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Abstract

In this paper, we introduce and study the new separation axioms called g∗ωα-Ti (i= 0,1,2) and weaker
forms of regular and normal spaces called g∗ωα-normal and g∗ωα-regular spaces using g∗ωα-closed sets in
topological spaces.
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1 Introduction

General Topology plays an important role in many fields of applied sciences as well as branches of
mathematics. More importantly, generalized closed sets suggest some new separation axioms which have
been found to be very useful in the study of certain objects of digital topology.

Maheshwari and Prasad [7] introduced the new class of spaces called s-normal spaces using semi open
sets [4]. It was further studied by Noiri and Popa [6], Dorsett [2] and Arya [1]. Munshi [8] and R. Devi [3]
introduced g-regular and g-normal spaces and their properties in topological spaces. Recently, Patil P. G.
et. al. [9],[11] introduced and studied the concepts of g∗ωα-closed sets and g∗ωα-continuous functions in
topological spaces.

In this paper, we introduce new weaker forms of separation axioms called g∗ωα-T0, g∗ωα-T1, g∗ωα-T2
spaces and new class of spaces namely g∗ωα-regular and g∗ωα-normal spaces and their characterizations are
obtained.

2 Preliminary

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological spaces
on which no separation axioms are assumed unless explicitly stated.

For a subset A of a space X, the closure (resp. α-closure [5]) and interior (resp. α-interior) of A is denoted
by cl(A) (resp. α-cl(A)) and int(A) (resp. α-int(A)).

Definition 2.1. [9] A subset A of a topological space X is said to be a generalized star ωα-closed (briefly g∗ωα-closed)
if cl(A) ⊆ U whenever A ⊆ U and U is ωα-open in X.
The family of all g∗ωα-closed (resp.g∗ωα-open) subsets of a space X is denoted by G∗ωαC(X) (resp.G∗ωαO(X)).

Definition 2.2. [10] The intersection of all g∗ωα-closed sets containing a subset A of X is called g∗ωα-closure of A and
is denoted by g∗ωα-cl(A).
A set A is g∗ωα-closed if and only if g∗ωα-cl(A) = A.
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Definition 2.3. [10] The union of all g∗ωα-open sets contained in a subset A of X is called g∗ωα-interior of A and it is
denoted by g∗ωα-int(A).
A set A is called g∗ωα-open if and only if g∗ωα-int(A) = A.

Definition 2.4. A function f : X→ Y is called a
(i) g∗ωα-continuous[11] if f−1(V) is g∗ωα-closed in X for every closed set V in Y.
(ii) g∗ωα-irresolute[11] if f−1(V) is g∗ωα-closed in X for every g∗ωα-closed set V in Y.
(iii) g∗ωα-open[11] if f(V) is g∗ωα-open in Y for every open set V in X.
(iv) pre g∗ωα-open[11] if f(V) is g∗ωα-open set in Y for every g∗ωα-open set V in X.

Definition 2.5. [10] A topological space X is said to be a Tg∗ωα-space if every g∗ωα-closed set is closed.

3 g∗ωα-Separation Axioms

In this section, we introduce weaker forms of separation axioms such as g∗ωα-T0, g∗ωα-T1 and g∗ωα-T2
spaces and obtain their properties.

Definition 3.1. A topological space X is said to be a g∗ωα-T0 if for each pair of distinct points in X, there exists a
g∗ωα-open set containing one point but not other.

Example 3.2. Let X = {a, b, c} and τ = {X, φ, {a}}. Then the space (X, τ) is g∗ωα-T0 space.

