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Abstract

In this paper, we deals with the second order neutral functional difference equation of the form

∆ (r(n)∆(x(n)− p(n)x(n− τ))) + q(n) f (x(n− σ)) = 0; n ≥ n0 (∗)

where {r(n)}, {p(n)} and {q(n)} are sequences of real numbers, τ and σ are positive integers and f : R→ R
is a real valued function. We determine sufficient conditions under which every solutions of (∗) is either
oscillatory or tends to zero.
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1 Introduction

In this paper we deals with the second order neutral functional difference equation of the form

∆ (r(n)∆(x(n)− p(n)x(n− τ))) + q(n) f (x(n− σ)) = 0; n ≥ n0 (1.1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1)− x(n), τ and σ are positive integers,
{r(n)}, {p(n)} and {q(n)} are sequences of real numbers, and f : R→ R is a continuous function.

Throughout this paper we assume the following conditions to be hold:

(i) {q(n)} is a sequence of nonnegative real numbers and {q(n)} is not identically zero for sufficiently large
values of n;

(ii) {p(n)} is a sequence of nonnegative real numbers and there exist a constant p such that 0 ≤ p(n) ≤ p <

1;

(iii) {r(n)} is a sequence of positive real numbers;

(iv) there exist a constant k such that f (u)
u ≥ k > 0 for all u 6= 0.

Let {x(n)} be a real sequences. We will also define a companion or associated sequence {z(n)} of it by

z(n) = x(n)− p(n)x(n− τ), n ≥ n0. (1.2)

Let θ = max {τ, σ}. For any real sequence {φ(n)} defined in n0 − θ ≤ n ≤ n0 − 1, the equation (1.1) has a
solution {x(n)} defined for n ≥ n0 and satisfying the initial condition x(n) = φ(n) for n0− θ ≤ n ≤ n0− 1. A
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solution {x(n)} of equation (1.1) is oscillatory if it is neither eventually positive nor eventually negative and
nonoscillatory otherwise.

In this paper we establish sufficient conditions for the oscillation of solutions to (1.1) under the following
two cases:

∞

∑
n=n0

1
r(n)

= ∞ (1.3)

and
∞

∑
n=n0

1
r(n)

< ∞. (1.4)

Recently, there has been much interest in studying the oscillatory and asymptotic behaviour of difference
equations; see, for example, [3-10] and the references cited therein. For the general theory of difference
equations one can refer to [1,2].

In [7], sternal et al. established sufficient conditions for every bounded solutions of (1.1) is either oscillatory
are tends to zero as n→ ∞ under the conditions (1.3) and

∞

∑
n=n0

q(n) = ∞.

Rath et al. in [6] established sufficient conditions under which every solution of (1.1) is oscillatory are
tends to zero as n→ ∞.

In [5] we established sufficient conditions for oscillation of all solutions of the equation (1.1) where {p(n)}
is a nonnegative real sequence.

In this paper our aim is to determine sufficient conditions under which every solution of (1.1) is oscillatory
or tends to zero as n → ∞. Our established results are discrete analogues of some well-known results due to
[8].

In the sequel, for our convenience, when we write a fractional inequality without mentioning its domain
of validity are assume that it holds for all sufficiently large values of n.

2 Some Useful Lemmas

In this section, we state and prove the following lemmas which are useful in proving our main results of
this paper.

Lemma 2.1. [3] Let {x(n)} be an eventually positive solutions of (1.1) and {z(n)} be its associated sequence defined
by (1.2). If {∆z(n)} is eventually negative or lim supn→∞ x(n) > 0, then z(n) > 0, eventually.

Lemma 2.2. Assume that (1.3) holds. Let {x(n)} be an eventually positive solution of (1.1) such that
lim supn→∞ x(n) > 0. Then its associated sequence {z(n)} defined by (1.2) satisfies z(n) > 0, r(n)∆z(n) > 0 and
∆(r(n)∆z(n)) < 0 eventually.

