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Abstract

In this article, the asymptotic behavior of oscillatory solutions of a class of first order neutral delay
difference equations with variable co-efficients and constant delays is investigated. We established a
sufficient conditions of the equations under consideration approach zero as the independent variable tends
to infinity.
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1 Introduction

We consider the first order neutral delay difference equation with variable co-efficients of the form

∆[x(n)− p(n)x(n− τ)]− q(n)x(n− σ) = 0; n ≥ n0; (1)

where {p(n)}, {q(n)} are sequences of real numbers, τ and σ are positive integers with τ > σ and ∆ is the
forward difference operator defined by the equation

∆x(n) = x(n + 1)− x(n).

In the oscillation theory of difference equations one of the important problems is to find sufficient
conditions in order that all oscillatory solutions of (1) tends to zero as n → ∞. Considerably less is known
about the behavior of oscillatory solutions to first order neutral delay difference equations with variable
co-efficients. We choose to refer to the papers [9,10,13].

By a solutions of equation (1), we mean a real sequence {x(n)} which is defined for n ≥ n0 −max {τ, σ}
and satisfies equation (1) for all n ∈ N(n0) = {n0, n0 + 1, n0 + 2, ...}. A non trivial solution of equation
(1) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is called
nonoscillatory.

Philos et al. [7] consider the first order neutral delay differential equation

[x(t)− p(t)x(t− σ)]
′
= φ(t)x(t− τ), t ≥ t0 (1′)

and obtained sufficient conditions for all solutions of the equation (1′) to tend to zero as t→ ∞.
The purpose of the present paper is to obtain sufficient conditions for all oscillatory solutions of (1) tend

to zero as n → ∞. Our obtained results are discrete analogues of some well known results due to [7]. With
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respect to the oscillation and asymptotic behavior of difference equation, reader can refer to [3-6, 8-14]. For
the several background in difference equation, one can refer to [1,2].

Throughout this paper, we define N(a) = {a, a + 1, a + 2, ...} and N(a, b) = {a, a + 1, a + 2, ...b} where a
and b are integers with a ≤ b.

The following conditions are assumed to be hold throughout the paper.

(C1) {p(n)} is a sequence of nonnegative real numbers,

(C2) {q(n)} is a sequence of positive real numbers,

(C3) τ and σ are positive integers such that τ > σ.

In section 2, we shall state and prove some lemmas, which play a crucial role in proving our theorem.

2 Some Lemmas

Lemma 2.1. Assume that {p(n)} is a sequence of nonnegative real numbers and 0 ≤ p(n) ≤ p < 1. Assume also that
{q(n)} is a sequence of positive real numbers. Then every oscillatory solution of the neutral delay difference equation (1)
which is eventually of one sign (ie, it is either eventually nonnegative or eventually non positive), tends to zero at ∞.

Proof. Without loss of generality, we suppose that {x(n)} is an oscillatory solution of (1) which is eventually
nonnegative. We observe that, if {x(n)} is eventually identically zero, then it tends to zero at ∞. So, we
assume that {x(n)} is not eventually identically zero. Set

z(n) = x(n)− p(n)x(n− z). (2)

By taking into account (2) and the fact that {x(n)} is nonnegative, from (1) we conclude that {∆z(n)} is
eventually nonnegative and {∆z(n)} is not eventually identically zero. They {z(n)} is increasing on N(n1)

where n1 ≥ n0 such that x(n) ≥ 0, n ≥ n1 − τ and it is not eventually identically zero. This guarantees that
{z(n)} is either negative eventually positive or eventually negative. Assume that {z(n)} is eventually positive
i.e. {z(n)} is positive on N(n2) when n2 ≥ n1. Since {x(n)} is oscillatory, there exists an integer ξ ≥ n2 with
x(ξ) = 0 then

0 < z(ξ) = x(ξ)− p(ξ)x(ξ − τ) (3)

= −p(ξ)x(ξ − z)

consequently p(ξ)x(ξ − z) < 0.
Hence given {p(n)} is assume to nonnegative on N(n0), it follows immediately that x(ξ − z) < 0. This

contradicts the fact that {x(n)} is nonnegative on N(n1). This contradiction establishes that {z(n)} is always
eventually negative on N(n1).