Theorem 3.3. A space X is g∗ωα-T0 if and only if g∗ωα-closures of distinct points are distinct.
Proof: Let x, y ∈ X with x 6= y and X be g∗ωα-T0 space. Since, X is g∗ωα-T0, there exists g∗ωα-open set G such that
x ∈ G but y /∈ G. Also x /∈ X-G and y ∈ X-G where X-G is g∗ωα-closed in X. Since g∗ωα-cl({y}) is the intersection
of all g∗ωα-closed sets which contains y and hence y ∈ g∗ωα-cl({y}). But x /∈ g∗ωα-cl({y}) as x /∈ X-G. Therefore
g∗ωα-cl({x}) 6= g∗ωα-cl({ y }).
Conversely, suppose for any pair of distinct points x, y ∈ X, g∗ωα-cl({x}) 6= g∗ωα-cl({y}). Then, there exists at least
one point z ∈ X such that z ∈ g∗ωα-cl({x}) but z /∈ g∗ωα-cl({y}). We claim that x /∈ g∗ωα-cl({y}). If x ∈ g∗ωα-
cl({y}), then g∗ωα-cl({x}) ⊆ g∗ωα-cl({y}), so z ∈ g∗ωα-cl({y}) which is contradiction. Hence x /∈ g∗ωα-cl({y})
implies x ∈ X - g∗ωα-cl({y}), which is g∗ωα-open set in X containing x but not y. Hence X is g∗ωα-T0-space.

Theorem 3.4. Every subspace of a g∗ωα-T0 space is g∗ωα-T0 space.
Proof: Let y1, y2 be two distinct points of Y then y1 and y2 are also distinct points of X. Since X is g∗ωα-T0, there exists
g∗ωα-open set G such that y1 ∈ G, y2 /∈ G. Then G ∩ Y is g∗ωα-open set in Y containing y1 but not y2. Hence Y is
g∗ωα-T0-space.

Definition 3.5. [11] A mapping f : X→ Y is said to be a pre g∗ωα-open if the image of every g∗ωα-open set of X is
g∗ωα-open in Y.

Lemma 3.6. The property of a space being g∗ωα-T0 space is preserved under bijective and pre g∗ωα-open.
Proof: Let X be a g∗ωα-T0-space and f : X→ Y be bijective, pre g∗ωα-open. Let y1, y2 ∈ Y with y1 6= y2. Since f is
bijective, there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. Also, since X is g∗ωα-T0, there exists g∗ωα-open
set G in X such that x1 ∈ G but x2 /∈ G. Then f(G) is g∗ωα-open set containing f(x1) but not f(x2) as X is g∗ωα-open.
Thus, there exists g∗ωα-open set f(G) in Y such that y1 ∈ f(G) and y2 /∈ f(G). Hence Y is g∗ωα-T0 space.

Theorem 3.7. If G∗ωαO(X) is open under arbitrary union for a topological space X, then each of the following properties
are equivalent:
(a) X is g∗ωα-T0
(b) each one point set is g∗ωα-closed in X
(c) each subset of X is the intersection of all g∗ωα-open set containing it
(d) the intersection of all g∗ωα-open set containing the point x ∈ X is the set {x}.
Proof: (a)⇒ (b): Let x ∈ X and X be g∗ωα-T0 space. Then for any y ∈ X such that y 6= x, then there exists g∗ωα-open
set Gy containing y but not x. Therefore y ∈ Gy ⊆ {x}c. Now varying y over {x}c, we get {x}c = ∪{ Gy : y ∈ {x}c},
{x}c is union of g∗ωα-open set. That is {x} is g∗ωα-closed in X.
(b)⇒ (c): Let us assume that each one point set is g∗ωα-closed in X. If A ⊆ X, then for each point y /∈ A, there exists
{y}c such that A ⊆ {y}c and each of these sets {y}c is g∗ωα-open. Therefore A = Y ∩{{y}c : y ∈ Ac}. Thus the
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intersection of all g∗ωα-open sets containing A is the set A itself.
(c)⇒ (d): Obvious.
(d)⇒ (a): Let us assume that the intersection of all g∗ωα-open set containing the point x ∈ X is {x}. Let x, y ∈ X with
x 6= y. By hypothesis, there exists g∗ωα-open set Gx such that x ∈ Gx and y /∈ Gx. That is, X is g∗ωα-T0 space.

Theorem 3.8. If X is g∗ωα-T0, Tg∗ωα-space and Y is g∗ωα-closed subspace of X, then Y is g∗ωα-T0-space.

