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Abstract

In this paper we are concerned with a nonlocal problem of a stochastic differential equation that contains
a Brownian motion. The solution contains both of mean square Riemann and mean square Riemann-Steltjes
integrals, so we study an existence theorem for unique mean square continuous solution and its continuous
dependence of the random data X0 and the (non-random data) coefficients of the nonlocal condition ak. Also,
a stochastic differential equation with the integral condition will be considered.
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1 Introduction

Many authors in the last decades studied a nonlocal problems of ordinary differential equations, the reader
is referred to ([3]-[8]), and references therein.
Also the theory of stochastic differential equations, random fixed point theory, existence of solutions of
stochastic differential equations by using successive approximation method and properties of these solutions
have been extensively studied by several authors, especially those contain the Brownian motion as a formal
derivative of the Gausian white noise, the Brownian motion W(t), t ∈ R, is defined as a stochastic process
such that

W(0) = 0, E(W(t)) = 0, E(W(t))2 = t

and [W(t1) −W(t2)] is a Gaussian random variable for all t1, t2 ∈ R. The reader is referred to ([1]-[2]) and
([9]-[13]) and references therein.
Here we are concerned with the stochastic differential equation

dX(t) = f (t, X(t))dt + g(t)dW(t), t ∈ (0, T] (1.1)

with the nonlocal random initial condition

X(0) +
n

∑
k=1

ak X(τk) = X0, ak > 0 , τk ∈ (0, T), (1.2)

where X0 is a second order random variable independent of the Brownian motion W(t) and ak are positive
real integers.
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The existence of a unique mean square solution will be studied. The continuous dependence on the random
data X0 and the non-random data ak will be established. The problem (1.1) with the integral condition

X(0) +
T∫

0

X(s)dv(s) = X0. (1.3)

will be considered.

2 Integral representation

Let I = [0, T] and C = C(I, L2(Ω)) be the class of all mean square continuous second order stochastic
process with the norm

‖ X ‖C= sup
t∈[0,T]

‖ X(t) ‖2= sup
t∈[0,T]

√
E(X(t))2.

Throughout the paper we assume that the following assumptions hold

(H1) The function f : [0, T]× L2(Ω)→ L2(Ω) is mean square continuous.

(H2) There exists an integrable function k : [0, T]→ R+, where

sup
t∈[0,T]

t∫
0

k(s)ds ≤ m

such that the function f satisfies the mean square Lipschitz condition

‖ f (t, X1(t))− f (t, X2(t)) ‖2≤ k(t) ‖ X1(t)− X2(t) ‖2 .

(H3) There exists a positive real number m1 such that

sup
t∈[0,T]

| f (t, 0) |≤ m1.

Now we have the following lemmas.

Lemma 2.1. For a deterministic function g(t) : I → <+ and a Brownian motion W(t)∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

t∫
0

g2(s)ds

Proof. ∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= E

 t∫
0

g(s)dW(s)

2

= E

 t∫
0

g(s)dW(s)

 t∫
0

g(s)dW(s)


= E

(
lim

n→∞

n−1

∑
k=0

g(tk)∆W(tk)

)(
lim

n→∞

n−1

∑
k=0

g(tk)∆W(tk)

)

=

(
lim

n→∞

n−1

∑
k=0

g2(tk)E(∆W(tk))
2

)

=

(
lim

n→∞

n−1

∑
k=0

g2(tk)(∆tk)

)

=

t∫
0

g2(s)ds

This complete the proof.
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Lemma 2.2. The solution of the problem (1.1)and(1.2) can be expressed by the integral equation

X(t) = a

X0 −
m

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
m

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s), (2.1)

where a =

(
1 +

n
∑

k=1
ak

)−1
.