Proof. Assume that {x(n)} is an eventually positive solution of (1.1) such that lim supn→∞ x(n) > 0. Then it
follows from (1.1) that ∆(r(n)∆z(n)) = −q(n)x(σ(n)) < 0. Consequently {r(n)∆z(n)} is decreasing and thus
either ∆z(n) > 0 or ∆z(n) < 0, eventually. If we let ∆z(n) < 0, then by Lemma 2.1, z(n) > 0 eventually. Then
also r(n)∆z(n) < −c < 0 and summing this from n1 to n− 1, we have

z(n) ≤ z(n1)− c
n−1

∑
s=n1

1
r(s)

→ −∞ as n→ ∞.

This contradicts the positivity of {z(n)} and hence ∆z(n) > 0. Since lim supn→∞ x(n) > 0, by Lemma 2.1 we
have z(n) > 0 eventually and the proof is complete.
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3 Main Results

In this section, we derive sufficient conditions for oscillation of all solutions of (1.1). For the sake of
convenience we use the following notations.

Q(n) : = min {q(n), q(n− τ)}
(∆η(n))+ = max {0, ∆η(n)}

R(n) =
n−1

∑
s=n0

1
r(s)

,

and

β(n) =
∞

∑
s=n

1
r(s)

.

Theorem 3.1. Assume that (1.3) holds and σ > τ. Suppose that there exist a positive real valued sequence {η(n)}∞
n=n0

such that

lim sup
n→∞

n−1

∑
s=n0

[
kη(s)Q(s)− (1 + p)r(s− σ) ((∆η(s))+)

2

4η(s)

]
= ∞. (3.1)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0 and let {z(n)} be its associated sequence defined by (1.2).
Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n − τ) > 0, x(n − σ) > 0 and z(n) > 0 for all
n ≥ n1. Then from (1.1), we have

∆(r(n)∆z(n)) ≤ −kq(n)x(n− σ) ≤ 0, n ≥ n1. (3.2)

This shows that {r(n)∆z(n)} is a decreasing sequence. Then by Lemma 2.2, z(n) > 0 and ∆z(n) > 0,
eventually. Now from (3.2), we have

∆(r(n)∆z(n)) + p∆(r(n− τ)∆z(n− τ)) + kq(n)x(n− σ) + pkq(n− τ)x(n− τ − σ) ≤ 0.

or
∆(r(n)∆z(n)) + p∆(r(n− τ)∆z(n− τ)) + kQ(n)z(n− σ) ≤ 0. (3.3)

Define a sequence {u(n)} by

u(n) = η(n)
r(n)∆z(n)
z(n− σ)

, n ≥ n1. (3.4)

Clearly u(n) > 0. Taking difference on both sides of (3.4) and using the fact, from (3.2) that ∆z(n − σ) ≥
r(n+1)∆z(n+1)

r(n−σ)
, we have

∆u(n) ≤ η(n)
∆(r(n)∆z(n))

z(n− σ)
− η(n)

η2(n + 1)
u2(n + 1)
r(n− σ)

+
u(n + 1
η(n + 1)

∆η(n)

≤ η(n)
∆(r(n)∆z(n))

z(n− σ)
− η(n)u2(n + 1)

η2(n + 1)r(n− σ)
+

u(n + 1)
η(n + 1)

(∆η(n))+. (3.5)

Similarly we introduce another sequence {v(n)} defined by

v(n) = η(n)
r(n− τ)∆z(n− τ)

z(n− σ)
, n ≥ n1. (3.6)

Then v(n) > 0. Taking difference on both sides of (3.6), by (3.2) and σ > τ, we see that

∆z(n− σ) ≥ r(n− τ + 1)∆z(n− τ + 1)
r(n− σ)

,
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and

∆v(n) ≤ η(n)
∆(r(n− τ)∆z(n− τ))

z(n− σ)
− η(n)

η2(n + 1)
v2(n + 1)
r(n− σ)

+
v(n + 1)
η(n + 1)

∆η(n)

≤ η(n)
∆(r(n− τ)∆z(n− τ))

z(n− σ)
− η(n)

η2(n + 1)
v2(n + 1)
r(n− σ)

+
v(n + 1)
η(n + 1)

(∆η(n))+. (3.7)

From (3.5) and (3.7) we have

∆u(n) + p∆v(n) ≤ η(n)
∆(r(n)∆z(n))

z(n− σ)
+ pη(n)