Theorem 3.9. If f : X→ Y is bijective, pre g∗ωα-open and X is g∗ωα-T0 space, then Y is also g∗ωα-T0 space.
Proof: Let y1 and y2 be two distinct points of Y. Then there exist x1 and x2 of X such that f(x1) = y1 and f(x2) = y2.
As X is g∗ωα-T0, there exists g∗ωα-open set G such that x1 ∈ G and x2 /∈ G. Therefore, y1 = f(x1) ∈ f(G), y2 = f(x2)
/∈ f(G). Then f(G) is g∗ωα-open in Y. Thus, there exists g∗ωα-open set f(G) in Y such that y1 ∈ f(G) and y2 /∈ f(G).
Therefore Y is g∗ωα-T0 space.

Definition 3.10. A topological space X is said to be a g∗ωα-T1 if for each pair of distinct points x, y in X, there exist a
pair of g∗ωα-open sets, one containing x but not y and the other containing y but not x.

Remark 3.11. Every T1-space is g∗ωα-T1-space.

Example 3.12. X = {a, b, c} and τ = {X, φ, {a}, {b, c}}. Then (X, τ) is g∗ωα-T1 space but not T1-space.

Remark 3.13. Every g∗ωα− T1 space is g∗ωα− T0 space.

Example 3.14. Let X = {a, b} and τ = {X, φ, {a}}. Then the space X is g∗ωα-T0 but not g∗ωα-T1 space.

Theorem 3.15. A space X is g∗ωα-T1 if and only if every singleton subset {x} of X is g∗ωα-closed in X.
Proof: Let x, y be two distinct points of X such that {x} and {y} are g∗ωα-closed. Then {x}c and {y}c are g∗ωα-open
in X such that y ∈ {x}c but x /∈ {x}c and x ∈ {y}c but y /∈ {y}c. Hence X is g∗ωα-T1-space.
Conversely, let x be any arbitrary point of X. If y ∈ {x}c, then y 6= x. Now the space being g∗ωα-T1 and y is different
from x, there must exists g∗ωα-open set Gy such that y ∈ Gy but x /∈ Gy. Thus for each y ∈ {x}c, there exists a g∗ωα-
open set Gy such that y ∈ Gy ⊆ {x}c. Therefore ∪{y : y 6=x} ⊆ ∪{ Gy : y 6=x} ⊆ {x}c which implies that {x}c ⊆ ∪{
Gy: y 6=x} ⊆ {x}c. Therefore {x}c = ∪{ Gy : y 6=x}. Since, Gy is g∗ωα-open set in X and the union of g∗ωα-open set
is again g∗ωα-open in X, so {x}c is g∗ωα-open in X. Hence {x} is g∗ωα-closed in X.

Corollary 3.16. A space X is g∗ωα-T1 if and only if every finite subset of X is g∗ωα-closed.

Theorem 3.17. Let f : X→ Y be bijective and g∗ωα-open. If X is g∗ωα-T1 and Tg∗ωα-space then, Y is g∗ωα-T1-space.
Proof: Let y1 and y2 be any two distinct points of Y. Since f is bijective, then there exist distinct points x1 and x2 of X
such that y1 = f (x1) and y2 = f (x2). Then there exist g∗ωα-open sets G and H such that x1 ∈ G, x2 /∈ G and x1 /∈ H,
x2 ∈ H. Therefore y1 = f (x1) ∈ f (G) but y2 = f (x2) /∈ f (G) and y2 = f (x2) ∈ f (H) and y1 = f (x1) /∈ f (H).
As X is Tg∗ωα-space, G and H are open sets in X and as f is g∗ωα-open, f(G) and f(H) are g∗ωα-open subsets of Y. Thus,
there exist g∗ωα-open sets such that y1 ∈ f (G), y2 /∈ f (G) and y2 ∈ f (H), y1 /∈ f (H). Hence Y is g∗ωα-T1-space.

Theorem 3.18. Let f : X→ Y be g∗ωα-irresolute and injective. If Y is g∗ωα-T1 then X is g∗ωα-T1.
Proof: Let x, y ∈ Y such that x 6= y. Then there exist g∗ωα-open sets U and V in Y such that f(x) ∈ U, f(y) ∈ V and
f(x) /∈ V, f(y) /∈ U. Then x ∈ f−1(U), y ∈ f−1(V) and x /∈ f−1(V), y /∈ f−1(U), since f is g∗ωα-irresolute. Hence X is
g∗ωα-T1 space.