Therefore
z(n) = x(n)− p(n)x(n− τ) < 0, n ≥ n1

and so we have
x(n) < p(n)x(n− τ). (4)

Let us suppose that {x(n)} is unbounded. Then as {x(n)} is nonnegative on N(n1 − τ). We can consider
a sequence of integers {mk} with n1 ≤ m0 < m1 < m2 < ... and limk→∞ mk = ∞ k = 0, 1, ... such that

max
n∈N(n1−τ,mk)

x(n) = x(mk) > 0 (k = 0, 1, 2, 3, ...)

and limk→∞ x(mk) = ∞.
Then by taking into account that {p(n)} is nonnegative on N(n0) and using (4) and 0 ≤ p(n) ≤ p < 1, we

obtain

0 < x(m0) < p(m0)x(m0) ≤ px(m0).
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That is, 0 < x(m0) < px(m0). As 0 ≤ m < 1, this is a contradiction, which shows that {x(n)} is necessary
bounded on N(n1 − τ). Hence there exists a positive real constant k such that

0 ≤ x(n) < K f or all n ∈ N(n1 − τ). (5)

Now, we take into account the hypothesis that {p(n)} is nonnegative on N(n0) and we use (4) and (5) to
obtain to n ≥ n1.

0 ≤ x(n) < p(n)x(n− τ) ≤ pK, f or all n ∈ N(n1).

Finally, by an easily induction, we can prove that

0 ≤ x(n) < piK f or all n ∈ N(n1 + (i− 1)τ), (i = 0, 1, 2, 3, ...) (6)

But, as 0 ≤ p < 1 we have
lim
i→∞

pi = 0

Hence it follows easily from (6) that
lim

n→∞
x(n) = 0

The proof of the lemma is finished.

Lemma 2.2. Assume that {p(n)} is a sequence of nonnegative real numbers on N(n0) and {q(n)} is a sequence of
positive real numbers on N(n0). Let {x(n)} be an oscillatory solution of the neutral delay difference equation (1) and
let n̄ be an integer with n̄ > n0. If

x(n̄) > 0 and z(n̄) > 0, (7)

then either x(ξ) ≤ 0 or z(ξ) ≤ 0 for at least one ξ ∈ N(n̄ + 1, n̄ + τ − 1).

Proof. First of all, we will prove the following claim.
Claim: Let n1 ≥ n0. If both x(n) and z(n) are positive on N(n1, n1 + τ), then x(n) and z(n) are also

positive on N(n1 + τ, n1 + τ + σ). In order to establish our claim, we assume that x(n) > 0 and z(n) > 0
for all n ∈ N(n1, n1 + τ). So, we have x(n − σ) > 0, for all n ∈ N(n1 + σ, n1 + τ + σ). From this and (3),
we concluded that ∆z(n) > 0 for all n ∈ N(n1 + σ, n1 + τ + σ). This guarantees that {z(n)} is increasing on
N(n1 + σ, n1 + τ + σ) which together with the facts that N(n1 + τ, n1 + τ + σ) ⊂ N(n1 + σ, n1 + τ + σ) and
z(n1 + σ) > 0 implies that {z(n)} is always positve on N(n1 + τ, n1 + τ + σ). We see that x(n− τ) > 0 on
N(n1 + τ, n1 + τ + σ). Hence, by taking into account the fact that {z(n)} is positive on N(n1 + τ, n1 + τ + σ)

and using the assumption that {p(n)} is nonnegative on N(n0), we obtain, for every n ∈ N(n1 + τ, n1 + τ + σ)

x(n) = z(N) + p(n)x(n− τ) > p(n)x(n− τ) ≥ 0.

This implies that {x(n)} is always positive on N(n1 + τ, n1 + τ + σ) and completes the proof of our claim.

Now, let us suppose that (7) holds.
We will show that either

x(ξ) ≤ 0 or z(ξ) ≤ 0 f or atleast one ξ ∈ N(n̄ + 1, n̄ + τ − 1) (8)

If (8) is not true, then x(n) > 0 and z(n) > 0 for every n ∈ N(n̄ + 1, n̄ + τ − 1). So, because of (6), both
{x(n)} and {z(n)} must be positive on N(n̄, n̄ + τ − 1). By our claim, {x(n)} and {z(n)} are also positive on
N(n̄ + τ − 1, n̄ + τ + σ− 1). Consequently, {x(n)} and {z(n)} are positive on N(n̄, n̄ + τ + σ− 1). By using
again our claim (with n1 = n̄+ σ− 1), we see that {x(n)} and {z(n)} are also positive on N(n̄+ τ + σ− 1, n̄+

τ + 2σ− 1). Thus, {x(n)} and {z(n)} are positive on N(n̄, n̄ + τ + 2σ− 1). Following the procedure, we can
conclude that, for any nonnegative integer k, both {x(n)} and {z(n)} are positive on N(n̄, n̄ + τ + kσ − 1).
This guarantees that {x(n)} and {z(n)} are positive on N(n̄). But, the fact that {x(n)} is positive on N(n̄)
contradictory the oscillatory character of {x(n)}. So (8) has been proved.