∆(r(n− τ)∆z(n− τ))

z(n− σ)

+
u(n + 1)
η(n + 1)

(∆η(n))+ −
η(n)

η2(n + 1)
u2(n + 1)
r(n− σ)

+ p
v(n + 1)
η(n + 1)

(∆η(n))+

− p
η(n)

η2(n + 1)
v2(n + 1)
r(n− σ)

. (3.8)

In view of (3.3) and the above inequality, we have

∆u(n) + p∆v(n) ≤ −kQ(n)η(n) +
u(n + 1)(∆η(n))+

η(n + 1)
− η(n)u2(n + 1)

η2(n + 1)r(n− σ)

+
p(∆η(n))+
η(n + 1)

v(n + 1)− p
η(n)v2(n + 1)

η2(n + 1)r(n− σ)

≤ −kη(n)Q(n) + (1 + p)
r(n− σ)((∆η(n))+)2

4η(n)
.

Summing the above inequality from n1 to n− 1, we get

u(n) + pv(n) ≤ u(n1) + pv(n1)−
n−1

∑
s=n1

[
kη(s)Q(s)− (1 + p)r(s− σ((∆η(n))+)2

4η(s)

]
which implies that

n−1

∑
s=n1

[
kη(s)Q(s)− (1 + p)r(s− σ)((∆η(s))+)2

4η(s)

]
≤ u(n1) + pv(n1)

which contradicts (3.1). This completes the proof.

Choosing η(n) = R(n− σ + 1). By Theorem 3.1, we have the following results.

Corollary 3.2. Assume that (1.3) holds and σ > τ. If

lim sup
n→∞

n−1

∑
s=n0

[
kR(s− σ + 1)Q(s)− (1 + p)

4r(s− σ)R(s− σ + 1)

]
= ∞. (3.9)

Then every solution of (1.1) is either oscillatory or tends to zero.

Corollary 3.3. Assume that (1.3) holds and σ > τ. If

lim inf
n→∞

1
ln R(n− σ)

n−1

∑
s=n0

R(s− σ + 1)Q(s) >
1 + p

4k
, (3.10)

then every solution of (1.1) is either oscillatory or tends to zero.
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Proof. We can easily prove that (3.10) yields that there exists a constant ε > 0 such that for all large n,

1
ln R(n− σ)

n−1

∑
s=n0

R(s− σ + 1)Q(s) >
1 + p

4k
+ ε

which follows that
n−1

∑
s=n0

R(s− σ + 1)Q(s)−
(

1 + p
4k

)
ln R(n− σ) ≥ ε ln R(n− σ),

that is
n−1

∑
s=n0

[
R(s− σ + 1)Q(s)− 1 + p

4kr(s− σ)R(s− σ + 1)

]
≥ ε ln R(n− σ)

− (1 + p)
4k

ln R(n0 − σ). (3.11)

Now it is clear that (3.11) implies (3.9) and the assertion of Corollary 3.3 follows from Corollary 3.2.

Corollary 3.4. Assume that (1.3) holds and σ > τ. If

lim inf
n→∞

[
Q(n)R2(n− σ + 1)r(n− σ)

]
>

1 + p
4k

, (3.12)

then every solution of (1.1) is either oscillatory or tends to zero.

Proof. It is easy to verify that (3.12) yields the existence of ε > 0 such that for all large n,

Q(n)R2(n− σ + 1)r(n− σ) ≥ 1 + p
4k

+ ε.

Dividing the above inequality by R(n− σ + 1)r(n− σ), we have

Q(n)R(n− σ + 1)− 1 + p
4kR(n− σ + 1)r(n− σ)

≥ ε

R(n− σ + 1)r(n− σ)
,

which implies that (3.9) holds. Therefore by Corollary 3.2, every solution of (1.1) is either oscillatory or tends
to zero.

Next, choosing η(n) = n. By Theorem 3.1, we have the following result.

Corollary 3.5. Assume that (1.3) holds and σ > τ. If

lim sup
n→∞

n−1

∑
s=n0

[
ksQ(s)− 1 + p

4s

]
= ∞, (3.13)

then every solution of (3.13) is either oscillatory or tends to zero.