Theorem 3.19. If f : X→ Y is g∗ωα-continuous, injective and Y is T1 then, X is g∗ωα-T1 space.
Proof: For any two distinct points x1 and x2 in X there exist disjoint points y1 and y2 of Y such that f(x1) = y1 and
f(x2) = y2. Since Y is T1, there exist open sets U and V in Y such that y1 ∈ U, y2 /∈ U and y1 /∈ V, y2 ∈ V. That is,
x1 ∈ f−1(U), x1 /∈ f−1(V) and x2 ∈ f−1(V), x2 /∈ f−1(U). Again, since f is g∗ωα-continuous, f−1(U) and f−1(V) are
g∗ωα-open sets in X. Thus, for two distinct points x1 and x2 of X, there exist g∗ωα-open sets f−1(U) and f−1(V) such
that x1 ∈ f−1(U), x1 /∈ f−1(V) and x2 ∈ f−1(V), x2 /∈ f−1(U). Therefore X is g∗ωα-T1 space.

Definition 3.20. A space X is said to be g∗ωα-T2 if for each pair of distinct points x, y of X, there exist disjoint
g∗ωα-open sets U and V such that x ∈ U and y ∈ V.

Example 3.21. Let X = {a, b, c} and τ = {X, φ, {a}, {b}, {a, b}}. Then the space (X, τ) is g∗ωα-T2 space, but not
g∗ωα-T1 and g∗ωα-T0 space.



452 P.G.Patil et al. / g∗ωα-separation axioms in topological spaces...

Theorem 3.22. Let X be a topological space. Then X is g∗ωα-T2 if and only if the intersection of all g∗ωα-closed
neighborhood of each point of X is singleton set.
Proof: Let x and y be any two distinct points of X. Since, X is g∗ωα-T2 there exist g∗ωα-open sets G and H such that
x ∈ G, y ∈ H and G ∩ H = φ. Since, G ∩ H = φ, x ∈ G ⊆ X-H, so X-H is g∗ωα-closed neighborhood of x which does
not contains y. Thus y does not belong to the intersection of all g∗ωα-closed neighborhood of x. Since y is arbitrary, the
intersection of all g∗ωα-closed neighborhood of x is the singleton {x}.
Conversely, let {x} be the intersection of all g∗ωα-closed neighborhood of an arbitrary point x ∈ X and y be a point of
X different from x. Since y does not belong to the intersection, there exists g∗ωα-closed neighborhood N of x, such that
y /∈ N. Since, N is g∗ωα neighborhood of x there exists g∗ωα-open set G such that x ∈ G ⊆ N. Thus G and X-N are
g∗ωα-open sets such that x ∈ G, y ∈ X-N and G ∩ (X-N) = φ. Hence X is g∗ωα-T2 space.

Theorem 3.23. If f : X→ Y is an injective, g∗ωα-irresolute and Y is g∗ωα-T2 then, X is g∗ωα-T2.
Proof: Let x1 and x2 be any two distinct points in X. So, x1 = f−1(y1), x2 = f−1(y2) as f is bijective. Then y1 and y2 ∈
Y such that y1 6= y2. Since, Y is g∗ωα-T2, there exist g∗ωα-open sets G and H such that y1 ∈ G, y2 ∈ H and G ∩ H
= φ. Then f−1(G) and f−1(H) are g∗ωα-open sets of X as f is g∗ωα-irresolute. Now f−1(G) ∩ f−1(H) = f−1(G ∩ H) =
f−1(φ) = φ. Then y1 ∈ G implies f−1(y1) ∈ f−1(G) and x1 ∈ f−1(G), y2 ∈ H that is, f−1(y2) ∈ f−1(H) so x2 ∈ f−1(H).
Thus for every pair of distinct points x1 and x2 of X, there exist disjoint g∗ωα-open sets f−1(G) and f−1(H) such that x1
∈ f−1(G), x2 ∈ f−1(H). Hence X is g∗ωα-T2 space.