Lemma 2.3. Let 0 ≤ p(n) ≤ p < 1 and { f (n)} be an unbounded sequence of real numbers on N(n0 − τ). We define

g(n) = f (n)− p(n) f (n− τ), n ≥ n0.
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Then the sequence {g(n)} is also unbounded. Moreover, there exists m0 ≥ n0, such that for any m ≥ m0, the following
statement is true:

If
|g(n)| ≤ |g(m)| , f or every n ∈ N(m0, m), (9)

then

| f (n)| ≤ 1
1− p

|g(m)| f or all n ∈ N(n0 − τ, m) (10)

Proof. The hypothesis that { f (n)} is unbounded guarantees the existence of a sequence of integer {mk}k=0,1,...
with n0 ≤ m0 < m1 < ... and limk→∞ mk = ∞ such that

max
n∈N(n0−τ,mk)

| f (n)| = | f (mk)| , (k = 0, 1, 2, 3, ...) (11)

and
lim
k→∞
|mk| = ∞. (12)

By taking into account, the assumption that {p(n)} is nonnegative on N(n0) and using 0 ≤ p(n) ≤ p < 1 and
(11) we obtain for k = 0, 1, 2, ...

|g(mk)| = | f (mk)− p(mk) f (mk − τ)|
≥ | f (mk)| − p(mk) | f (mk − τ)|
≥ | f (mk)| − p | f (mk)|

Hence, we have
|g(mk)| ≥ (1− p) | f (mk)| , (k = 0, 1, 2, ...)

So in view of (12) and because of the fact that 1− p > 0, it follows that

lim
k→∞
|g(mk)| = ∞.

This guarantees that |g(n)| is necessary unbounded.
Now, let m be an arbitrary point with m ≥ m0, and assume that (9) is satisfied. As {p(n)} is assume to be

nonnegative on N(n0), we can use (9) and 0 ≤ p(n) ≤ p < 1 to obtain, for n ∈ N(m0, m),

|g(m)| ≥ |g(n)| = | f (n)− p(n) f (n− τ)|
≥ | f (n)| − p | f (n− τ)|
≥ | f (n)| − p max

s∈N(n0−τ,m)
| f (s)| .

Thus,
|g(m)| ≥ max

n∈N(m0,m)
| f (n)| − p max

n∈N(n0−τ,m)
| f (n)| , n ∈ N(n0 − τ, m). (13)

On the otherhand, by using (11) with k = 0, we can immediately see that

max
n∈N(m0,m)

| f (n)| = max
n∈N(n0−τ,m)

| f (n)| ,

Hence (13), yields
|g(m)| ≥ (1− p) max

n∈N(n0−τ,m)
| f (n)| .

So since 1− p > 0, we have

max
n∈N(n0−τ,m)

| f (n)| ≤ 1
1− p

|g(m)| .

The proof of the lemma is now complete.
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3 Main Results

Theorem 3.1. Assume that
0 ≤ p(n) ≤ p <

1
2

. (14)

If

lim sup
n→∞

n+τ−1

∑
s=n

q(s) < 2(1− 2p) (15)

then every oscillatory solution of equation (1) tends to zero as n→ ∞.

Proof. Let {x(n)} be an oscillatory solution of (1). First it will be shown that the solution {x(n)} is bounded.
Next, by the use of the boundedness of {x(n)}, we shall prove that the solution {x(n)} tend to zero as n→ ∞.

Suppose, that the sake of contradiction, that the solution {x(n)} is unbounded. We see that condition (15)
implies, in particular, that

n+τ−1

∑
s=n

q(s) < 2(1− 2p) f or all n

and consequently there exists an integer n1 ≥ n0 such that

n+τ−1

∑
s=n

q(n) < 2(1− 2p) f or every n ≥ n1. (16)

By taking into account the fact that {p(n)} is nonnegative on N(n0) and that (14) holds and using the fact
that {x(n)} is unbounded, we can apply Lemma 2.3 to conclude that the sequence {z(n)} is also unbounded,
where z(n) is defined by (2). Moreover, there exists a m0 ≥ n0 such that, for any m ≥ m0, the following
statements is true.

