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Abstract

In this article, we analysis the oscillatory properties of first order neutral difference equations with positive
and negative variable coefficients of the forms

∆[x(n) + p(n)x(n− τ)] +
m

∑
i=1

qi(n)x(n− σi)−
k

∑
j=1

rj(n)x(n− ρj) = 0; n = 0, 1, 2, ..., (∗)

and

∆[x(n) + p(n)x(n + τ)] +
m

∑
i=1

qi(n)x(n + σi)−
k

∑
j=1

rj(n)x(n + ρj) = 0; n = 0, 1, 2, ..., (∗∗)

where {p(n)} is a sequence of real numbers, {qi(n)} and
{

rj(n)
}

are sequences of positive real numbers, τ

is a positive integer, σi and ρj are nonnegative integers, for i = 1, 2, ..., m and j = 1, 2, ..., k. We established
sufficient conditions for oscillation of solutions to (∗) and (∗∗).

Keywords and Phrases: Oscillatory properties, neutral, delay, advanced, difference equation, positive and negative
coefficients.
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1 Introduction

In this article, we analysis the oscillatory properties of the first order neutral delay and advanced difference
equations with several positive and negative coefficients of the forms

∆[x(n) + p(n)x(n− τ)] +
m

∑
i=1

qi(n)x(n− σi)−
k

∑
j=1

rj(n)x(n− ρj) = 0; n = 0, 1, 2, ..., (1.1)

and

∆[x(n) + p(n)x(n + τ)] +
m

∑
i=1

qi(n)x(n + σi)−
k

∑
j=1

rj(n)x(n + ρj) = 0; n = 0, 1, 2, ..., (1.2)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1)− x(n), {p(n)} is a sequence of real
numbers, {qi(n)} and

{
rj(n)

}
are sequences of positive real numbers, τ is a positive integer, and σi and ρj are

nonnegative integers for i = 1, 2, ..., m and j = 1, 2, ..., k.
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Throughout the paper we assumed that there exist a constant p such that −1 < p ≤ p(n) ≤ 0; eventually
and {p(n)} is monotonically.

In the last many years there has been an improving curiosity in the work of the oscillation concept of
neutral difference and differential equations. The oscillation and asymptotic properties of these equations has
been used in many areas of applied mathematics, such as population dynamics [4], stability theory [12,13],
circuit theory [3], bifurcation analysis [2], dynamical behavior of delayed network systems [14] and so on.

In [11], Öğünmez et al. established sufficient conditions for oscillation of all solutions of (1.1) and (1.2)
when p ≡ 0, m = k, qi(n) = qi and rj(n) ≡ rj. In [8], we derived sufficient conditions for oscillation of all
solutions of the equations (1.1) and (1.2) for the cases −1 < p < 0, m = k, qi(n) = qi and rj(n) = rj. The
results obtained in [8] improves the results in [11]; In [9], we derived sufficient conditions for oscillation of all
solutions of the equations (1.1) and (1.2) for the cases p(n) ≡ p with −1 < p < 0.

For the general background of difference equations, one can refer to the books [1,5] and the papers [2-4,
6-14] and reference cited therein. Our main aim in this paper is to obtain the sufficient conditions for the
oscillation of all solutions of equations (1.1) and (1.2).

Let n∗ = max
{

τ, σi, ρj
}

for i = 1, 2, ..., m and j = 1, 2..., k. A solution of (1.1) on N(n0) = {n0, n0 + 1, ...} is
defined as a real sequence {x(n)} defined for n ≥ n0 − n∗ and which satisfies (1.1) for n ∈ N(n0). A solution
{x(n)} of (1.1) on N(n0) is said to be oscillatory if for every positive integers N0 > n0, there exists n ≥ N0
such that x(n)x(n + 1) ≤ 0, otherwise {x(n)} is said to be nonoscillatory.

Furthermore, unless otherwise stated, when we write a functional inequality it indicates that it holds for
all sufficiently large values of n.