Proof. . Integrating equation (1.1), we obtain

X(t) = X(0) +
t∫

0

f (s, X(s))ds +
t∫

0

g(s)dW(s)

and

X(τk) = X(0) +

τk∫
0

f (s, X(s))ds +
τk∫

0

g(s)dW(s),

then

n

∑
k=1

akX(τk) =
n

∑
k=1

akX(0) +
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds +
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

X0 − X(0) =
n

∑
k=1

akX(0) +
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds +
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

and (
1 +

n

∑
k=1

ak

)
X(0) = X0 −

n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s),

then

X(0) =

(
1 +

n

∑
k=1

ak

)−1
X0 −

n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

τk∫
0

g(s)dW(s)

 .

Hence

X(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s).

where a =

(
1 +

n
∑

k=1
ak

)−1
.

Now define the mapping

FX(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s). (2.2)

Then we can prove the following lemma.

Lemma 2.3. F : C → C.

Proof. . Let X ∈ C, t1 , t2 ∈ [0, T] such that | t2 − t1 |< δ, then

FX(t2)− FX(t1) =

t2∫
t1

f (s, X(s))ds +
t2∫

t1

g(s)dW(s).
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From assumption (H2) we have

‖ f (t, X(t)) ‖2 − | f (t, 0) |≤‖ f (t, X(t))− f (t, 0) ‖2≤ k(t) ‖ X(t) ‖2,

then we have
‖ f (t, X(t)) ‖2≤ k(t) ‖ X(t) ‖2 + | f (t, 0) |≤ k(t) ‖ X ‖C +m1.

So,

‖ F X(t2)− F X(t1) ‖2≤
t2∫

t1

|| f (s, X(s))||2 ds+ ‖
t2∫

t1

g(s)dW(s) ‖2,

using assumptions and lemma 2.1, we get

‖ F X(t2)− F X(t1) ‖2≤‖ X ‖C

t2∫
t1

k(s)ds + m1(t2 − t1) +

√√√√√ t2∫
t1

g2(s)ds

which proves that F : C → C.

3 Existence and uniqueness

For the existence of a unique continuous solution X ∈ C of the problem (1.1)-(1.2), we have the following
theorem.

Theorem 3.1. Let the assumptions (H1) − (H3) be satisfied. If 2m < 1, then the problem (1.1)-(1.2) has a unique
solution X ∈ C.

Proof. Let X and X∗ ∈ C, then

‖ FX(t)− FX∗(t) ‖2

=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

[ f (s, X(s))− f (s, X∗(s))]ds− a
n

∑
k=1

ak

τk∫
0

[ f (s, X(s))− f (s, X∗(s))]ds

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
t∫

0

|| f (s, X(s))− f (s, X∗(s))||2 ds + a
n

∑
k=1

ak

τk∫
0

|| f (s, X(s))− f (s, X∗(s))||2 ds

≤ m ‖ X− X∗ ‖C +

[
a

n

∑
k=1

ak

]
m ‖ X− X∗ ‖C,

≤
[

1 + a
n

∑
k=1

ak

]
m ‖ X− X∗ ‖C

≤ 2m ‖ X− X∗ ‖C .

Hence
‖ FX− FX∗ ‖C≤ 2m ‖ X− X∗ ‖C .

If 2m < 1 , then F is contraction and there exists a unique solution X ∈ C of the nonlocal stochastic problem
(1.1)-(1.2), [2]. This solution is given by (2.1).

4 Continuous dependence

Consider the stochastic differential equation (1.1) with the nonlocal condition

X(0) +
n

∑
k=1

ak X(τk) = X̃0 , τk ∈ (0, T) (4.1)
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Definition 4.1. The solution X ∈ C of the nonlocal problem (1.1)-(1.2) is continuously dependent (on the data X0) if
∀ε > 0 , ∃δ > 0 such that ‖ X0 − X̃0 ‖2≤ δ implies that ‖ X− X̃ ‖C≤ ε

Here, we study the continuous dependence (on the random data X0) of the solution of the stochastic
differential equation (1.1) and (1.2).

Theorem 4.2. Let the assumptions (H1)− (H3) be satisfied. Then the solution of the nonlocal problem (1.1)-(1.2) is
continuously dependent on the random data X0.