If
|z(n)| ≤ |z(m)| f or every n ∈ N(m0, m), (17)

then
|x(n)| ≤ 1

1− p
|z(m)| f or all n ∈ N(n0 − τ, m). (18)

Also, as {x(n)} is unbounded, it is obvious that {x(n)} does not tend to zero at n→ ∞.
In view of Lemma 2.1, {x(n)} cannot be eventually of one sign, i.e., it is neither eventually nonnegative

nor eventually nonpositive. This means that {x(n)} changes sign for arbitrarly large values of n. So, in view
of (1) and (2), the sequence {∆z(n)} changes sign for arbitrarly large values of n and consequently {z(n)}
cannot be eventually monotone. From this fact and the unboundness of {z(n)} we conclude that there exists
an integer m ≥ max {n1 + σ, m0, n0 + τ} with z(m) 6= 0 such that

z(m)∆z(m) ≤ 0 (19)

and
|z(n)| ≤ |z(m)| f or every n ∈ N(n0, m). (20)

We observe that m ≥ m0 and that (20) implies (17). Hence (18) holds true. Furthermore, we see that {−x(n)}
is also an oscillatory solution of (1), which is unbounded, and that

−z(n) = −x(n) + p(n)x(n− τ) f or n ≥ n0.

Thus, as z(m) 6= 0, we may (and do) assume that

z(m) > 0. (21)

So (18) becomes

|x(n)| ≤ 1
1− p

z(m) f or all n ∈ N(n0 − τ, m). (22)

Now, we will show that
x(m) > 0.
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Assume, for the sake of contradiction, that x(m) ≤ 0. As m ≥ n0 + τ, we have n0 ≤ m− τ < m. Consequently,
(22) susures that

|x(m− τ)| ≤ 1
1− p

z(m).

By using this inequality as well as (21) and taking into account the fact that {p(n)} is nonnegative on N(n0),
we obtain

0 < z(m) = x(m)− p(m)x(m− τ)

≤ −p(m)x(m− τ)

≤ p(m) |x(m− τ)|

≤ p
1

1− p
z(m)

and consequently

1 ≤ p
1− p

, i.e. p ≥ 1
2

.

This contradiction proves that x(m) ≤ 0. In view of (19) and (21), we have

∆z(m) ≤ 0.

Prove this and (1), we have x(m− σ) ≤ 0. Note that m− σ ≥ n1. Let us denote the integer ξ1 less then m such
that x(ξ1)z(ξ1) ≤ 0 and

x(n) > 0 and z(n) > 0 f or every n ∈ N(ξ1 + 1, m).

It is obvious that m− σ ≤ ξ1 ≤ m− 1. Since {x(n)} is oscillatory, then there exists an integers ξ2 > m such
that

x(ξ2)z(ξ2) ≤ 0

and
x(n) > 0 and z(n) > 0, f or every n ∈ N(m, ξ2 − 1).

We note that x(n) > 0 and z(n) > 0 as N(ξ1 + 1, ξ2 − 1).
We shall establish the following inequality

2z(m) ≤
{

2p +
ξ1+τ−1

∑
n=ξ1

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| . (23)

Inequality (23) is an immediate consequence of the next inequalities:

z(m) ≤
{

p +
m−1

∑
n=ξ1

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| (24)

and

z(m) ≤
{

p +
ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(n−2τ,m−1)
|x(n)| . (25)

So, we will prove that (24) and (25) hold.
Proof of inequality (24). We see that (1) and (2) gives

z(m) = z(ξ1) +
m−1

∑
n=ξ1

q(n)x(n− σ) (26)

First, let us assume that z(ξ1) ≤ 0. Then from (26) we obtain

z(m) ≤
m−1

∑
n=ξ1

q(n)x(n− σ) ≤
m−1

∑
n=ξ1

q(n) |x(n− σ)| .
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As m− σ ≤ ξ1 ≤ m− 1, we have

m− 2τ ≤ m− 2σ ≤ ξ1 − σ ≤ m− σ− 1 < m− 1.

Hence n− σ ∈ N(m− 2τ, m− 1) whenever n ∈ N(ξ1, m− 1). So, we get

z(m) ≤
{

m−1

∑
n=ξ1

q(n)

}
max

n∈N(n−2τ,m−1)
|x(n)|

which, as p ≥ 0, implies (24), Next, we assume that x(ξ1) ≤ 0. Then from (26), we obtain

z(m) = x(ξ1)− p(ξ1)x(ξ1 − τ) +
m−1

∑
n=ξ1

q(n)x(n− σ)

≤ −p(ξ1)x(ξ1 − τ) +
m−1

∑
n=ξ1

q(n)x(n− σ)

≤ p(ξ1) |x(ξ1 − τ|+
m−1

∑
n=ξ1

q(n) |x(n− σ)| .