2 Some Useful Lemmas

The following lemmas are very useful to prove our main results.

Lemma 2.1. Let {x(n)} be an eventually positive solution of the delay difference equation

∆[x(n) + p(n)x(n− τ)] +
m

∑
i=1

qi(n)x(n− σi) = 0. (2.1)

Set
z(n) = x(n) + p(n)x(n− τ). (2.2)

Then z(n) > 0 and ∆z(n) < 0 eventually.

Proof. From (2.1) and (2.2), we obtain

∆z(n) = −
m

∑
i=1

qi(n)x(n− σi) ≤ 0. (2.3)

This shows that {z(n)} is a decreasing sequence.
Then either z(n) > 0 or z(n) < 0 eventually. If z(n) < 0, then

x(n) ≤ −p(n)x(n− τ) ≤ −px(n− τ)

or
x(n + kτ) ≤ (−p)kx(n),

which implies that x(n) → 0 as n → ∞. Since {p(n)} is bounded, we have z(n) → 0 as n → ∞ and
consequently z(n) > 0, eventually.

This completes the proof.

Lemma 2.2. [6] Assume that
(m̄ + 1)m̄+1

m̄m̄

r

∑
i=1

lim inf
n→∞

αi(n) > 1, (2.4)

where αi(n) ≥ 0, 1 ≤ i ≤ r and m̄ = min1≤i≤r mi. Then the delay difference inequality

∆x(n) +
r

∑
i=1

αi(n)x(n−mi) ≤ 0; n = 0, 1, 2, ..., (2.5)

has no eventually positive solution.
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Lemma 2.3. Let {x(n)} be an eventually positive solution of the neutral advanced difference equation

∆[x(n) + p(n)x(n + τ)]−
m

∑
i=1

qi(n)x(n + σi) = 0; n ≥ n0. (2.6)

Set
z(n) = x(n) + p(n)x(n + τ). (2.7)

If
∞

∑
n=n0

m

∑
i=1

qi(n) = +∞, (2.8)

then z(n) > 0 and ∆z(n) > 0 eventually.

Proof. From (2.6) and (2.7), we have

∆z(n) =
m

∑
i=1

qi(n)x(n + σi) ≥ 0. (2.9)

This shows that {z(n)} is an increasing sequence. Then either z(n) > 0 or z(n) < 0, eventually.
If z(n) < 0, then

x(n) < −p(n)x(n + τ) < x(n + τ).

This shows that {x(n)} is bounded from below by a positive constant, say M.
From (2.9), we have

∆z(n) ≥ M
m

∑
i=1

qi(n), (2.10)

which, in view of (2.8), implies that z(n) → +∞ as n → +∞. This is a contradiction and this completes the
proof.

Lemma 2.4. [8] Consider the advanced difference inequality

∆x(n)−
m

∑
i=1

qi(n)x(n + σi) ≥ 0; n ≥ n0. (2.11)

If
σσ

(σ− 1)σ−1

m

∑
i=1

lim inf
n→∞

qi(n) > 1, (2.12)

where σ = min1≤i≤m σi, then (2.11) cannot have an eventually positive solution.

3 Sufficient Conditions for Oscillations of Equation (1.1)

In this section, we establish sufficient conditions for the oscillation of all solutions of the neutral delay
difference equation (1.1).

Theorem 3.1. Assume that ∆p(n) ≤ 0 and m = k. Suppose that for i = 1, 2, ..., m, σi = ρi, σi > τ, qi(n)− ri(n) ≥ 0
and not identically zero and

qi(n)− ri(n) ≥ qi(n− τ)− ri(n− τ). (3.1)

Suppose that for i = 1, 2, ..., m,

(σ
′ − τ + 1)σ

′−τ+1

(σ′ − τ)σ
′−τ

m

∑
i=1

lim inf
n→∞

(
qi(n)− ri(n)

1 + p(n− σ + τ − σi)

)
> 1, (3.2)

where
σ
′
= min

1≤i≤m
σi and σ = max

1≤i≤m
σi.