Theorem 3.24. If f : X→ Y is g∗ωα-continuous, injective and Y is T2 then X is g∗ωα-T2 space.
Proof: For any two distinct points x1 and x2 of X, there exist disjoint points y1 and y2 of Y such that y1 = f(x1) and y2
= f(x2). Since Y is T2, there exist disjoint open sets U and V in Y such that y1 ∈ U and y2 ∈ V, that is x1 ∈ f−1(U) and
x2 ∈ f−1(V). Again, since f is g∗ωα-continuous, f−1(U) and f−1(V) are g∗ωα-open sets in X. Further f−1(U) ∩ f−1(V)
= f−1(U ∩ V) = f−1(φ) = φ. Thus for two disjoint points x1 and x2 of X, there exist disjoint g∗ωα-open sets f−1(U) and
f−1(V) such that x1 ∈ f−1(U) and x2 ∈ f−1(V). Therefore X is g∗ωα-T2 space.

Theorem 3.25. The following properties are equivalent for any topological space X:
(a) g∗ωα-T2 space
(b) for each x 6= y, there exists g∗ωα-open set U such that x ∈ U and y /∈ g∗ωα-cl(U)
(c) for each x ∈ X, {x} = ∩{g∗ωα-cl(U): U is g∗ωα-open in X and x ∈ U}.
Proof: (a)⇒ (b): Let x ∈ X and x 6= y, then there exist disjoint g∗ωα-open sets U and V such that x ∈ U and y ∈ V.
Then X − V is g∗ωα-closed. Since U ∩ V = φ, U ⊆ X − V. Therefore g∗ωα-cl(U) ⊆ g∗ωα-cl(X − V) = X − V.
Now y /∈ X−V implies that y /∈ g∗ωα-cl(U).
(b)⇒ (c): For each x 6= y, there exists g∗ωα-open set U such that x ∈ U and y /∈ g∗ωα-cl(U). So y /∈ ∩{g∗ωα-cl(U):
U is g∗ωα-open in X, x ∈ U} = {x}.
(c)⇒ (a): Let x, y ∈ X and x 6= y. Then by hypothesis, there exists g∗ωα-open set U such that x ∈ U and y /∈ g∗ωα-
cl(U). This implies that, there exists g∗ωα-closed set V such that y /∈ V. Therefore y ∈ X−V and X−V is g∗ωα-open
set. Thus, there exist two disjoint g∗ωα-open sets U and X − V such that x ∈ U and y ∈ X − V . Therefore X is
g∗ωα-T2 space.

4 g∗ωα-Normal Spaces

In this section, the concept of g∗ωα-normal spaces are introduced and obtained their characterizations.

Definition 4.1. A space X is said to be a g∗ωα-normal if for any pair of disjoint g∗ωα-closed sets A and B in X, there
exist disjoint open sets U and V in X such that A ⊆ U, B ⊆ V.

Remark 4.2. Every g∗ωα-normal space normal.
However, the converse is not true in general as seen from the following example.

Example 4.3. Let X = {a, b, c}, τ = {X, φ, {a}, {b, c}}. Then the space (X, τ) is normal but not g∗ωα-normal.

Remark 4.4. If X is normal and Tg∗ωα-space then X is g∗ωα-normal.

Theorem 4.5. The following are equivalent for a space X:
(a) X is normal
(b) for any disjoint closed sets A and B, there exist disjoint g∗ωα-open sets U and V such that A ⊆ U and B ⊆ V
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(c) for any closed set A and any open set V containing A, there exists g∗ωα-open set U in X such that A ⊆ U ⊆ cl(U)
⊆ V.
Proof: (a)⇒ (b): Follows from [9].
(b)⇒ (c): Let A be a closed and V be an open set containing A. Then A and X-V are disjoint closed sets in X. Then there
exist g∗ωα-open sets U and W such that A ⊆ U and X-V ⊆W. Since X-V is closed, X-V is g∗ωα-closed [9]. We have,
X-V ⊆ int(W) and U ∩ int(W) = φ and so, cl(U) ∩ int(W) = φ and hence A ⊆ U ⊆ cl(U) ⊆ X-int(W) ⊆ V.
(c)⇒ (a): Let A, B be disjoint closed sets in X. Then A ⊆ X-B and X-B is open. Then there exists g∗ωα-open set G of X
such that A⊆ G⊆ cl(G)⊆ X-B. Then A is g∗ωα-closed by [9]. We have A ⊆ int(G), put U = int(G) and V = int(X-G).
Then U and V are disjoint open sets of X such that A ⊆ U and B ⊆ V. Therefore X is normal.

