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Abstract

In this paper, the authors introduce a new type of connected spaces called semi
generalized star b - connected spaces (briefly sg∗b-connected spaces) in topological spaces. The notion of
semi generalized star b - compact spaces is also introduced (briefly sg∗b-compact spaces) in topological
spaces. Some characterizations and several properties concerning sg∗b-connected spaces and sg∗b-compact
spaces are obtained.
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1 Introduction

Topological spaces are mathematical structures that allow the formal definitions of concepts such as
connectedness, compactness, interior and closure. In 1974, Das [4] defined the concept of semi-connectedness
in topology and investigated its properties. Compactness is one of the most important, useful and
fundamental concepts in topology. In 1981, Dorsett [6] introduced and studied the concept of semi-compact
spaces. In 1990, Ganster [7] defined and investigated semi-Lindelof spaces. Since then, Hanna and Dorsett
[10], Ganster and Mohammad S. Sarsak [8] investigated the properties of semi-compact spaces.

The notion of connectedness and compactness are useful and fundamental notions of not only general
topology but also of other advanced branches of mathematics. Ganster and Steiner [9] introduced and studied
the properties of gb-closed sets in topological spaces. Benchalli et al [2] introduced gb - compactness and gb
- connectedness in topological spaces. Dontchev and Ganster[5] analyzed sg - compact space. Later, Shibani
[13] introduced and analyzed rg - compactnes and rg - connectedness. Crossely et al [3] introduced semi -
closure. Vadivel et al [14] studied rgα - interior and rgα - closure sets in topological spaces. The aim of this
paper is to introduce the concept of sg∗b-connected and sg∗b-compactness in topological spaces.

2 Preliminaries

Definition 2.1. A subset A of a topological space (X, τ), is called sg closed, if scl(A) ⊆ U. The complement of sg
closed set is said to be sg open set . The family of all sg open sets (respectively semi generalised closed sets) of (X, τ) is
denoted by SG−O(X, τ)[respectively SG− CL(X, τ)].

Definition 2.2. A subset A of a topological space (X, τ), is called semi generalized star b -closed set [11] (briefly
sg∗b-closed set) if αcl(A) ⊆ U whenever A ⊆ U and U is sg open in X. The complement of sg∗b-closed set is
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called sg∗b-open. The family of all sg∗b-open [respectively sg∗b-closed] sets of (X, τ) is denoted by sg∗b −O(X, τ)

[respectively sg∗b− CL(X, τ)].

Definition 2.3. A subset A of a topological space (X, τ) is called b-open set[1] if A ⊆ cl(int(A)) ∪ int(cl(A)). The
complement of b-open set is b-closed sets. The family of all b-open sets (respectively b-closed sets) of (X, τ) is denoted by
bO(X, τ) (respectively bCL(X, τ))

Definition 2.4. The sg∗b-closure of a set A, denoted by sg∗b − Cl(A)[12] is the intersection of all sg∗b-closed sets
containing A.

Definition 2.5. The sg∗b-interior of a set A, denoted by sg∗b− int(A)[12] is the union of all sg∗b-open sets containing
A.

Definition 2.6. A topological space X is said to be gb-connected [2] if X cannot be expressed as a disjoint of two
non-empty gb-open sets in X. A sub set of X is gb-connected if it is gb-connected as a subspace.

Definition 2.7. A subset A of a topological space (X, τ) is called semi generalized star b-closed set[11] (briefly sg∗b-
closed set) if bcl(A) ⊆ U whenever A ⊆ U and U is sg open in X.

3 Semi Generalized Star b - Connectedness

Definition 3.8. A topological space X is said to be sg∗b-connected if X cannot be expressed as a disjoint of two non -
empty sg∗b-open sets in X. A subset of X is sg∗b-connected if it is sg∗b-connected as a subspace.

Example 3.1. Let X = {a, b, c} and let τ = {X, ϕ, {b}, {a, c}}. It is sg∗b-connected.

Theorem 3.1. For a topological space X, the following are equivalent.
(i) X is sg∗b-connected.
(ii) X and ϕ are the only subsets of X which are both sg∗b-open and sg∗b-closed.
(iii) Each sg∗b-continuous map of X into a discrete space Y with at least two points is constant map.

