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Abstract

The generalized Bessel transform satisfies some uncertainty principles similar to the Euclidean Fourier
transform. A generalization of Donoho-Stark uncertainty principle is obtained for the generalized Bessel
transform.
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1 Introduction

There are many theorems known which state that a function and its classical Fourier transform on R

cannot both be sharply localized. That it is impossible for a nonzero function and its Fourier transform
to be simultaneously small. There are several manifestations of this principle. We refer the reader to the
excellent survey article by Folland and Sitaram [3], and also the monograph by S. Thangavelu [5]. In this
paper we are interested in a variant of Donoho-Stark’s uncertainty principle. Recall that Donoho and Stark
[2] paid attention to the supports of functions and gave qualitative uncertainty principles for the Fourier
transforms. The purpose of this paper is to obtain uncertainty principle similar to Donoho-Stark’s principle
for the generalized Bessel transform. The outline of the content of this paper is as follows.
Section 2 is dedicated to some properties and results concerning the Generalized Bessel transform.
Section 3 is devoted to the Donoho-Stark’s uncertainty principle for the Generalized Bessel transform.

2 Preliminaries

In this section we recapitulate some facts about harmonic analysis related to the generalized Bessel
operator. We cite here, as briefly as possible, some properties. For more details we refer to [1].
Throughout this paper we assume that α > −1

2 .

We consider the second-order singular differential operator on the half line

Lα,n f (x) =
d2

dx2 f (x) +
2α + 1

x
d

dx
f (x)− 4n(α + n)

x2 f (x).

The generalized Bessel transform is defined for a function f ∈ L1
α,n(R

+) by

Fα,n( f )(λ) =
∫ ∞

0
f (x)ϕλ(x)x2α+1dx, λ ≥ 0, (2.1)
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where

ϕλ(x) = aα+2nx2n
∫ 1

0
cos(λtx)(1− t2)α+2n− 1

2 dt

and

ϕλ(x) = aα+2nx2n
∫ 1

0
cos(λtx)(1− t2)α+2n− 1

2 dt

and

aα+2n =
2Γ(α + 2n + 1)
√

πΓ(α + 2n + 1
2 )

. (2.2)

• The function ϕλ satisfies the differential equation

Lα,n ϕλ = −λ2 ϕλ

• For all λ ∈ C and x ∈ R+,
|ϕλ(x)| ≤ x2ne|Imλ||x|. (2.3)

• For all λ ∈ R+ and x ∈ R+,
λ2n ϕλ(x) = x2n ϕx(λ). (2.4)

We denote by

• Lp
α(R

+) the class of measurable functions f on [0,+∞[ for which

‖ f ‖Lp
α(R+) < ∞

where

‖ f ‖Lp
α(R+) =

(∫ ∞

0
| f (x)|px2α+1dx

) 1
p

, if p < ∞,

and ‖ f ‖L∞
α (R+) = ess supx≥0| f (x)|.

• Lp
α,n(R

+) the class of measurable functions f on R+ for which

‖ f ‖Lp
α,n(R+) = ‖x

−2n f ‖Lp
α+2n(R

+) < ∞.

For every f ∈ L1
α,n(R

+)
⋂

L2
α,n(R

+) we have the Plancherel formula∫ ∞

0
| f (x) |2 x2α+1dx =

∫ ∞

0
| Fα,n( f )(λ) |2 dµα+2n(λ),

where

dµα+2n(λ) =
1

4α+2n(Γ(α + 2n + 1))2 λ2α+4n+1dλ. (2.5)

The generalized Bessel transform Fα,n extends uniquely to an isometric isomorphism from L2
α,n(R

+) onto
L2

α+2n(R
+).