Theorem 4.6. The following statements are equivalent for a topological space X:
(a) X is g∗ωα-normal
(b) for each closed set A and for each open set U containing A, there exists g∗ωα-open set V containing A such that
g∗ωα-cl(V) ⊆ U
(c) for each pair of disjoint closed sets A and B there exists g∗ωα-open set U containing A such that g∗ωα-cl(U) ∩B = φ.
Proof (a) ⇒ (b): Let A be closed and U be an open set containing A. Then A ∩ (X \U) = φ and therefore disjoint
closed sets in X. Since X is g∗ωα-normal, there exist disjoint g∗ωα-open sets V and W such that A ⊆ U, X−U ⊆W,
that is X −W ⊆ U. Now V ∩W = φ, implies V ⊆ X −W. Therefore g∗ωα-cl(V) ⊆ g∗ωα-cl(X −W) = X −W
since X−W is g∗ωα-closed. Thus, A ⊆ V ⊆ g∗ωα-cl(V) ⊆ X−W ⊆ U. That is A ⊆ V ⊆ g∗ωα-cl(V) ⊆ U.
(b)⇒ (c): Let A and B be disjoint closed sets in X then A ⊆ X− B and X− B is an open set containing A. Then there
exists g∗ωα-open set U such that A ⊆ U and g∗ωα-cl(U) ⊆ X− B, which implies g∗ωα-cl(U) ∩ B = φ.
(c) ⇒ (a): Let A and B be disjoint closed sets in X. Then there exists g∗ωα-open set U such that A ⊆ U and g∗ωα-
cl(U) ∩ B = φ or B ⊂ X − g∗ωα-cl(U). Now U and X − g∗ωα-cl(U) are disjoint g∗ωα-open sets of X such that
A ⊆ U and B ⊆ X− g∗ωα-cl(U). Hence X is g∗ωα-normal.

Theorem 4.7. If X is normal and F ∩ A = φ where F is ωα-closed and A is g∗ωα-closed then there exist open sets U
and V such that F ⊆ U and A ⊆ V.
Proof: Let X be a normal and F ∩ A = φ. Since, F is ωα-closed and A is g∗ωα-closed such that A ⊆ X− F and X− F
is ωα-open. Therefore cl(A) ⊆ X − F implies that cl(A) ∩ F = φ. Now F is closed, so F and cl(A) are disjoint closed
sets in X. As X is a normal, there exist disjoint open sets U and V of X such that F ⊆ U and cl(A) ⊆ V.

Theorem 4.8. If X is g∗ωα-normal and Y is g∗ωα-closed subset of X then, the subspace Y is also g∗ωα-normal.
Proof: Let A and B be any two disjoint g∗ωα-closed sets in Y, then A and B are g∗ωα-closed sets in X by [9]. Since
X is g∗ωα-normal, there exist disjoint open sets U and V in X such that A ⊆ U, B ⊆ V. Therefore U∩Y and V∩Y are
disjoint open subsets of the subspace Y such that A ⊆ U∩Y and B ⊆ V∩Y. Hence the subspace Y is g∗ωα-normal.

Remark 4.9. The property of being g∗ωα-normal is closed hereditary.

Theorem 4.10. If f : X→ Y is pre g∗ωα-closed, continuous injective and Y is g∗ωα-normal then, X is g∗ωα-normal.
Proof: Let A and B be disjoint g∗ωα-closed sets in X. Since, f is pre g∗ωα-closed, f(A) and f(B) are disjoint g∗ωα-closed
sets in Y. Again, since Y is g∗ωα-normal there exist disjoint open sets U and V such that f(A) ⊆ U, f(B) ⊆ V. Thus A ⊆
f−1(U), B ⊆ f−1(V) and f−1(U) ∩ f−1(V) = φ. Then f−1(U) and f−1(V) are open sets in X as f is continuous. Hence X
is g∗ωα-normal.