Proof. (i)⇒ (ii) : Suppose X is sg∗b - connected. Let S be a proper subset which is both sg∗b - open and sg∗b -
closed in X. Its complement X − S is also sg∗b - open and sg∗b - closed. X = S ∪ (X − S), a disjoint union of
two non empty sg∗b - open sets which is contradicts (i). Therefore S = ϕ or X.
(ii) ⇒ (i) : Suppose that X = A ∪ B where A and B are disjoint non empty
sg∗b - open subsets of X. Then A is both sg∗b - open and sg∗b - closed. By assumption A = ϕ or X. Therefore
X is sg∗b - connected.
(ii)⇒ (iii) : Let f : X → Y be a sg∗b - continuous map. X is covered by sg∗b - open and sg∗b - closed covering{

f−1(y) : y ∈ Y
}

. By assumption f−1(y) = ϕ or X for each y ∈ Y . If f−1(y) = ϕ for all y ∈ (Y) , then f fails
to be a map. Then there exists only one point y ∈ Y such that f−1(y) 6= ϕ and hence f−1(y) = X. This shows
that f is a constant map.
(iii) ⇒ (ii) : Let S be both sg∗b - open and sg∗b - closed in X. Suppose S 6= ϕ. Let f : X → Y be a sg∗b -
continuous function defined by f (S) = {y} and f (X − S) = {w} for some distinct points y and w in Y. By
(iii) f is a constant function. Therefore S = X.

Theorem 3.2. Every sg∗b - connected space is connected.

Proof. Let X be sg∗b - connected. Suppose X is not connected. Then there exists a proper non empty subset
B of X which is both open and closed in X. Since every closed set is sg∗b - closed, B is a proper non empty
subset of X which is both sg∗b - open and sg∗b - closed in X. Using by Theorem 3.1, X is not sg∗b - connected.
This proves the theorem.

The converse of the above theorem need not be true as shown in the following example.

Example 3.2. Let X = {a, b, c} and let τ = {X, ϕ, {a}, {b, c}}. X is connected but not sg∗b - connected. Since
{b}, {a, c} are disjoint sg∗b - open sets and X = {b} ∪ {a, c}.

Theorem 3.3. If f : X → Y is a sg∗b - continuous and X is sg∗b - connected, then Y is connected.
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Proof. Suppose that Y is not connected. Let Y = A ∪ B where A and B are disjoint non - empty open set in
Y. Since f is sg∗b - continuous and onto, X = f−1(A) ∪ f−1(B) where f−1(A) and f−1(B) are disjoint non -
empty sg∗b - open sets in X. This contradicts the fact that X is sg∗b - connected. Hence Y is connected.

Theorem 3.4. If f : X → Y is a sg∗b - irresolut and X is sg∗b - connected, then Y is sg∗b - connected.

Proof. Suppose that Y is not sg∗b connected. Let Y = A∪ B where A and B are disjoint non - empty sg∗b open
set in Y. Since f is sg∗b - irresolut and onto, X = f−1(A) ∪ f−1(B) where f−1(A) and f−1(B) are disjoint
non - empty sg∗b - open sets in X. This contradicts the fact that X is sg∗b - connected. Hence Y is sg∗b -
connected.

Definition 3.9. A topological space X is said to be Tsg∗b - space if every sg∗b - closed set of X is closed subset of X.

Theorem 3.5. Suppose that X is Tsg∗b - space then X is connected if and only if it is sg∗b - connected.

Proof. Suppose that X is connected. Then X cannot be expressed as disjoint union of two non - empty proper
subsets of X. Suppose X is not a sg∗b - connected space. Let A and B be any two sg∗b - open subsets of X such
that X = A ∪ B, where A ∩ B = ϕ and A ⊂ X, B ⊂ X. Since X is Tsg∗b - space and A, B are sg∗b - open. A, B
are open subsets of X, which contradicts that X is connected. Therefore X is sg∗b - connected.

Conversely, every open set is sg∗b - open. Therefore every sg∗b - connected space is connected.

Theorem 3.6. If the sg∗b - open sets C and D form a separation of X and if Y is sg∗b - connected subspace of X, then
Y lies entirely within C or D.

Proof. Since C and D are both sg∗b - open in X, the sets C ∩ Y and D ∩ Y are sg∗b - open in Y. These two
sets are disjoint and their union is Y. If they were both non - empty, they would constitute a separation of Y.
Therefore, one of them is empty. Hence Y must lie entirely C or D.