Theorem 3.6. Assume that (1.4) holds and σ > τ. Suppose that there exists a positive real valued sequence {η(n)}∞
n=n0

such that (3.1) holds and

lim sup
n→∞

n−1

∑
s=n0

[
kQ(s)β(s + 1)− 1 + p

4r(s)β(s + 1)

]
= ∞. (3.14)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0. Let {z(n)} be the sequence defined by (1.2). Then by Lemma
2.1, z(n) > 0, eventually. Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n− τ) > 0, x(n− σ) > 0
and z(n) > 0, for all n ≥ n1.

Clearly we can see that {r(n)∆z(n)} is nonincreasing sequence eventually. Consequently, it is easy to
conclude that there exist two possible cases of sign of {∆z(n)}, that is, ∆z(n) > 0 or ∆z(n) < 0 for n ≥ n2 ≥ n1.
If ∆z(n) > 0, then we are back to the case of Theorem 3.1, and we can get a contradiction to (3.1). If ∆z(n) < 0,
then we define the sequence {u(n)} by

u(n) =
r(n)∆z(n)

z(n)
, n ≥ n2. (3.15)
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Clearly u(n) < 0, Noting that {r(n)∆z(n)} is nonincreasing, we have

r(s)∆z(s) ≤ r(n)∆z(n), s ≥ n ≥ n2.

Dividing the above inequality by r(s) and summing from n to l − 1, we get

z(l) ≤ z(n) + r(n)∆z(n)
l−1

∑
s=n

1
r(s)

, l ≥ n ≥ n2.

Letting l → ∞ in the above inequality, we have

0 ≤ z(n) + r(n)∆z(n)β(n), n ≥ n2.

Therefore
r(n)∆z(n)

z(n)
β(n) ≥ −1, n ≥ n2.

From (3.15), we have
− 1 ≤ u(n)β(n) ≤ 0. (3.16)

Similarly, we introduce another sequence {v(n)} by

v(n) =
r(n− τ)∆z(n− τ)

z(n)
, n ≥ n2. (3.17)

Clearly v(n) < 0. Noting that {r(n)∆z(n)} is nonincreasing, we have
r(n− τ)∆z(n− τ) ≥ r(n)∆z(n). Then v(n) > u(n). From (3.16), we obtain

− 1 ≤ v(n)β(n) ≤ 0, n ≥ n2. (3.18)

Taking difference on both sides of (3.15), we have

∆u(n) =
∆(r(n)∆z(n))

z(n)
− ∆u2(n)

r(n)
. (3.19)

Again, taking difference on both sides of (3.17), we obtain

∆v(n) ≤ ∆(r(n− τ)∆z(n− τ))

z(n)
− v2(n)

r(n)
. (3.20)

From (3.19) and (3.20), we can obtain

∆u(n) + p∆v(n) ≤ ∆(r(n)∆z(n))
z(n)

+ p
(r(n− τ)∆z(n− τ))

z(n)
− u2(n)

r(n)
− p

v2(n)
r(n)

. (3.21)

On the other hand, proceed as in the proof of Theorem 3.1, we have that (3.3) holds. Therefore by (3.3) and
(3.21), we get

∆u(n) + p∆v(n) ≤ −kQ(n)− u2(n)
r(n)

− p
v2(n)
r(n)

. (3.22)

Multiplying by β(n + 1) on (3.22) and summing from n2 to n− 1, we have

[β(n)u(n)− β(n2)u(n2)]−
n−1

∑
s=n2+1

u(s)∆β(s) + p [β(n)v(n)− β(n2)v(n2)]

−p
n−1

∑
s=n2+1

v(s)∆β(s) + k
n−1

∑
s=n2

Q(s)β(s + 1) +
n−1

∑
s=n2

u2(s)
r(s)

β(s + 1)

+p
n−1

∑
s=n2

v2(s)β(s + 1)
r(s)

≤ 0
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or

[β(n)u(n)− β(n2)u(n2)] +
n−1

∑
s=n2+1

u(s)
r(s)

+ p [β(n)v(n)− β(n2)v(n2)]

+p
n−1

∑
s=n2+1

v(s)
r(s)

+ k
n−1

∑
s=n2+1

Q(s)β(s + 1) +
n−1

∑
s=n2+1

u2(s)β(s + 1)
r(s)