Proof. Let

X(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1)-(1.2) and

X̃(t) = a

X̃0 −
n

∑
k=1

ak

τk∫
0

f (s, X̃(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X̃(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1) and (4.1). Then

X(t)− X̃(t) = a[X0 − X̃0]− a
n

∑
k=1

ak

τk∫
0

[ f (s, X(s))− f (s, X̃(s))]ds

+

t∫
0

[ f (s, X(s))− f (s, X̃(s))]ds.

Using our assumptions, we get

‖ X(t)− X̃(t) ‖2 ≤ a ‖ X0 − X̃0 ‖2 +a
n

∑
k=1

ak

τk∫
0

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds

+

t∫
0

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds

≤ aδ + 2m ‖ X− X̃ ‖2,

then

‖ X− X̃ ‖C ≤ aδ

1− 2m
= ε

This complete the proof.

Now consider the stochastic differential equation (1.1) with the nonlocal condition

X(0) +
n

∑
k=1

ãk X(τk) = X0 , τk ∈ (0, T) (4.2)

Definition 4.2. The solution X ∈ C of the nonlocal problem (1.1)-(1.2) is continuously dependent (on the coefficient
ak of the nonlocal condition) if ∀ε > 0 , ∃δ > 0 such that | ak − ãk |≤ δ implies that ‖ X− X̃ ‖C≤ ε

Here, we study the continuous dependence (on the coefficient ak of the nonlocal condition) of the solution
of the stochastic differential equation (1.1) and (1.2).

Theorem 4.3. Let the assumptions (H1)− (H3) be satisfied. Then the solution of the nonlocal problem (1.1)-(1.2) is
continuously dependent on the coefficient ak of the nonlocal condition.
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Proof. Let

X(t) = a

X0 −
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds−
n

∑
k=1

ak

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1)-(1.2) and

X̃(t) = ã

X0 −
n

∑
k=1

ãk

τk∫
0

f (s, X̃(s))ds−
n

∑
k=1

ãk

τk∫
0

g(s)dW(s)

+

t∫
0

f (s, X̃(s))ds +
t∫

0

g(s)dW(s)

be the solution of the nonlocal problem (1.1) and (4.2).

Then

X(t)− X̃(t) = [a− ã]X0 +

t∫
0

[ f (s, X(s))− f (s, X̃(s))]ds−
[

n

∑
k=1

ak −
n

∑
k=1

ãk

] τk∫
0

g(s)dW(s)

− a
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds + ã
n

∑
k=1

ãk

τk∫
0

f (s, X̃(s))ds.

Now

| a− ã | =

∣∣∣∣∣∣∣∣
1

1 +
n
∑

k=1
ak

− 1

1 +
n
∑

k=1
ãk

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

n
∑

k=1
(ãk − ak)(

1 +
n
∑

k=1
ak

)(
1 +

n
∑

k=1
ãk

)
∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣ n

∑
k=1

(ãk − ak)

∣∣∣∣∣ ≤ nδ

and

ã
n

∑
k=1

ãk

τk∫
0

f (s, X̃(s))ds− a
n

∑
k=1

ak

τk∫
0

f (s, X(s))ds

= ã

(
1 +

n

∑
k=1

ãk

) τk∫
0

f (s, X̃(s))ds− a

(
1 +

n

∑
k=1

ak

) τk∫
0

f (s, X(s))ds

− ã
τk∫

0

f (s, X̃(s))ds + a
τk∫

0

f (s, X(s))ds

= ã(ã−1)

τk∫
0

f (s, X̃(s))ds− a(a−1)