Theorem 3.7. Let A be a sg∗b - connected subspace of X. If A ⊂ B ⊂ sg∗b− cl(A) then B is also sg∗b - connected.

Proof. Let A be sg∗b - connected and let A ⊂ B ⊂ sg∗b − cl(A). Suppose that B = C ∪ D is a separation
of B by sg∗b - open sets. By using Theorem 3.6, A must lie entirely in C or D. Suppose that A ⊂ C, then
sg∗b− cl(A) ⊂ sg∗b− cl(B). Since sg∗b− cl(C) and D are disjoint, B cannot intersect D. This contradicts the
fact that C is non empty subset of B. So D = ϕ which implies B is sg∗b - connected.

Theorem 3.8. A contra sg∗b - continuous image of an sg∗b - connected space is connected.

Proof. Let f : X → Y is a contra sg∗b - continuous function from sg∗b - connected space X on to a space
Y. Assume that Y is disconnected. Then Y = A ∪ B, where A and B are non empty clopen sets in Y with
A ∩ B = ϕ. Since f is contra sg∗b - continous, we have f−1(A) and f−1(B) are non empty sg∗b - open sets in
X with f−1(A) ∪ f−1(B) = f−1(A ∪ B) = f−1(Y) = X and f−1(A) ∩ f−1(B) = f−1(A ∩ B) = f−1(ϕ) = ϕ.
This shows that X is not sg∗b - connected, which is a contradiction. This proves the theorem.

4 Semi Generalized Star b - Compactness

Definition 4.10. A collection
{

Aα : α ∈ Λ
}

of sg∗b -open sets in a topological space X is called a sg∗b - open cover of
a subset B of X if B ⊂ ⋃ {Aα : α ∈ Λ

}
holds.

Definition 4.11. A topological space X is sg∗b - compact if every sg∗b - open cover of X has a finite sub - cover.

Definition 4.12. A subset B of a topological space X is said to be sg∗b - compact relative to X, if for every collection{
Aα : α ∈ Λ

}
of sg∗b - open subsets of X such that B ⊂ ⋃ {Aα : α ∈ Λ

}
there exists a finite subset Λ0 of Λ such that

B ⊂ ⋃ {Aα : α ∈ Λ0
}

.

Definition 4.13. A subset B of a topological space X is said to be sg∗b - compact if B is sg∗b - compact as a subspace of
X.

Theorem 4.9. Every sg∗b - closed subset of sg∗b - compact space is sg∗b - compact relative to X.
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Proof. Let A be sg∗b - closed subset of a sg∗b - compact space X. Then Ac is
sg∗b - open in X. Let M =

{
Gα : α ∈ Λ

}
be a cover of A by sg∗b - open sets in X. Then M∗ = M ∪ Ac is a sg∗b

- open cover of X. Since X is sg∗b - compact, M∗ is reducible to a finite sub cover of X, say
X = Gα1 ∪ Gα2 ∪ Gα3 ∪ . . . ∪ Gαm ∪ Ac, Gαk ∈ M. But A and Ac are disjoint. Hence
A ⊂ Gα1 ∪ Gα2 ∪ Gα3 ∪ . . . ∪ Gαm Gαk ∈ M, this implies that any sg∗b open cover M of A contains a finite sub -
cover. Therefore A is gb - compact relative to X. That is, every sg∗b - closed subset of a sg∗b - compact space
X is sg∗b - compact.

Definition 4.14. A function f : X → Y is said to be sg∗b - continuous if f−1(V) is sg∗b - closed in X for every closed
set V of Y.

Theorem 4.10. A sg∗b - continuous image of a sg∗b - compact space is compact.

Proof. Let f : X → Y be a sg∗b - continuous map from a sg∗b - compact space X onto a topological space
Y. Let

{
Aα : α ∈ Λ

}
be an open cover of Y. Then

{
f−1(Ai) : i ∈ Λ

}
is a sg∗b - open cover of X. Since X

is sg∗b - compact, it has a finite sub - cover say
{

f−1(A1), f−1 : i ∈ Λ(A2), . . . , f−1(An)
}

. Since f is onto
{A1, A2, . . . , An} is a cover of Y, which is finite. Therefore Y is compact.