+p
n−1

∑
s=n2+1

v2(s)β(s + 1)
r(s)

≤ 0

or

[β(n)u(n) + pβ(n)v(n)] +
n−1

∑
s=n2+1

[
u(s)
r(s)

+
u2(s)β(s + 1)

r(s)

]

+p
n−1

∑
s=n2+1

[
v(s)
r(s)

+
v2(s)β(s + 1)

r(s)

]
+ k

n−1

∑
s=n2+1

Q(s)β(s + 1)

≤ β(n2)u(n2) + pβ(n2)v(n2)

or

[β(n)u(n) + pβ(n)v(n)] +
n−1

∑
s=n2+1

[
kQ(s)β(s + 1)− 1 + p

4r(s)β(s + 1)

]

≤ β(n2)u(n2) + pβ(n2)v(n2).

By (3.16) and (3.18) we obtain a contradiction with (3.14). This completes the proof.

Corollary 3.7. Assume that (1.4) holds and σ > τ. Furthermore assume that one of conditions (3.9), (3.10), (3.12) and
(3.13) holds, and one has (3.14). Then every solution of (1.1) is either oscillatory or tends to zero.

Theorem 3.8. Assume that (1.4) holds and σ > τ. Suppose that there exists a positive real sequence {η(n)}∞
n=n0

such
that (3.1) holds, and

lim sup
n→∞

n−1

∑
s=n0

β2(s + 1)Q(s) = ∞. (3.23)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) and let {z(n)} be its associated sequence defined by (1.2). Then by Lemma 2.1, z(n) > 0,
eventually. Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n− τ) > 0, x(n− σ) > 0 and z(n) > 0
for all n ≥ n1. Also we see that {r(n)∆z(n)} is nonincreasing eventually. Consequently, it is easy to see that
there exist two possible cases of the sign of {∆z(n)}, that is, ∆z(n) > 0 or ∆z(n) < 0 for n ≥ n2 ≥ n1. If
∆z(n) > 0, then we have back to the case of Theorem 3.1 and we can get a contradiction to (3.1). If ∆z(n) < 0,
then we define the sequences {u(n)} and {v(n)} as in Theorem 3.6. Then proceed as in the proof of Theorem
3.6, we obtain (3.16), (3.18) and (3.22).

Multiplying (3.22) by β2(n + 1) and summing from n2 to n− 1 yields,

β2(n)u(n)− β2(n2)u(n2) + 2
n−1

∑
s=n2+1

u(s)β(s)
r(s)

+
n−1

∑
s=n2

u2(s)β2(s + 1)
r(s)

+pβ2(n)v(n)− pβ2(n2)v(n2) + 2p
n−1

∑
s=n2+1

v(s)β(s)
r(s)

+ p
n−1

∑
s=n2

v2(s)β2(s + 1)
r(s)

+ k
n−1

∑
s=n2

β2(s + 1)Q(s) ≤ 0 (3.24)
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If follows from (1.4) and (3.16) that∣∣∣∣∣ ∞

∑
s=n2+1

u(s)β(s + 1)
r(s)

∣∣∣∣∣ ≤ ∞

∑
s=n2+1

|u(s)β(s)|
r(s)

≤
∞

∑
s=n2+1

1
r(s)

< ∞,

n−1

∑
s=n2

u2(s)β2(s + 1)
r(s)

≤
n−1

∑
s=n2

u2(s)β2(s)
r(s)

<
∞

∑
s=n2

1
r(s)

< ∞.

In view of (3.18), we get ∣∣∣∣∣ ∞

∑
s=n2+1

v(s)β(s)
r(s)

∣∣∣∣∣ ≤ ∞

∑
s=n2+1

|v(s)β(s)|
r(s)

≤
∞

∑
s=n2+1

1
r(s)

< ∞,

∞

∑
s=n2

v2(s)β2(s + 1)
r(s)

≤
∞

∑
s=n2

v2(s)β2(s)
r(s)

≤
∞

∑
s=n2

1
r(s)

< ∞.

From (3.24), we have

lim sup
n→∞

n−1

∑
s=n2

β2(s + 1)Q(s) < ∞,

which is a contradiction with (3.23). This completes the proof.