Then every solution of (1.1) is oscillatory.
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Proof. Assume the contrary. Without loss of generality, we suppose that {x(n)} is an eventually positive
solution of (1.1) and let {z(n)} be its associated sequence defined by (2.2). Then by Lemma 2.1, z(n) > 0 and
∆z(n) < 0, eventually.

Then the equation (1.1) becomes,

∆z(n) =
m

∑
i=1

(ri(n)− qi(n))x(n− σi). (3.3)

Set

y(n) = z(n) + p(n− σ)z(n− τ). (3.4)

Then

∆y(n) ≤
m

∑
i=1

(ri(n)− qi(n))x(n− σi)

+ p(n− σ)
m

∑
i=1

(ri(n− τ)− qi(n− τ))x(n− σi − τ)

≤
m

∑
i=1

(ri(n)− qi(n))(x(n− σi) + p(n− σi)x(n− σi − τ))

=
m

∑
i=1

(ri(n)− qi(n))z(n− σi) ≤ 0. (3.5)

This shows that {y(n)} is a decreasing sequence. By applying the procedure used in Lemma 2.1, we can easily
show that y(n) > 0, eventually.

Now, from (3.4), we have
y(n)

1 + p(n− σ)
≤ z(n− τ), (3.6)

or
y(n + τ − σi)

1 + p(n− σ + τ − σi)
≤ z(n− σi). (3.7)

Using (3.7) in (3.5), we have

∆y(n) +
m

∑
i=1

(
qi(n)− ri(n)

1 + p(n− σ + τ − σi)

)
y(n− (σi − τ)) ≤ 0. (3.8)

In view of (3.2) and Lemma 2.2, the delay difference inequality (3.8) has no eventually positive solution, which
contradicts the fact that y(n) > 0, eventually.

This completes the proof.

Theorem 3.2. Assume that ∆p(n) ≤ 0 and m = k. Suppose that

(i) there exists a partition of the set {1, 2, ..., m} into two disjoint subsets I and J such that i ∈ I implies σi > ρi and
j ∈ J implies σj = ρj;

(ii) gi(n) = qi(n)− ri(n− σi + ρi) ≥ 0 and not identically zero for i = 1, 2, ..., m;

and

(iii) gi(n) ≥ gi(n− τ) and σi > τ for i = 1, 2, ..., m.

Suppose further that

∑
i∈I

n−1

∑
s=n−σi+ρi

ri(s) ≤ 1 + p(n) (3.9)

and
(σ
′ − τ + 1)σ

′−τ+1

(σ′ − τ)σ
′−τ

m

∑
i=1

lim inf
n→∞

(
gi(n)

1 + p(n + τ − σ− σi)

)
> 1, (3.10)

where σ
′
= min1≤i≤m σi and σ = max1≤i≤m σi.

Then every solution of (1.1) is oscillatory.
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Proof. On the contrary, we assume without loss of generality that {x(n)} is an eventually positive solution of
(1.1). Set

z(n) = x(n) + p(n)x(n− τ)−∑
i∈I

n−1

∑
s=n−σi+ρi

ri(s)x(s− ρi). (3.11)

Then by Lemma 2.1 in [10], z(n) > 0 and ∆z(n) ≤ 0 eventually.
Now,

∆z(n) = −
m

∑
i=1

qi(n)x(n− σi) +
m

∑
i=1

ri(n)x(n− ρi)

− ∑
i∈I

ri(n)x(n− ρi) + ∑
i∈I

ri(n− σi + ρi)x(n− σi)

= −
m

∑
i=1

qi(n)x(n− σi) +
m

∑
i=1

ri(n− σi + ρi)x(n− σi)

∆z(n) = −
m

∑
i=1

gi(n)x(n− σi). (3.12)