But, as m− σ ≤ ξ1 ≤ m− 1, we have

m− 2τ ≤ m− τ − σ ≤ ξ1 − τ ≤ ξ1 − σ ≤ m− 1− σ < m− 1

or
m− 2τ ≤ m− σ− τ ≤ ξ1 − τ ≤ ξ1 − σ ≤ m− 1− σ < m− 1.

Thus,
|x(ξ1 − τ)| ≤ max

n∈N(m−2τ,m−1)
|x(n)| .

Also as we have previously seen,

n− σ ∈ N(m− 2τ, m− 1) whenever n ∈ N(ξ1, m− 1).

Thus the last inequality becomes

z(m) ≤ p max
n∈N(m−2τ,m−1)

|x(n)|+
{

m−1

∑
n=ξ1

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| .

Consequently (24) is fulfilled. The proof of (24) is finished.

Proof of inequality (25)
We distinguish between two cases: Either ξ2 > ξ1 + τ, or ξ2 ≤ ξ1 + τ.
Case 1: ξ2 > ξ1 + τ. Then there is an integer n̄ with ξ1 < n̄ < ξ2 − τ such that x(n̄) > 0 and z(n̄) > 0.

So by Lemma 2, either x(ξ) ≤ 0 or z(ξ) ≤ 0 for atleast one ξ ∈ N(n̄ + 1, n̄ + τ − 1). Since ξ1 < n̄ < ξ <

n̄ + τ − k < ξ2. This is a contradiction to the fact that both x(n) > 0 and z(n) > 0 on N(ξ1 + 1, ξ2 − 1)
Case 2: ξ2 ≤ ξ1 + τ. From (1) and (2), we have

z(m) = z(ξ2)−
ξ2−1

∑
n=m

q(n)x(n− σ). (27)

We examine the two subcases, where either ξ2 ≤ m + σ or ξ2 > m + σ.
Subcase 2.1 ξ2 ≤ m + σ. Suppose first that z(ξ2) ≤ 0 Then from (26),

z(m) = −
ξ2−1

∑
n=m

q(n)x(n− σ)

≤
ξ2−1

∑
n=m

q(n) |x(n− σ)| .
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We observe that

m− τ ≤ m− σ ≤ n− σ ≤ ξ2 − 1− σ ≤ m− 1.

So, n− σ ∈ N(m− τ, m− 1) whenever n ∈ N(m, ξ2 − 1). Hence from the above inequality, we obtain

z(m) ≤
{

ξ2−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)| .

Consequently, as p ≥ 0 inequality (25) is always fulfilled. Next, let us suppose that x(ξ2) ≤ 0. Then from (1)
and (2), we have

z(m) = [x(ξ2)− p(ξ2)x(ξ2 − τ)]−
ξ2−1

∑
n=m

q(n)x(n− σ)

≤ −p(ξ2)x(ξ2 − τ)−
ξ2−1

∑
n=m

q(n)x(n− σ)

≤ p(ξ2) |x(ξ2 − τ)|+
ξ2−1

∑
n=m

q(n) |x(n− σ)|

≤ p |x(ξ2 − τ)|+
ξ2−1

∑
n=m

q(n) |x(n− σ)| .

But, m− τ < ξ2 − τ ≤ (m + σ)− (σ + 1) = m− 1. Also, as we have seen above, we have n− σ ∈ N(m−
τ, m− 1) whenever n ∈ N(m, ξ2 − 1). From these, we obtain

z(m) ≤ p max
n∈N(m−τ,m−1)

|x(n)|+
(

ξ2−1

∑
n=m

q(n)

)
max

n∈N(m−τ,m−1)
|x(n)|

≤ p max
n∈N(m−τ,m−1)

|x(n)|+
[

ξ1+τ−1

∑
n=m

q(n)

]
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

p +
ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−2τ,m−1)
|x(n)| .

So (25) holds true

Subcase 2.2: ξ2 > m + σ. First, let z(ξ2) ≤ 0. Then (27) is written as

z(m) ≤ −
ξ2−1

∑
n=m

q(n)x(n− σ). (28)

If n ∈ N(m + σ, ξ2 − 1), then ξ1 < m ≤ n− σ ≤ ξ2 − 1− σ ≤ ξ2 − 1. Consequently, n− σ ∈ N(ξ1 + 1, ξ2 − 1).
So we have x(n− σ) > 0 for every n ∈ N(m + σ, ξ2 − 1). Hence, it follows from (26), that

z(m) ≤ −
m+σ−1

∑
n=m

q(n)x(n− σ)−
ξ2−1

∑
n=m+σ

q(n)x(n− σ)

< −
m+σ−1

∑
n=m

q(n)x(n− σ)