Corollary 3.9. Assume that (1.4) holds and σ > τ. Suppose also that one of conditions (3.9), (3.10), (3.12) and (3.13)
holds and one has (3.23). Then every solution of (1.1) is either oscillatory or tends to zero.

In the following, we give some new oscillation results for (1.1) when σ ≤ τ.

Theorem 3.10. Assume that (1.3) holds and σ ≤ τ. Moreover, suppose that there exists a positive real valued sequence
{η(n)}∞

n=n0
such that

lim sup
n→∞

n−1

∑
s=n0

[
kη(s)Q(s)− (1 + p)r(s− τ)((∆η(s))+)2

4η(s)

]
= ∞. (3.25)

Then every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0 and let {z(n)} be its associated sequence defined by (1.2).
Then by Lemma 2.2 z(n) > 0 and ∆z(n) > 0 eventually. Then there exists an integer n1 ≥ n0 such that
x(n) > 0, x(n− τ) > 0, x(n− σ) > 0 and z(n) > 0 for all n ≥ n1. Similar to the proof of Theorem 3.1, there
exists an integer n2 ≥ n1 such that (3.3) hold for n ≥ n2. Define a sequence {u(n)} by

u(n) = η(n)
r(n)∆z(n)
z(n− τ)

, n ≥ n2. (3.26)

Then u(n) > 0. Taking difference on both sides of (3.26), by (3.2), we get

∆z(n− τ) ≥ r(n)∆z(n)
r(n− τ)

,

and

∆u(n) ≤ η(n)∆(r(n)∆z(n))
z(n− τ)

− η(n)u2(n + 1)
β2(n + 1)r(n− τ)

+
u(n + 1)
η(n + 1)

∆η(n)

≤ η(n)∆(r(n)∆z(n))
z(n− τ)

− η(n)u2(n + 1)
η2(n + 1)r(n− τ)

+
u(n + 1)
η(n + 1)

(∆η(n))+. (3.27)

Also we define an another sequence {v(n)} by

v(n) = η(n)
r(n− τ)∆z(n− τ)

z(n− τ)
, n ≥ n2. (3.28)

Note that σ ≤ τ. The rest of the proof is similar to that of the Theorem 3.1 and so is omitted. This completes
the proof.
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Corollary 3.11. Assume that (1.3) holds and σ ≤ τ. If

lim sup
n→∞

n−1

∑
s=n0

[
kR(s− τ + 1)Q(s)− 1 + p

4r(s− τ)R(s− τ + 1)

]
= ∞, (3.29)

then every solution of (1.1) is either oscillatory or tends to zero.

Corollary 3.12. Assume that (1.3) hold and σ ≤ τ. If

lim inf
n→∞

1
ln R(n− τ)

n−1

∑
s=n0

R(s− τ + 1)Q(s) >
1 + p

4k
, (3.30)

then every solution of (1.1) is oscillatory or tends to zero.

Proof. By Corollary 3.11, the proof is similar to that of Corollary 3.3, we omit the details.

Corollary 3.13. Assume that (1.3) holds and σ ≤ τ. If

lim inf
n→∞

(
Q(n)R2(n− τ + 1)r(n− τ)

)
>

1 + p
4k

, (3.31)

then every solution of (1.1) is either oscillatory or tends to zero.

Proof. By Corollary 3.11, the proof is similar to that of Corollary 3.4 and so is omitted.

Next, choosing η(n) = n. From Theorem 3.8 we have the following result.

Corollary 3.14. Assume that (1.3) holds and σ ≤ τ. If

lim sup
n→∞

n−1

∑
s=n0

[
ksQ(s)− (1 + p)

r(s− τ)

4s

]
= ∞, (3.32)

then every solution of (1.1) is either oscillatory or tends to zero.

Theorem 3.15. Assume that (1.4) hold and σ ≤ τ. Further suppose that there exists a positive real valued sequence
{η(n)}∞

n=n0
such that (3.25) holds. Suppose also that one of (3.14) and (3.23) holds. Then every solution of (1.1) is

either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1) such that lim supn→∞ x(n) > 0 and let {z(n)} be its associated sequence defined by (1.2).