Set
y(n) = z(n) + p(n− σ)z(n− τ) (3.13)

where σ = max1≤i≤m σi. Then

∆y(n) ≤ ∆z(n) + p(n− σ)∆z(n− τ)

≤ −
m

∑
i=1

gi(n)x(n− σi)− p(n− σ)
m

∑
i=1

gi(n− τ)x(n− τ − σi)

≤ −
m

∑
i=1

gi(n)[x(n− σi) + p(n− σ)x(n− τ − σi)]

≤ −
m

∑
i=1

gi(n)[x(n− σi) + p(n− σi)x(n− τ − σi)]

= −
m

∑
i=1

gi(n)z(n− σi) ≤ 0. (3.14)

This shows that {y(n)} is a nonincreasing sequence. We claim that y(n) > 0, eventually.
Otherwise y(n) < 0. This implies that

z(n) < −p(n− σ)z(n− τ) ≤ −pz(n− τ)

and hence we have z(n) → 0 as n → ∞. Since {p(n)} is bounded, we have y(n) → 0 as n → ∞, which is a
contradiction.

From (3.13), we get
y(n)

1 + p(n− σ)
≤ z(n− τ)

or
y(n + τ − σi)

1 + p(n + τ − σ− σi)
≤ z(n− σi) (3.15)

Using (3.15) is (3.14), we have

∆y(n) +
m

∑
i=1

[
gi(n)

1 + p(n + τ − σ− σi)

]
y(n− (σi − τ)) ≤ 0. (3.16)

By Lemma 2.2 and (3.10), the delay difference inequality (3.16) has no eventually positive solution, which
leads to a contradiction.

This completes the proof.
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Theorem 3.3. Assume that ∆p(n) ≤ 0. Suppose that

(i) there exists a positive integer l ≤ m and a partition of the set {1, 2, ..., k} into l disjoint subsets J1, J2, ..., Jl such
that j ∈ Ji implies ρj < σi;

(ii) gi(n) = qi(n) − ∑u∈Ji
ru(n − σi + ρu) ≥ 0 and are not identically zero for i = 1, 2, ..., l, gi(n) = qi(n) for

i = l + 1, ..., m;

and

(iii) gi(n) ≥ gi(n− τ) and σi > τ for i = 1, 2, ..., m.

Suppose further that
l

∑
i=1

∑
j∈Ji

n−1

∑
s=n−σi+ρj

rj(s) ≤ 1 + p(n), eventually (3.17)

and
(σ
′ − τ + 1)σ

′−τ+1

(σ′ − τ)σ
′−τ

m

∑
i=1

lim inf
n→∞

(
gi(n)

1 + p(n + τ − σ− σi)

)
> 1, (3.18)

where σ
′
= min1≤i≤m σi and σ = max1≤i≤m σi.

Then every solution of (1.1) is oscillatory.

Proof. Assume the contrary. Without loss of generality we may suppose that {x(n)} is an eventually positive
solution of (1.1). Set

z(n) = x(n) + p(n)x(n− τ)−
l

∑
i=1

∑
u∈Ji

n−1

∑
s=n−σi+ρu

ru(s)x(s− ρu). (3.19)

Then

∆z(n) = ∆[x(n) + p(n)x(n− τ)]

−
l

∑
i=1

∑
u∈Ji

[
n

∑
s=n+1−σi+ρu

ru(s)x(s− ρu)−
n−1

∑
s=n−σi+ρu

ru(s)x(s− ρu)

]

= −
m

∑
i=1

qi(n)x(n− σi) +
k

∑
j=1

rj(n)x(n− ρj)

−
l

∑
i=1

∑
u∈Ji

[ru(n)x(n− ρu)− ru(n− σi + ρu)x(n− σi)]

= −
m

∑
i=1

qi(n)x(n− σi) +
l

∑
i=1

∑
u∈Ji

ru(n− σi + ρu)x(n− σi)

or

∆z(n) = −
m

∑
i=1

gi(n)x(n− σi) ≤ 0. (3.20)

This shows that {z(n)} is nonincreasing sequence. By Lemma 2.1 in [10], we can show that z(n) > 0,
eventually.