≤
m+σ−1

∑
n=m

q(n) |x(n− σ)| .
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But, for any n ∈ N(m, m + σ− 1), it holds m− τ ≤ m− σ− 1 ≤ n− σ− 1 ≤ m− 1. Thus, we derive

z(m) ≤
{

m+σ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

ξ2−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)| ,

which, as p ≥ 0, guarantees that (25) holds true. Next, let x(ξ2) ≤ 0. Then (27) becomes,

z(m) ≤ −p(ξ2)x(ξ2 − τ)−
ξ2−1

∑
n=m

q(n)x(n− σ). (29)

As above, n − σ ∈ N(ξ1 + 1, ξ2 − 1) for every N ∈ N(m + σ, ξ2 − 1). Consequently x(n − σ) > 0 for each
n ∈ N(m− σ, ξ2 − 1). We notice that ξ2 − τ ≤ ξ1 < m < ξ2 − σ. If n ∈ N(m, ξ2 − σ), then from (29), we get

z(m) ≤ −p(ξ2)x(ξ2 − τ)−
m+σ−1

∑
n=m

q(n)x(n− σ)−
ξ2−1

∑
n=m+σ

q(n)x(n− σ)

≤ −p(ξ2)x(ξ2 − τ)−
m+σ−1

∑
n=m

q(n)x(n− σ)

z(m) ≤ p |x(ξ2 − τ)|+
m+σ−1

∑
n=m

q(n) |x(n− σ)|

But m − τ < ξ2 − τ ≤ ξ1 < m. Moreover, as before, we have [n− σ ∈ N(m− τ, m− 1)], for every n ∈
N(m, m + σ− 1). Thus, we obtain

z(m) ≤ p max
n∈N(m−τ,m−1)

|x(n)|+
{

ξ2−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)|

≤
{

p +
ξ1+τ−1

∑
n=m

q(n)

}
max

n∈N(m−τ,m−1)
|x(n)| .

So inequality (25) is always satisfied.
Now, we will make use of inequality (23), which has been already established, to arrive at a contradiction.

Since m is choose so that m ≥ n0 + τ, we have m− 2τ ≥ n0 − τ and consequently from (22) in particular that

|x(n)| ≤ 1
1− p

z(m) f or all n ∈ N(m− 2τ, m).

This can equivalently be written as

max
n∈N(m−2τ,m)

|x(n)| ≤ 1
1− p

z(m)

and so inequality (23) yields

2z(m) ≤
{

2p +
ξ1+τ−1

∑
n=ξ1

q(n)

}
1

1− p
|z(m)| .

Thus, in view of (21), we have

2 ≤
{

2p +
ξ1+τ−1

∑
n=ξ1

q(n)

}
1

1− p

i.e.,
ξ1+τ−1

∑
n=ξ1

q(n) ≥ 2(1− 2p)
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As ξ1 ≥ m− σ ≥ n1 the last inequality contradicts (16). This contradiction finishes the proof of the fact that
the solution {x(n)} is bounded.

The proof of the theorem will be accomplished by proving that the solution {x(n)} tends to zero as n→ ∞.
To this end, we will make use of the fact that the solution {x(n)} is always bounded.

Suppose, for the sake of contradiction, that {x(n)} does not tend to zero as n→ ∞, and define

µ = lim sup
n→∞

|x(n)| .

It is obvious that 0 < µ < ∞. Moreover, we put

λ = lim sup
n→∞

|z(n)| .

Now, for n ≥ n0

|z(n)| = |x(n)− p(n)x(n− τ)|
≤ |x(n)|+ p |x(n− τ)|
≤ |x(n)|+ m |x(n− τ)| .

So, as {x(n)} is bounded, it follows that {z(n)} is also bounded. Consequently λ must be finite. Furthermore,
it holds.

λ ≥ µ(1− p), (30)

which guarantees, in particular that λ > 0. In fact, let ∈ be an arbitrary positive real number. From the
definition of µ it follows that, for some point n∈ ≥ n0 − τ, we have

|x(n)| ≤ µ+ ∈ f or every n ≥ n∈. (31)

Hence by using (31) we obtain for each n ≥ n∈ + τ

|z(n)| = |x(n)− p(n)x(n− τ)|
≥ |x(n)| − p |x(n− τ)|
≥ |x(n)| −m(µ+ ∈).

Consequently,
lim sup

n→∞
|z(n)| ≥ lim sup

n→∞
|x(n)| − p(µ+ ∈)

i.e.,
λ ≥ µ−m(µ+ ∈).

