈NG(v)

d(u)

2

− 2 ∑
v∈V(G)

 ∑
u∈NG(v)

d(u)

 d(v) + ∑
v∈V(G)

d(v)2

= F + 2 Ξ2(G)− 4M2(G) + M1(G) .

(2)

Ξ1(G) = ∑
v∈V(G)

d(v) dcon(G)(v) = ∑
v∈V(G)

d(v)

 ∑
u∈NG(v)

d(u)− d(v)



= ∑
v∈V(G)

d(v)

 ∑
u∈NG(v)

d(u)

− ∑
v∈V(G)

d(v)2

= 2 ∑
uv∈E(G)

d(v) d(u)− ∑
v∈V(G)

d(v)2 = 2M2(G)−M1(G)

If there is a cycle of size 4, then we can change it into a square. Two cycles of order 4 in a graph are said to
be disjoint, if they have no common diagonals in their corresponding squares.

Definition 2.1. A graph G is called type S, if any two cycles of size 4 are disjoint.

Example 2.1. (1) Every graph which has at most one cycle of size 4 is a graph of type S.

(2) Every graph, such that every two cycles of order 4 have at most one common edge in their corresponding squares,
is a graph of type S.

(3) K4 is a graph of type S.

(4) K2,3 is not a graph of type S.
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Theorem 2.4. Let G be a (p, q)-graph and s be the number corresponding squares of cycles of size 4. Also, let con(G)

be a (p, q′)-graph. Then,

(1) If G is a graph of type S, then M1(G) = 2q + 2q′ + 4s.

(2) If G is a any graph, M1(G) ≤ 2q + 2q′ + 4s.

(3) If G has no cycles of size 4, then M1(G) = 2q + 2q′.

Proof. (1) Let V(G) = {v1, v2, . . . , vp} and A = [aij]p×p be the adjacency matrix of graph G. Since d(vi) =

∑
p
k=1 aik, we get

M1(G) = ∑
vi∈V(G)

d(vi)
2 = ∑

vi∈V(G)

(
p

∑
k=1

aik

)2

= ∑
vi∈V(G)

p

∑
k=1

a2
ik + 2 ∑

vi∈V(G)
∑

1≤k≤k′≤p
aik aik′

= ∑
vi∈V(G)

p

∑
k=1

aik + 2 ∑
vi∈V(G)

∑
1≤k≤k′≤p

aik aik′

= ∑
vi∈V(G)

d(vi) + 2 ∑
vi∈V(G)

∑
1≤k≤k′≤p

aik aik′ .

Since aik aik′ = 0 or 1. Hence it is equal with one if aik = 1 and aik′ = 1. Therefore, for some k 6= k′

there exist vk, vk′ ∈ V(G) such that vi vk ∈ E(G) and vi vk′ ∈ E(G). Hence vk vk′ ∈ E(con(G)) and this
edge appears only once, since G has no cycles of size 4. But, if G has any cycle of size 4, then this edge
is appear only twice. Since every cycle of size 4 corresponds to a square and every square, have two
diagonals. Thus ∑v∈V(G) ∑1≤k≤k′≤p aik aik′ = q′ + 2s. Therefore, M1(G) = 2q + 2q′ + 4s.

(2) The proof of this part is similar to part (1) but since edge vi vk ∈ E(G) appears at most twice, hence
M1(G) ≤ 2q + 2q′ + 4s.

(3) It directly follows from part (1).

Corollary 2.1. Let G be a tree. Then,
M1(G) = 2q + 2q′ .

Corollary 2.2. Let G be a (p, q)-graph and s be the number corresponding squares of cycles of size 4. Also, let con(G)

be a (p, q′)-graph. In this case, if G is graph of type S, then q′ = 1
2 M1(G)− q− 2s.

The following theorem is well known.

Theorem 2.5. Let G be a graph with vertices labeled V(G) = {v1, v2, . . . , vn} and let A be its corresponding adjacency
matrix. For any positive integer k, the (i, j) entry a(k)ij of Ak = [a(k)ij ] is equal to the number of walks from vi to vj that
use exactly k edges.

Remark 2.1. For a simple (p, q)-graph, we have

(1) For every i 6= j entry a(2)ij of A2 = [a(2)ij ] is equal to the number paths of order 2 from vi to vj.

(2) trA2 = ∑
p
i=1 a(2)ii = 2q.

(3) ∑
1≤i,j≤p

i 6=j

a(2)ij is equal to the number paths of order 2 from u to v for every disjoint u, v ∈ V(G).
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Lemma 2.2. Let A = [aij] be the adjacency matrix of the graph G. Define B = [bij] such that

bij =

{
1 a(2)ij 6= 0 f or i 6= j
0 otherwise

Then B is the adjacency matrix of con(G). In particular, if G has no cycles of size 4, then B = A2 − C where C is
degree matrix of G.

Proof. For every vivj ∈ E(con(G)), it is enough that bij = 1 and otherwise it is equal zero. By definition from

bij we have bij is equal one if a(2)ij 6= 0 for i 6= j. This implies that a(2)ij = |NG(vi) ∩ NG(vj)| 6= 0, that is

NG(vi)∩ NG(vj) 6= ∅. Hence vivj ∈ E(con(G)). In particular, if G has no cycle of size 4, then a(2)ij = 1 or 0 for
i 6= j. Otherwise, we get |NG(vi) ∩ NG(vj)| ≥ 2. Then G has a cycle of size 4, which is a contradiction. Thus,
B = A2 − C.

Remark 2.2. For a (p, q)-graph, let r be the number paths of order 3 from u to v for every {u, v} ⊆ V(G), and ti the
number of cycles of size 3 containing the vertex vi . Then,

(1) For every i 6= j, the entry a(3)ij of A3 = [a(3)ij ] is equal to the number of walks from vi to vj of order 3.