The inverse transform is given by

F−1
α,n ( f )(x) =

∫ ∞

0
f (λ)ϕλ(x)dµα+2n(λ), (2.6)

where the integral converge in L2
α,n(R

+).
Let f ∈ L1

α,n(R
+) such that Fα,n( f ) ∈ L1

α+2n(R
+), then the inverse generalized Fourier-Bessel transform is

given by the formula

f (x) =
∫ ∞

0
Fα,n( f )(λ)ϕλ(x)dµα+2n(λ). (2.7)
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3 Donoho-Stark for the Fourier generalized transform

Throughout this section we denote by ‖.‖ the operator norm on L2
α,n(R+). More precisely if T is an operator

then

‖T‖ = sup f∈L2
α,n(R+)

‖T f ‖L2
α,n(R+)

‖ f ‖L2
α,n(R+)

.

We say that f is ε-concentrated on a measurable set E if

|| f −XE f ||L2
α,n(R+) < ε,

where χE is the characteristic function of the set E.
Donoho and Stark [3] have shown that if f of unit L2(R+) norm is εT concentrated on a measurable set T and
its Fourier transform F ( f ) is εW , on a measurable set W, then

|W|.|T| ≥ (1− εT − εW)2.

Here, |T| is the Lebesque measure of the set T. This inequality has been slightly improved in ref.[4] to

|W|.|T| ≥ (1− (ε2
T + ε2

W)
1
2 )2.

In this section, we will extend the Donoho-Stark uncertainty principle to the generalized Bessel transform.
Let PE denote the time-limiting operator

(PE f )(x) =
{

f (x), x ∈ E
0, x ∈ R+\E . (3.8)

This operator cuts off the part of f outside E. Let us now be more precise, we need to introduce some notations,
so f is ε-concentrated on a set E if, and only if

|| f − PE f ||L2
α,n(R+) ≤ ε.

For simplicity, we will use PX to P[0,X]. Clearly ||PE|| = 1 because PE is a projection. The second operator is
the frequency-limiting operator

(QE f )(x) =
∫

E
ϕy(x)Fα,n( f )(y)dµα+2n(y), (3.9)

From (2.6) we can also write QE as follows

QE f (x) = F−1
α,n (PE(Fα,n( f )))(x).

Then by (2.6) and (2.7) we deduce that Fα,n( f ) is ε-concentrated on F if and only if ‖ f − QF f ‖L2
α,n(R) ≤

ε‖ f ‖L2
α,n(R).

We have from (3.8) and (3.9)

(PXQY f )(x) = PX

∫ Y

0
ϕy(x)Fα,n( f )(y)dµα+2n(y)

= PX

∫ Y

0
ϕy(x)

∫ ∞

0
ϕy(t) f (t)dµα(t)dµα+2n(y)

= PX

∫ ∞

0
f (t)

∫ Y

0
ϕy(x)ϕy(t)dµα+2n(y)dµα(t)

=
∫ ∞

0
f (t)q(x, t)dµα(t),

where

q(x, t) =


∫ Y

0
ϕy(x)ϕy(t)dµα+2n(y), x < X

0, x ≥ X
.



516 A. Abouleaz et al. / Donoho-Stark uncertainty principles for the generalized Bessel transform

The Hilbert-Schmidt norm of PXQY is

‖PXQY‖HS =

(∫ ∞

0

∫ ∞

0
|q(x, t)|2dµα(x)dµα(t)

) 1
2

.

The norm ||PXQY|| does not exceed the Hilbert-Schmidt norm of PXQY, therefore

||PXQY||2 ≤ ‖PXQY‖2
HS

=
∫ ∞

0

∫ ∞

0
|q(x, t)|2dµα(x)dµα(t)

=
∫ X

0

∫ ∞

0
|q(x, t)|2dµα(x)dµα(t).

Notice that

q(x, t) =
∫ Y

0
ϕy(x)ϕy(t)dµα+2n(y)

=
∫ Y

0
y2n ϕy(x)y2n ϕy(t)dµα(y).