This inequality holds true for all real numbers ∈> 0 and so (30) is always satisfied.
Since the solution {x(n)} is not eventually of one sign, i.e., it changes sign for arbitrarly large values of

n. Thus the sequence {∆z(n)} changes sign for arbitrarly large values of n, which ensures that {z(n)} is not
monotone. By this fact and fact that λ > 0. we conclude that there exists a sequence of integers {mk}∞

k=1 with
n0 ≤ m1 < m2 < ... and limk→∞ mk = ∞ such that z(mk) 6= 0 (k = 1, 2, ...) and

z(mk)∆z(mk) ≤ 0 (32)

and
lim

n→∞
|z(mk)| = λ. (33)

We remark that the sequence {mk}∞
k=1 can be chosen so that either z(mk) > 0 for all k = 1, 2, ... or z(mk) < 0

for all n = 1, 2, 3, .... We see that

−z(n) = −x(n) + p(n)x(n− τ) f or n ≥ n0

and that
lim sup

n→∞
|−z(n)| = λ.
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Also, it is obvious that {−x(n)} is a bounded oscillatory solution of (1), which does not tend to zero as n→ ∞.
After there observations, we may (and do) restrict ourselves only to the case where

z(mk) > 0 (k = 1, 2, 3, ...) (34)

In view of (34), equality (33) becomes
lim

n→∞
z(mk) = λ. (35)

It is clear that we have either x(mk) = 0 for infinitely many k ∈ {1, 2, 3, ...} or x(mk) 6= 0. So, we examine
separately the following two cases:

Case I: x(mk) ≤ 0 for infinitely many k ∈ {1, 2, 3, ...}. Let
{

mki

}∞
i=1 be a sub sequence of {mk}∞

k=1 such that

x(mki
) ≤ 0 (i = 1, 2, 3, ...). (36)

Clearly, limn→∞ mki
= ∞. It follows from (32) (34) and (35) that

∆z(mki
) ≤ 0 (i = 1, 2, 3, ...), (37)

z(mki
) > 0 (i = 1, 2, 3, ...) (38)

and
lim
i→∞

z(mki
) = λ, respectively. (39)

By (37), (1) and (2), we have
q(mki

)x(mki
− σ) ≤ 0 (i = 1, 2, 3, ...).

Consequently, we get
x(mki

− σ) ≤ 0 (i = 1, 2, 3, ...). (40)

Using (2), (36) and (38) we obtain for i = 1, 2, 3, ...

0 < z(mki
) = x(mki

)− p(mki
)x(mki

− τ)

≤ −p(mki
)x(mki

− τ)

≤ p
∣∣x(mki

− τ)
∣∣

≤ p max
n∈N(mki

−τ,mki
−1)
|x(n)| .

We consider an integer j ∈ {1, 2, 3, ...} such that mki
≥ τ. Then we obviously have mki

≥ τ for all i ≥ j, so, it
holds

z(mki
) ≤ m max

n∈N(mki
−2τ,mki

−1)
|x(n)| , f or i ≥ j. (41)

Next using (1), (2) and (40) we obtain, for i ≥ j,

z(mki
) = z(mki

− τ) +

mki
−1

∑
n=mk−τ

q(n)x(n− σ)

=
[
x(mki

− τ)− p(mki
− τ)x(mki

− 2τ)
]
+

mki
−1

∑
n=mki

−τ

q(n)x(n− σ)

≤ −p(mki
− τ)x(mki

− 2τ) +

mki
−1

∑
n=mki

−τ

q(n)x(n− σ)

≤ p(mki
− τ)

∣∣x(mki
− 2τ)

∣∣+ mki
−1

∑
n=mki

−τ

q(n) |x(n− σ)|

≤ p max
n∈N(mki

−2τ,mki
−1)
|x(n)|+

 mki
−1

∑
n=mki

−τ

q(n)

 max
n∈N(mki

−2τ,mki
−1)
|x(n)| .
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Therefore,

z(mki
) ≤

p +

mki
−1

∑
n=mki

−τ

q(n)

 max
n∈N(mki

−2τ,mki
−1)
|x(n)| (42)

A combinations of (41) and (42) leads to

2z(mki
) ≤

2p +

mki
−1

∑
n=mki

−τ

q(n)

 max
n∈N(mki

−2τ,mki
−1)
|x(n)| f or i ≥ j. (43)

Let ∈< 0 be an arbitrary real numbers. In view of definition of µ, there exists an integer n∈ ≥ n0 − τ so that
(31) holds. Choose an integer l ≥ j such that mkl

≥ n∈ + 2τ. It is obvious that mki
≥ n∈ + 2τ for all integers

i ≥ l. It follows from (31) that

max
n∈N(mki

−2τ,mki
−1)
|x(n)| ≤ µ+ ∈ f or i ≥ l.