Set
y(n) = z(n) + p(n− τ)z(n− τ), (3.21)

where σ = max1≤i≤m σi.
Then

∆y(n) ≤ ∆z(n) + p(n− σ)∆z(n− τ)

= −
m

∑
i=1

gi(n)x(n− σi)− p(n− σ)
m

∑
i=1

gi(n− τ)x(n− τ − σi)
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≤ −
m

∑
i=1

gi(n)z(n− σi) ≤ 0. (3.22)

Clearly {y(n)} is a nonincreasing sequence. By applying the procedure in Theorem 3.2, we can easily show
that y(n) > 0, eventually.

Again from (3.21)
y(n) ≤ (1 + p(n− σ))z(n− τ)

or
y(n + τ − σi)

1 + p(n + τ − σ− σi)
≤ z(n− σi). (3.23)

Using (3.23) in (3.22), we obtain

∆y(n) +
m

∑
i=1

(
gi(n)

1 + p(n + τ − σ− σi)

)
y(n− (σi − τ)) ≤ 0. (3.24)

But in view of Lemma 2.2 and (3.18), the delay difference inequality (3.24) has no eventually positive solution.
This contradiction compelets the proof.

4 Sufficient Conditions for Oscillation of Equation (1.2)

Theorem 4.1. Assume that ∆p(n) ≥ 0 and m = k. Suppose that for i = 1, 2, ..., m, σi = ρi, ρi > τ, hi(n) =

ri(n)− qi(n) ≥ 0 and are not identically zero, and hi(n) ≥ hi(n + τ).
Suppose further that

∞

∑
n=0

m

∑
i=1

hi(n) = +∞ (4.1)

and
(ρ
′ − τ)ρ

′−τ

(ρ′ − τ − 1)ρ
′−τ−1

m

∑
i=1

lim inf
n→∞

(
hi(n)

1 + p(n + ρ− τ + ρi)

)
> 1, (4.2)

where ρ
′
= min1≤i≤m ρi and ρ = max1≤i≤m ρi.

Then every solution of (1.2) is oscillatory.

Proof. For the sake of contradiction, without loss of generality, we may suppose that {x(n)} is an eventually
positive solution of (1.2).

Set
z(n) = x(n) + p(n)x(n + τ). (4.3)

Then from (1.2) and (4.3), we obtain

∆z(n) =
m

∑
i=1

hi(n)x(n + ρi) ≥ 0. (4.4)

This shows that {z(n)} is an eventually increasing sequence. Then by
Lemma 2.3, the sequence {z(n)} is an eventually positive.

Set
y(n) = z(n) + p(n + ρ)z(n + τ) (4.5)

where ρ = max1≤i≤m ρi. Then

∆y(n) ≥ ∆z(n) + p(n + ρ)∆z(n + τ)

=
m

∑
i=1

hi(n)x(n + ρi) + p(n + ρ)
m

∑
i=1

hi(n + τ)x(n + ρi + τ)

≥
m

∑
i=1

hi(n) [x(n + ρi) + p(n + ρi)x(n + ρi + τ)]
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=
m

∑
i=1

hi(n)z(n + ρi) ≥ 0. (4.6)

This shows that {y(n)} is an increasing sequence. But in view of (4.1) and
Lemma 2.3, we get y(n) > 0, eventually.

From(4.5), we have
y(n)

1 + p(n + ρ)
≤ z(n + τ) (4.7)

or
y(n− τ + ρi)

1 + p(n + ρ− τ + ρi)
≤ z(n + ρi). (4.8)

Using (4.8) in (4.6), we obtain

∆y(n)−
m

∑
i=1

(
hi(n)

1 + p(n + ρ− τ + ρi)

)
y(n + ρi − τ) ≥ 0. (4.9)

But in view of (4.2) and Lemma 2.4, the advanced difference inequality (4.9) cannot have an eventually positive
solution. This is a contradiction and this completes the proof.