From (2.4) we deduce that

=
∫ Y

0
x2n ϕx(y)t2n ϕt(y)dµα(y)

=
∫ Y

0
x2nt2n ϕx(y)ϕt(y)dµα(y)

= x2nt2nFα,n(ϕt(.)X[0,Y])(x),

the Plancherel formula for the generalized Bessel transform yields∫ ∞

0
|q(x, t)|2dµα(x) =

∫ ∞

0
|x2nt2nFα,n(ϕt(.)X[0,Y])(x)|2dµα(x)

=
aα

aα+2n

∫ ∞

0
|t2nFα,n(ϕt(.)X[0,Y])(x)|2dµα+2n(x)

=
aα

aα+2n

∫ ∞

0
|Fα,n(t2n ϕt(.)X[0,Y])(x)|2dµα+2n(x),

by Plancherel formula we have

aα

aα+2n

∫ ∞

0
|Fα,n(t2n ϕt(.)X[0,Y])(x)|2dµα+2n(x) =

aα

aα+2n

∫ Y

0
|t2n ϕt(x)|2dµα(x)

=
aα

aα+2n

∫ Y

0
|x2n ϕx(t)|2dµα(x)

=

(
aα

aα+2n

)2 ∫ Y

0
|ϕx(t)|2dµα+2n(x).

Consequently,

||PXQY||2 ≤
(

aα

aα+2n

)2 ∫ X

0

∫ Y

0
|ϕx(t)|2dµα+2n(x)dµα(t)

≤
(

aα

aα+2n

)2 ∫ X

0

∫ Y

0
|t2n|2dµα+2n(x)dµα(t)

=

(
aα

aα+2n

)3 ∫ X

0

∫ Y

0
dµα+2n(x)dµα+2n(t)

=

(
aα

aα+2n

)3 ∫ X

0

∫ Y

0
dµα+2n(x)dµα+2n(t)

=

(
aα

aα+2n

)3 (XY)α+2n+1

α + 2n + 1
.
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We put

bα,n =

(
aα+2n

aα

)3
(α + 2n + 1). (3.10)

Let XY < (bα,n)
1

α+2n+1 . Then ||PXQY|| < 1 and therefore I − PXQY is invertible with

||(I − PXQY)
−1|| ≤

∞

∑
k=0
||PXQY||k

≤
∞

∑
k=0

[
(XY)α+2n+1

bα,n

]k

=
bα,n

bα,n − (XY)α+2n+1 .

We have
I = PX + P(X,∞) = PXQY + PXQ(Y,∞) + P(X,∞).

The orthogonality of PX and P(X,∞) gives

||PXQ(Y,∞) f ||2L2
α,n(R+)

+ ||P(X,∞) f ||2L2
α,n(R+)

= ||PXQ(Y,∞) f + P(X,∞) f ||2L2
α,n(R+)

.

Together with ||PX || = 1

|| f ||22,α,n ≤ ||(I − PXQY)
−1||2||(I − PXQY) f ||2L2

α,n(R+)

≤
(

bα,n

bα,n − (XY)α+2n+1

)2 [
||PXQ(Y,∞) f ||2L2

α,n(R+)
+ ||P(X,∞) f ||2L2

α,n(R+)

]
≤

(
bα,n

bα,n − (XY)α+2n+1

)2 [
||Q(Y,∞) f ||2L2

α,n(R+)
+ ||P(X,∞) f ||2L2

α,n(R+)

]
.

If f of unit norm is εX-time-limited on [0, X], then ||P(X,∞) f ||L2
α,n(R+) ≤ εX , If f of unit norm is εY-bandlimited

on [0, Y], then ||Q(Y,∞) f ||L2
α,n(R+) ≤ εY. Then if f of unit norm is both εX-time-limited and εY-bandlimited,

1 ≤
(

bα,n

bα,n − (XY)α+2n+1

)2
(ε2

X + ε2
Y)

or

XY ≥ (bα,n)
1

α+2n+1

(
1− (ε2

X + ε2
Y)

1
2

) 1
α+2n+1 .

We arrive at the Donoho-Stark uncertainty principle for the generalized Bessel transform.

Theorem 3.1. Let a unit norm signal f be εX-time-limited on [0, X] and εY-bandlimited on [0, Y]. Then

XY ≥ (bα,n)
1

α+2n+1

(
1− (ε2

X + ε2
Y)

1
2

) 1
α+2n+1

where bα,n is given by (3.10).
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