τk∫
0

f (s, X(s))ds

− ã
τk∫

0

f (s, X̃(s))ds + a
τk∫

0

f (s, X(s))ds

= −
τk∫

0

[ f (s, X(s))− f (s, X̃(s))]ds + a
τk∫

0

f (s, X(s))ds− ã
τk∫

0

f (s, X̃(s))ds

− ã
τk∫

0

f (s, X(s))ds + ã
τk∫

0

f (s, X(s))ds

= −
τk∫

0

[ f (s, X(s))− f (s, X̃(s))]ds + [a− ã]
τk∫

0

f (s, X(s))ds

+ ã
τk∫

0

[ f (s, X(s))− f (s, X̃(s))]ds
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and [
a

n

∑
k=1

ak − ã
n

∑
k=1

ãk

] τk∫
0

g(s)dW(s) =

[
a

(
1 +

n

∑
k=1

ak

)
− ã

(
1 +

n

∑
k=1

ãk

)] τk∫
0

g(s)dW(s)

− [a− ã]
τk∫

0

g(s)dW(s)

=
[

aa−1 − ãã−1
] τk∫

0

g(s)dW(s)− [a− ã]
τk∫

0

g(s)dW(s)

= −[a− ã]
τk∫

0

g(s)dW(s).

Then

‖ X(t)− X̃(t) ‖2 ≤ nδ ‖ X0 ‖2 +

t∫
τk

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds + nδ

∣∣∣∣∣∣
∣∣∣∣∣∣

τk∫
0

g(s)dW(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ nδ [m ‖ X ‖C +m1T] + ã
τk∫

0

‖ f (s, X(s))− f (s, X̃(s)) ‖2 ds.

Using our assumptions we get

‖ X− X̃ ‖C ≤ nδ ‖ X0 ‖2 +m ‖ X− X̃ ‖C +nδ

√√√√√ τk∫
0

g2(s)ds + nδ [m ‖ X ‖C +m1T]

+ ãm ‖ X− X̃ ‖C,

then

‖ X− X̃ ‖C ≤ nδ

‖ X0 ‖2 +m ‖ X ‖C +m1T +

√√√√√ τk∫
0

g2(s)ds

+ (1 + ã)m ‖ X− X̃ ‖C

≤ nδ

‖ X0 ‖2 +m ‖ X ‖C +m1T +

√√√√√ τk∫
0

g2(s)ds

+ 2m ‖ X− X̃ ‖C .

Hence

‖ X− X̃ ‖C ≤
nδ

[
‖ X0 ‖2 +m ‖ X ‖C +m1T +

√
τk∫
0

g2(s)ds

]
1− 2m

= ε.

This complete the proof.

5 Nonlocal Integral Condition

Let
ak = v(tk)− v(tk−1), τk ∈ (tk−1, tk),

where
0 < t1 < t2 < t3 < .... < T.
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Then, the nonlocal condition (1.2) will be in the form

X(0) +
n

∑
k=1

X(τk) (v(tk)− v(tk−1)) = X0.

From the mean square continuity of the solution of the nonlocal problem (1.1)-(1.2), we obtain from [13]

l.i.m
n→∞

n

∑
k=1

X(τk) (v(tk)− v(tk−1)) =
∫ T

0
X(s)dv(s),

that is, the nonlocal conditions (1.2) is transformed to the mean square Riemann-Steltjes integral condition

X(0) +

T∫
0

X(s)dv(s) = X0.

Now, we have the following theorem.

Theorem 5.4. Let the assumptions (H1)-(H3) be satisfied, then the stochastic differential equation (1.1) with the
nonlocal integral condition (1.3) has a unique mean square continuous solution represented in the form

X(t) = a?

X0 −
T∫

0

s∫
0

f (θ, X(θ))dθdv(s)−
T∫

0

s∫
0

g(θ)dW(θ)dv(s)

+

t∫
0

f (θ, X(θ))dθ +

t∫
0

g(θ)dW(θ),

where a? = (1 + v(T)− v(0))−1.

Proof. Taking the limit of equation (2.1) we get the proof.

6 Conclusion

Here we defined the mean square continuous solution for the stochastic differential equation and proved
the existence of unique solution of the problem (1.1)-(1.2), then we studied the continuous dependence of the
solution of (1.1)-(1.2) on the initial random data and the nonrandom coefficient of the nonlocal condition .
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