Theorem 4.11. If f : X → Y is g∗ωα-irresolute, bijective, open map from a g∗ωα-normal space X on to a space Y then
Y is g∗ωα-normal.
Proof: Let A and B be two disjoint g∗ωα-closed sets in Y. Since, f is g∗ωα-irresolute and bijective, f−1(A) and f−1(B)
are disjoint g∗ωα-closed sets in X. As X is g∗ωα-normal, there exist disjoint open sets U and V such that f−1(A) ⊆ U
and f−1(B) ⊆ V, that is A ⊆ f (U) and B ⊆ f (V). Then f (U) and f (V) are open sets in Y and f (U) ∩ f (V) = φ.
Thus Y is g∗ωα-normal.

5 g∗ωα-Regular Spaces

The concept of g∗ωα-regular spaces and their properties are studied in this section.

Definition 5.1. A topological space X is said to be a g∗ωα-regular if for each g∗ωα-closed set F and each point x /∈ F
there exist disjoint open sets U and V in X such that x ∈ U and F ⊆ V.
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Remark 5.2. Every g∗ωα-regular space is regular.
However, the converse need not be true as seen from the following example.

Example 5.3. From Example 4.3, the space (X, τ) is regular but not g∗ωα-regular.

Theorem 5.4. Every g∗ωα-regular T0-space is g∗ωα-T2.
Proof: Let x and y be any two points in X such that x 6= y. Let V be an open set which contains x but not y. Then, X−V
is a closed set containing y but not x. Then there exist disjoint open sets U and W such that x ∈ U and X − V ⊂ W.
Since y ∈ X−V, y ∈ W. Thus for x, y ∈ X with x 6= y there exist disjoint g∗ωα-open sets U and W such that x ∈ U
and y ∈W. Hence X is g∗ωα-T2 space.

Theorem 5.5. In a topological spaces X, the following properties are equivalent:
(a) X is g∗ωα-regular space
(b) for each point x ∈ X and each g∗ωα-open neighborhood A of X, there exists open neighborhood V of X such that cl(V)
⊆ A.
Proof: (a)⇒ (b): Suppose X is g∗ωα-open neighborhood of x. Then there exists g∗ωα-open set G such that x ∈ G ⊆ A.
Since X − G is g∗ωα-closed and x /∈ X − G. By hypothesis there exist open sets U and V such that X − G ⊆ U, x ∈
V and U ∩ V = φ and so V ⊆ X −U. Now cl(V) ⊆ cl(X −U) = X −U and X − G ⊆ U implies X −U ⊆ G ⊆ A.
Therefore cl(V) ⊆ A.
(b) ⇒ (a): Let F be a closed set in X with x /∈ F. Then x ∈ X − F and X − F is g∗ωα-open and so X − F is g∗ωα-
neighborhood of X. By hypothesis, there exists open neighborhood V of X such that x ∈ V and cl(V) ⊆ X − F, which
implies F ⊆ X − cl(V). Then X − cl(V) is an open set containing F and V ∩ (X − cl(V)) = φ. Therefore X is
g∗ωα-regular.

Theorem 5.6. If X is g∗ωα-regular and Y is open, g∗ωα-closed subspace of X, then the subspace Y is g∗ωα-regular.
Proof: Let A be g∗ωα-closed subspace of Y and y /∈ A then A is g∗ωα-closed in X. Since X is g∗ωα-regular there exist
open sets U and V in X such that y ∈ U and A ⊆ V. Therefore U∩Y and V∩Y are disjoint open sets of the subspace Y,
such that y ∈ U∩Y and A ⊆ V∩Y. Hence Y is g∗ωα-regular.

Theorem 5.7. Let f : X→ Y be bijective, g∗ωα-irresolute and open. If X is g∗ωα-regular then Y is also g∗ωα-regular.
Proof: Let F be g∗ωα-closed set of Y and y /∈ F. Since f is g∗ωα-irresolute, f−1(F) is g∗ωα-closed in X. Let f(x) = y,
so x = f−1(y) and x /∈ f−1(F). Again, X is g∗ωα-regular there exist open sets U and V such that x ∈ U and f−1(F) ⊆
V, U∩V = φ. Since, f is open and bijective, so y ∈ f(U), F ⊆ f(V) and f(U) ∩ f(V) = f(U ∩ V) = f(φ) = φ. Hence Y is
g∗ωα-regular.