Theorem 4.2. Assume that ∆p(n) ≥ 0 and m = k. Suppose that

(i) there exist a partition of the set {1, 2, ..., m} into two disjoint subsets I and J such that i ∈ I implies ρi > σi and
j ∈ J implies ρj = σj;

(ii) hi(n) = ri(n)− qi(n + ρi − σi) ≥ 0 and are not identically zero for i = 1, 2, ..., m;

(iii) hi(n) ≥ hi(n + τ) and ρi > τ for i = 1, 2, ...m.

Suppose further that
∞

∑
n=0

m

∑
i=1

hi(n) = +∞ (4.10)

and
(ρ
′ − τ)ρ

′−τ

(ρ′ − τ − 1)ρ
′−τ−1

m

∑
i=1

lim inf
n→∞

(
hi(n)

1 + p(n + ρ− τ + ρi)

)
> 1, (4.11)

where ρ
′
= min1≤i≤m ρi and ρ = max1≤i≤m ρi.

Then every solution {x(n)} of (1.2) is either oscillatory or lim infn→∞ x(n) = 0.

Proof. On the contrary we may assume, without loss of generality that {x(n)} is an eventually positive
solution such that

lim inf
n→∞

x(n) > 0. (4.12)

Set

z(n) = x(n) + p(n)x(n + τ)−∑
i∈I

n+ρi−σi−1

∑
s=n

qi(s)x(s + σi). (4.13)

Then from (1.2) and (4.13), we have

∆z(n) = −
m

∑
i=1

qi(n)x(n + σi) +
m

∑
i=1

ri(n)x(n + ρi)

− ∑
i∈I

qi(n + ρi − σi)x(n + ρi) + ∑
i∈I

qi(n)x(n + σi)

= −
m

∑
i=1

qi(n + ρi − σi)x(n + ρi) +
m

∑
i=1

ri(n)x(n + ρi)

=
m

∑
i=1

hi(n)x(n + ρi) ≥ 0. (4.14)
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This shows that {z(n)} is a nondecreasing sequence.
Then either

lim
n→∞

z(n) = +∞ (4.15)

or
lim

n→∞
z(n) = L ∈ R. (4.16)

Assume that (4.16) holds. But in view of (4.10) and (4.12), and from (4.14), we have

lim
n→∞

z(n) = +∞,

which is a contradiction to the assumption and so (4.15) holds. Thus we have z(n) > 0. eventually. Set

y(n) = z(n) + p(n + ρ)z(n + τ) (4.17)

where ρ = max1≤i≤m ρi. Then

∆y(n) =
m

∑
i=1

hi(n)x(n + ρi) + p(n + ρ)
m

∑
i=1

hi(n + τ)x(n + τ + ρi)

≥
m

∑
i=1

hi(n)z(n + ρi) ≥ 0. (4.18)

This shows that {y(n)} is an increasing sequence. By repeating the steps followed in the Theorem 4.1, we can
easily show that y(n) > 0, eventually.

Again from (4.17), we have
y(n)

1 + p(n + ρ)
≤ z(n + τ)

or
y(n− τ + ρi)

1 + p(n− τ + ρ + ρi)
≤ z(n + ρi). (4.19)

Using (4.19) in (4.18), we obtain

∆y(n)−
m

∑
i=1

(
hi(n)

1 + p(n− τ + ρ + ρi)

)
y(n− τ + ρi) ≥ 0; (4.20)

But in view of (4.11) and the Lemma 2.4, the advanced difference inequality (4.20) cannot have an eventually
positive solution. This is a contradiction and this completes the proof.