Hence, from (43) we get

2z(mki
) ≤ (µ+ ∈)

2p +

mki
−1

∑
n=mki

−τ

q(n)

 f or every i ≥ l,

which gives

2 lim
i→∞

z(mki
) ≤ (µ+ ∈)

2p + lim sup
i→∞

mki
−1

∑
n=mki

−τ

q(n)


≤ (µ+ ∈)

{
2p + lim sup

n→∞

n−1

∑
s=n−τ

q(s)

}

= (µ+ ∈)
{

2p + lim sup
n→∞

n+τ−1

∑
s=n

q(s)

}
.

So because of (39), we have

2λ ≤ (µ+ ∈)
{

2p + lim sup
n→∞

n+τ−1

∑
s=n

q(s)

}
. (44)

By combining (28) and (42), we obtain

2µ(1− p) ≤ (µ+ ∈)
{

2p + lim sup
n→∞

n+τ−1

∑
s=n

q(s)

}
.

As this inequality is satisfied for every real number ∈> 0, we always have

2µ(1− p) ≤ µ

{
2p + lim sup

n→∞

n+τ−1

∑
s=n

q(s)

}
.

Thus, since µ > 0, it holds

2(1− p) ≤ 2p + lim sup
n→∞

n+τ1

∑
s=n

q(s).

i.e.,

lim sup
n→∞

n+τ−1

∑
s=n

q(s) ≥ 2(1− 2p). (45)

Inequality (45) contradicts condition (15).
Case II: x(mk) > 0 for all large n. This means that there exists an integer r ∈ {1, 2, 3, ...} such that

x(mk) > 0 f or all k ≥ r. (46)
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It is clear that the integer r can be chosen to be arbitrary large; so it will be considered that mr ≥ n0 + τ. Then
we have mk ≥ n0 + τ for all k ≥ r.

Let as consider an arbitrary large k with k ≥ r. We observe that in view of (34) and (46) it holds x(mk) > 0
and z(mk) > 0.

Furthermore by (32) and (34), it holds ∆z(mk) ≤ 0. From this and (1), we have x(mk − σ) ≤ 0, where
mk − σ ≥ n0. Let ξ1

k be the integer with mk − σ ≤ ξ1
k ≤ mk such that either x(ξ1

k) ≤ 0 or z(ξ1
k) ≤ 0 and

x(n) > 0 and z(n) > 0 on N(ξ1
k + 1, mk).

On the otherhand, by the oscillatory character of {x(n)} we may find an integer ξ2
k with mk < ξ2

k such that
either x(ξ2

k) ≤ 0 of z(ξ2
k) ≤ 0 and x(n) > 0 and z(n) > 0 on N(mk, ξ2

k − 1). It follows that both x(n) > 0
and z(n) > 0 on N(ξ1

k , ξ2
k). Thus we have defined two sequence

{
ξ1

k
}

and
{

ξ2
k
}

of integers such that {x(n)}
and {z(n)} are positive on N(ξ1

k + 1, ξ2
k − 1). Since ξ1

k ≥ mk − σ for k ≥ r, we always have limk→∞ ξ1
k = ∞.

Following the same procedure as when establishing (23), we can prove that

2z(mk) ≤

2p +
ξ1

k+τ−1

∑
n=ξ1

k

q(n)

 max
n∈N(mk−2τ,mk−1)

|x(n)| f or k ≤ r. (47)

Consider an arbitrary real number ∈> 0 and let n∈ ≥ n0− τ be an integer such that (31) is satisfied. Moreover,
let l ≥ r, be an integer such that ml ≥ n∈ + 2τ. Then we obviously have mk ≥ n∈ + 2τ for every k ≥ l. So (31)
guarantees that

max
n∈N(mk−2τ,mk−1)

|x(n)| ≤ µ+ ∈ f or k ≥ l

Thus, from (47)we obtain

2z(mk) ≤ (µ+ ∈)

2p +
ξ1

k+τ−1

∑
n=ξ1

k

q(n)

 f or all k ≥ l.

Therefore,

2 lim
k→∞

z(mk) ≤ (µ+ ∈)

2p + lim sup
k→∞

ξ1
k+τ−1

∑
n=ξk

q(n)


≤ (µ+ ∈)

{
2p + lim sup

k→∞

n+τ−1

∑
s=n

q(n)

}
which because of (33), leads to (44). By the method used previously we can see that (45) is always satisfied.
But (45) contradicts condition (15).

In both Cases I and II we have arrived at a contradiction. This contradiction shows that the solution {x(n)}
tend to zero as n→ ∞.

The proof of the theorem is complete.
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