Definition 4.15. A function f : X → Y is said to be sg∗b - irresolute if f−1(V) is sg∗b - closed in X for every sg∗b -
closed set V of Y.

Theorem 4.11. If a map f : X → Y is sg∗b - irresolute and a subset B of X is sg∗b - compact relative to X, then the
image f (B) is sg∗b - compact relative to Y.

Proof. Let
{

Aα : α ∈ Λ
}

be any collection of sg∗b - open subsets of Y such that f (B) ⊂ ⋃ {
Aα : α ∈ Λ

}
⊂.

Then B ⊂ ⋃ {
f−1(Aα) : α ∈ Λ

}
. Since by hypothesis B is sg∗b - compact relative to X, there exists a finite

subset Λ0 ∈ Λ such that B ⊂ ⋃ { f−1(Aα) : α ∈ Λ0
}

. Therefore we have f (B)
⋃ ⊂ {(Aα) : α ∈ Λ0

}
, it shows

that f (B) is sg∗b - compact relative to Y.

Theorem 4.12. A space X is sg∗b - compact if and only if each family of sg∗b - closed subsets of X with the finite
intersection property has a non - empty intersection.

Proof. Given a collection A of subsets of X, let C = {X − A : A ∈ A} be the collection of their complements.
Then the following statements hold.
(a)A is a collection of sg∗b - open sets if and only if C is a collection of sg∗b - closed sets.
(b) The collection A covers X if and only if the intersection

⋂
c∈C C of all the elements of C is empty.

(c) The finite sub collection {A1, A2, . . . An} of A covers X if and only if the intersection of the corresponding
elements Ci = X− Ai of C is empty.The statement (a) is trivial, while the (b) and (c) follow from De Morgan’s
law.
X − (

⋃
α∈J Aα) =

⋂
α∈J(X − Aα). The proof of the theorem now proceeds in two steps, taking contra positive

of the theorem and then the complement.
The statement X is sg∗b - compact is equivalent to : Given any collection A of sg∗b - open subsets of X, if

A covers X, then some finite sub collection of A covers X. This statement is equivalent to its contra positive,
which is the following.

Given any collection A of sg∗b - open sets, if no finite sub - collection of A of covers X, then A does not
cover X. Let C be as earlier, the collection equivalent to the following:

Given any collection C of sg∗b - closed sets, if every finite intersection of elements of C is not - empty, then
the intersection of all the elements of C is non - empty. This is just the condition of our theorem.

Definition 4.16. A space X is said to be sg∗b - Lindelof space if every cover of X by sg∗b - open sets contains a countable
sub cover.

Theorem 4.13. Let f : X → Y be a sg∗b - continuous surjection and X be
sg∗b - Lindelof, then Y is Lindelof Space.

Proof. Let f : X → Y be a sg∗b - continuous surjection and X be sg∗b - Lindelof. Let {Vα} be an open cover
for Y. Then { f−1(Vα)} is a cover of X by sg∗b - open sets. Since X is sg∗b - Lindelof, { f−1(Vα)} contains
a countable sub cover, namely { f−1(Vαn)}. Then {Vαn} is a countable subcover for Y. Thus Y is Lindelof
space.
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Theorem 4.14. Let f : X → Y be a sg∗b - irresolute surjection and X be
sg∗b - Lindelof, then Y is sg∗b - Lindelof Space.

Proof. Let f : X → Y be a sg∗b - irresolute surjection and X be sg∗b - Lindelof. Let {Vα} be an open cover for Y.
Then { f−1(Vα)} is a cover of X by sg∗b - open sets. Since X is sg∗b - Lindelof, { f−1(Vα)} contains a countable
sub cover, namely { f−1(Vαn)}. Then {Vαn} is a countable subcover for Y. Thus Y is sg∗b - Lindelof space.

Theorem 4.15. If f : X → Y is a sg∗b - open function and Y is sg∗b -Lindelof space, then X is Lindelof space.

Proof. Let {Vα} be an open cover for X. Then { f (Vα)} is a cover of Y by sg∗b - open sets. Since Y is sg∗b
Lindelof, { f (Vα)} contains a countable sub cover, namely { f (Vαn)}. Then {Vαn} is a countable sub cover for
X. Thus X is Lindelof space.
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