Then by Lemma 2.1, z(n) > 0, eventually. Then there exists an integer n1 ≥ n0 such that x(n) > 0,
x(n − τ) > 0, x(n − σ) > 0 and z(n) > 0 for all n ≥ n1. In view of (3.2), {r(n)∆z(n)} is nonincreasing
eventually. Consequently, it is easy to conclude that there exists two possible cases of the sign of {∆z(n)}.
That is, ∆z(n) > 0 or ∆z(n) < 0 for n ≥ n2 ≥ n1. If ∆z(n) > 0, then we are base to the case of Theorem 3.10. If
∆z(n) < 0, then by the proof of Theorem 3.6 or Theorem 3.8, we can obtain a contradiction to (3.14) or (3.23)
respectively. The proof is complete.

Corollary 3.16. Assume that (1.4) holds and σ ≥ τ. Suppose that one of conditions (3.29), (3.30) and (3.32) holds, and
one has (3.14) or (3.23). Then every solution of (1.1) is either oscillatory or tends to zero.

4 Some Example

In this section we give some examples to illustrate our results.

Example 4.1. Consider the following second order neutral delay difference equation

∆ [(n + 2σ)∆(x(n)− p(n)x(n− τ))] +
λ

n + σ
f (x(n− σ)) = 0; n = 0, 1, 2, .... (4.1)
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where 0 ≤ p(n) ≤ p < 1, τ and σ are positive integers with σ > τ, r(n) = n + 2σ, q(n) = λ
n+σ , λ > 0 and

f (x) = x(1 + x2). Take η(n) = n + σ, we have k = 1, Q(n) = λ
n+τ . Now

lim sup
n→∞

n−1

∑
s=0

[
kη(s)Q(s)− (1 + p)r(s− τ)((∆η(s))+)2

4η(s)

]

=
n−1

∑
s=0

[
λ−

(
1 + p

4

)]
= ∞,

for λ > 1+p
4 . Hence by Theorem 3.1, every solution of (1.1) is either oscillatory or tends to zero.

Example 4.2. Consider the following second order neutral delay difference equation

∆ [(n + τ)∆(x(n)− p(n)x(n− τ))] +
λ

n

(
(x(n− σ)(1 + x2(n− σ))

)
= 0,

n = 1, 2, ... (4.2)

where 0 ≤ p(n) ≤ p < 1, τ and σ are positive integers with σ ≤ τ, r(n) = n + τ, q(n) = λ
n , λ > 0 and k = 1.

Clearly, Q(n) = λ
n . Now

lim sup
n→∞

n−1

∑
s=1

[
ksQ(s)−

(
1 + p

4

)
r(s− τ)

s

]

= lim sup
n→∞

n−1

∑
s=1

[
λ−

(
1 + p

4

)]
= ∞

for λ > 1+p
4 . Hence by Corollary 3.14, every solution of (4.2) is either oscillatory or tends to zero.

Example 4.3. Consider the following second order neutral delay difference equation

∆ [en∆(x(n)− p(n)x(n− 1))] + e2nx(n− 2)(1 + x2(n− 2)) = 0, n = 0, 1, ... (4.3)

where 0 ≤ p(n) ≤ p < 1, τ and σ are positive integers with σ > τ, r(n) = en, q(n) = e2n and k = 1. We have,
Q(n) = e2n−2, β(n + 1) = 1

en(e−1) . Clearly, ∑∞
n=0

1
r(n) < ∞. Also

lim sup
n→∞

n−1

∑
s=0

β2(s + 1)Q(s)

= lim sup
n→∞

n−1

∑
s=0

1
e2s(s− 1)2 e2s−2

= ∞

Also,

lim inf
n→∞

[
Q(n)R2(n− σ + 1)r(n− σ)

]

= lim inf
n→∞

[
e2n−2R2(n− 1)r(n− 2)

]
= lim inf

n→∞

[
e2n−2

(
en − 1

en−1(e− 1)

)2
en−2

]

= lim inf
n→∞

[
(en − 1)2

(e− 1)2 en−2
]

>
1 + p

ε

Then by Corollary 3.9, every solution of (1.1) is either oscillatory or tends to zero.
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