(2) trA3 = ∑
p
i=1 a(3)ii = ∑

p
i=1 2ti = 6 `, where ` is the number of triangle.

(3) Let rij be the number of paths from vi to vj of order 3, then

a(3)ij =


d(vi) + d(vj)− 1 + rij vivj ∈ E(G)

rij vivj /∈ E(G)

2ti i = j

(4)

∑
1≤i,j≤p

a(3)ij = 6 `+ 2

 ∑
vivj∈E(G)

(d(vi) + d(vj)− 1 + rij)

+ 2

 ∑
vivj /∈E(G)

rij


= 6 `+ 2M1(G)− 2q + 2r .

Theorem 2.6. Let G be a (p, q)-graph and con(G) a (p, q′)-graph. Also, let A = [aij]p×p and B = [bij]p×p be the
adjacency matrices of G and con(G), respectively.

Then,

(1) Ξ1(G) = ∑1≤i,j≤p cij where A B = [cij]p×p.

(2) If G has no cycle of size 4, then Ξ1(G) is equal to the number of paths of order 2 or 3 from u to v for every
u, v ∈ V(G).

(3) If G has no cycle of size 3 and 4, then Ξ1(G) = 2|L|+ 2|L′|, where L = {{u, v} ⊆ V(G) | d(u, v) = 2} and
L′ = {{u, v} ⊆ V(G)| d(u, v) = 3}.

Proof. (1) Let V(G) = {v1, v2, . . . , vp}. Since dG(vk) = ∑
p
i=1 aik and dcon(G)(vk) = ∑

p
j=1 bkj, we have

∑
1≤i,j≤p

cij = ∑
1≤i,j≤p

p

∑
k=1

aik bkj =
p

∑
k=1

∑
1≤i,j≤p

aik bkj

=
p

∑
k=1

(
p

∑
i=1

aik

)(
p

∑
j=1

bkj

)
=

p

∑
k=1

d(vk) dcon(G)(vk)

= ∑
v∈V(G)

dG(v) dcon(G)(v) = Ξ1(G) .
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(2)

∑
1≤i,j≤p

cij = Ξ1(G) = ∑
v∈V(G)

dG(v) dcon(G)(v) = ∑
vi∈V(G)

p

∑
k=1

aik

p

∑
k′=1

bik′

= ∑
vi∈V(G)

∑
1≤k,k′≤p

aik bik′ .

For aik = 1 and bik′ = 1 we have vivk ∈ E(G) and vivk′ ∈ E(con(G)), respectively. Thus we have three
cases:

case(1): For k = k′ and i 6= j, if vivj, vivk ∈ E(G), then aik bik′ = 1.

case(2): For k = k′ and i = j, if avi, avk, vivk ∈ E(G), then aik bik′ = 1.

case(3): For k 6= k′ and i 6= j if vivk, vivj, vjvk′ ∈ E(G),, then aik bik′ = 1.

Since the graph G has no cycles of size 4, in every of the above cases only once appear. Thus,
∑1≤i,j≤p cij = Ξ1(G) is the number all of paths of order 2 or 3 from u to v for every u, v ∈ V(G).

(3) This part can be obtained easily from part (2).

Theorem 2.7. Let G be a (p, q)-graph. Then, 2 M2(G)− 2 M1(G) + 2q = r + 6 ` where r = the number of all paths
of order 3 from u to v for every {u, v} ⊆ V(G) and ` is the number of triangles.

Proof. Let V(G) = {v1, v2, . . . , vp} then

M2(G) = ∑
vivj∈E(G)

d(vi) d(vj) = ∑
vivj∈E(G)

p

∑
k=1

aik

p

∑
k′=1

ak′ j

=
p

∑
k=1

p

∑
k′=1

∑
vivj∈E(G)

aik ak′ j =
1
2 ∑
{k,k′}⊆V(G)

 ∑
vivj∈E(G)

aik ak′ j

 .

Since vivj ∈ E(G), if aikak′ j = 1, then vivj ∈ E(G), aik = 1, and ak′ j = 1. In this case, there exist vertices vk and
vk′ such that we have following four cases:

case(1): If k′ = i and vivj, vivk ∈ E(G), then aik ak′ j = 1.
case(2): If k = j and vivj, vjvk′ ∈ E(G), then aik ak′ j = 1.
case(3): If k = k′ and vivk, vivj ∈ E(G), then aik ak′ j = 1.
case(4): If k 6= k′ and vivk, vivj, vjvk′ ∈ E(G), then aik ak′ j = 1.
Thus, in every above cases determine all of the number of walks of order 3. Thus, by Remark 2.2,

M2(G) =
1
2 ∑

1≤i,j≤p
a(3)ij =

1
2
(6 `+ 2 M1(G)− 2q + 2 r) = 3`+ M1(G)− q + r .

Example 2.2.
Let G be a (4, 4)-graph with V(G) = {a, b, c, d} and E(G) = {ab, ac, bc, bd}. Then, M2(G) = 19, M1(G) =

18 where q = 4, r = 2 and ` = 1. Then

19 = M2(G) = 3 + 18− 4 + 2 = 3`+ M1(G)− q + r .

3 Conclusion

In this paper, we defined the Zagreb indices of congraphs and investigate the degree–related properties of
the congraphs and the Zagreb indices of congraphs. Moreover, we obtained relations between Zagreb indices
of parent graphs and graph invariants such as number of edges of parent graph, number of edges of congraph,
the number of all paths of order 3, number of triangles and the number of cycles of size 4 by using adjacency
matrix of the parent graph.
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