Theorem 5.8. If f : X→ Y is bijective, pre g∗ωα-closed and open map from a space X in to a g∗ωα-regular space Y. If
X is Tg∗ωα space then X is g∗ωα-regular.
Proof: Let x ∈ X and F be a g∗ωα-closed set in X with x /∈ F. Since X is Tg∗ωα space so, F is closed in X. Then f(F) is
g∗ωα-closed with f(x) /∈ f(F) in Y as f is pre g∗ωα-closed. Again, since Y is g∗ωα-regular there exist open sets U and V
such that f(x) ∈ U and f(F) ⊆ V. Therefore x ∈ f−1(U) and F ⊆ f−1(V). Hence X is g∗ωα-regular space.

Theorem 5.9. Every subspace of a g∗ωα-regular space is g∗ωα-regular.
Proof: Let Y be subspace of a g∗ωα-regular space X. Let x ∈ Y and F be a g∗ωα-closed set in Y such that x /∈ F. Then
there exists g∗ωα-closed set A of X with F = Y ∩ A and x /∈ A. Therefore, we have x ∈ X, A is g∗ωα-closed in X such
that x /∈ A. Since, X is g∗ωα-regular, there exist open sets G and H such that x ∈ G, A ⊆ H and G ∩ H = φ. Note that
Y ∩ G and Y ∩ H are open sets in Y. Also x ∈ G and x ∈ Y which implies x ∈ Y ∩ G and A ⊆ H implies Y ∩ G ⊆ Y ∩
H, F ⊆ Y ∩ H. Also (Y ∩ G) ∩ (Y ∩ H) = φ. Hence Y is g∗ωα-regular space.

Theorem 5.10. Let f : X → Y be continuous, g∗ωα-closed, surjective and open map. If X is regular then Y is also
regular.
Proof: Let y ∈ Y and V be an open set containing y in Y. Let x be a point of X such that y = f(x). Since, X is regular and
f is continuous there exists open set U such that x ∈ U ⊆ cl(U) ⊆ f−1(V). Hence y ∈ f(U) ⊆ f(cl(U)) ⊆ V. Again, since
f is g∗ωα-closed map, f(cl(U)) is g∗ωα-closed set contained in the open set V. Hence cl(f(cl(U))) ⊆ V. Therefore y ∈ f(U)
⊆ f(cl(U)) ⊆ cl(f(cl(U))) ⊆ V. This implies y ∈ f(U) ⊆ cl(f(U)) ⊆ V and f(U) is open. Hence Y is regular.

Theorem 5.11. If f : X→ Y is g∗ωα-irresolute, open, bijective and X is g∗ωα-regular then, Y is g∗ωα-regular.
Proof: Let F be a g∗ωα-closed set in Y and y /∈ F. Take y = f (x) for some x ∈ X. Since, f is g∗ωα-irresolute, f−1(F)
is g∗ωα-closed in X and x 6= f−1(F). Then there exist disjoint open sets U and V such that x ∈ U and f−1(F) ⊆ V,
that is y = f (x) ∈ f (U), F ⊆ f (V) and f (U) ∩ f (V) = φ. Therefore Y is g∗ωα-regular.
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Theorem 5.12. If f : X→ Y be pre g∗ωα-open, closed, injective and Y is g∗ωα-regular then, X is g∗ωα-regular.
Proof: Let F be a g∗ωα-closed set in X and x /∈ F. Since, f is pre g∗ωα-closed, f (F) is g∗ωα-closed in Y such that
f (x) /∈ f (F). Now Y is g∗ωα-regular, there exist open sets G and H such that f (x) ∈ G and f (H) ⊆ H. his implies
that x ∈ f−1(G) and F ⊆ f−1(H). Further f−1(G) ∩ f−1(H) = φ. Hence X is g∗ωα-regular.

6 Conclusion

The research in topology over last two decades has reached a high level in many directions. By researching
generalizations of closed sets, some new separation axioms have been founded and they turn out to be useful
in the study of digital topology. Therefore, g∗ωα-separation axioms are defined by using g∗ωα-closed sets will
have many possibilities of applications in digital topology and computer graphics.
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