Theorem 4.3. Assume that ∆p(n) ≥ 0. Suppose that

(i) there exist a positive integer l ≤ k and a partition of the set {1, 2, ..., m} into l disjoint subsets I1, I2, ..., Il such
that i ∈ Ij implies ρj > σj;

(ii) aj(n) = rj(n)− ∑i∈Ij
qi(n + ρj − σi) ≥ 0 for j = 1, 2, ..., l and are not identically zero and aj(n) = rj(n) for

j = l + 1, ..., k;

(iii) ρj > τ for j = 1, 2, ...k;

(iv) aj(n) ≥ aj(n + τ) for j = 1, 2, ..., k.

Suppose further that
∞

∑
n=0

k

∑
j=1

lim inf
n→∞

aj(n) > 1 (4.21)

and
(ρ
′ − τ)ρ

′−τ

(ρ′ − τ − 1)ρ
′−τ−1

k

∑
j=1

lim inf
n→∞

(
aj(n)

1 + p(n− τ + ρ− ρj)

)
> 1 (4.22)

where ρ
′
= min1≤j≤k ρj and ρ = max1≤j≤k ρj.

Then every solution {x(n)} of (1.2) is either oscillatory or lim infn→∞ x(n) = 0.
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Proof. On the contrary, without loss of generality that we may suppose that {x(n)} is an eventually positive
solution such that

lim inf
n→∞

x(n) > 0. (4.23)

Set

z(n) = x(n) + p(n)x(n− τ)−
l

∑
j=1

∑
i∈Ij

n+ρj−σi−1

∑
s=n

qi(s)x(s + σi). (4.24)

Then from (1.2) and (4.24), we have

∆z(n) = −
m

∑
i=1

qi(n)x(n + σi) +
k

∑
j=1

rj(n)x(n + ρj)

−
l

∑
j=1

∑
i∈Ij

(
qi(n + ρj − σi)x(n + ρj)− qi(n)x(n + σi)

)
=

l

∑
j=1

rj(n)x(n + ρj)−
l

∑
j=1

∑
i∈Ij

qi(n + ρj − σi)x(n + ρj)

+
k

∑
j=l+1

rj(n)x(n + ρj)

or

∆z(n) =
k

∑
j=1

aj(n)x(n + ρj) ≥ 0. (4.25)

This shows that {z(n)} is an increasing sequence. In view of (4.21) and (4.23) and from (4.25), we obtain
z(n)→ +∞ as n→ ∞. Since {z(n)} increases to +∞. We have z(n) > 0, eventually.

Set
y(n) = z(n) + p(n + ρ)z(n + τ), (4.26)

where ρ = max1≤j≤k ρj. Then

∆y(n) ≥ ∆z(n) + p(n + ρ)∆z(n + τ)

=
k

∑
j=1

aj(n)x(n + ρj) + p(n + ρ)
k

∑
j=1

aj(n + τ)x(n + τ + ρj)

or

∆y(n) ≥
k

∑
j=1

aj(n)z(n + ρj) ≥ 0. (4.27)

Since {y(n)} is increasing, z(n) → ∞ as n → ∞ and z(n) > 0 eventually, we can easily show from (4.27), that
y(n)→ ∞ as n→ ∞ and consequently y(n) > 0, eventually.

From (4.26), we have
y(n)

1 + p(n + ρ)
≤ z(n + τ)

or
y(n− τ + ρj)

1 + p(n + ρ− τ + ρj)
≤ z(n + ρj). (4.28)

Using (4.28) in (4.27), we have

∆y(n)−
k

∑
j=1

(
aj(n)

1 + p(n− τ + ρj + ρ)

)
y(n + ρj − τ) ≥ 0. (4.29)

This shows that the difference inequality (4.29) has an eventually positive solution {y(n)}. On the other hand,
in view of (4.22) and Lemma 2.4, the advanced difference inequality (4.29) cannot have an eventually positive
solution, which leads to a contradiction. This completes the proof.

Conclusion: We presents sufficient conditions for oscillation of all solutions of first order neutral delay
and advanced difference equations with positive and negative variable coefficients. Our results improves the
earlier results in the literature.
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