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Abstract

For each finite group G we associate a simple undirected graph OD(G), order divisor graph. We
investigate the interconnection between the group theoretic properties of G and the graph theoretic properties
of order divisor graph OD(G). For a finite group G, we obtain the density, the girth and the diameter of
OD(G). Further, we obtain the relation G ∼= G′ if and only if OD(G) ∼= OD(G′), for every distinct finite
groups G and G′, and Auto(G) ⊆ Auto(OD(G)).
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1 Introduction

Graph theory is a branch of mathematics started by Euler [1] as early as 1736. In recent years, graph theory
has found many applications in engineering and applied science, and many books have been published on
graph theory and applied graph theory such as those by Chen [2], Thulasiraman and Swamy [3], Wilson and
Beineke [4], Mayeda [5], and Deo citedeo. Further, the applications of graph theory are much extensive and
powerful in the context of engineering science.

Algebraic graph theory is a specific branch of modern mathematics in which algebraic methods are applied
to problems about graphs (Biggs [7]). It is the application of abstract algebra to graph theory. For this reason,
group theory is the crowning glory of algebraic graph theory.

The concept of finite groups plays a fundamental role in theory of algebraic graphs. Few decades back the
algebraic graph theory was not applicable to ordinary human activities. Now it has been used successfully for
information transmission, protecting, coding and decoding with high security through public communication
networks. For further studying of algebraic graph theory see [8].

The idea of a divisor graph of a finite set of positive integers was introduced by Sing and Santhosh [9].
According to these authors, a divisor graph X is an ordered pair (V, E) where V is a subset of positive integers
N and ab ∈ E if and only if either a divides b or b divides a for all a 6= b. They were studied basic properties of
divisor graphs. In [10], Chartrand, Muntean, Saenpholophant and Zhang were studied further properties of
divisor graphs. Moreover, the author Yu-Ping Tsau [11] introduced another notation D[n] for a divisor graph
of the set [n] = {1, 2, · · · , n}. He studied several specific properties of D[n] such as the vertex-chromatic
number, the clique number, and the independence number.

Rajkumar and Devi [12] defined an undirected Co-prime graph of subgroups, denoted by P(G) having all
the proper subgroups of G as its vertices and two distinct vertices H and K are adjacent in P(G) if and only if
|H| and |K| are relatively prime. These authors proved that P(G) is weakly χ-perfect and every simple graph
is an induced subgraph of P(Zn), for some n.
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Subgroup of a group is the shadow that precedes everything in this paper, and we are using subgroups of
a finite group as vertices of an order divisor graph. Orders of subgroups of a finite group play an important
role in this paper, and they motivated us to define order divisor graph OD(G), where G is a finite group. We
hope that this order divisor graph will be a foundation for a new construction in graph theory and algebraic
graph theory.

Let G be a finite group with identity e and let S(G) be its set of subgroups. We associate simple undirected
graph OD(G) to G with vertices S(G), and for distinct H, K ∈ S(G), the vertices H and K are adjacent in
OD(G) if and only if either |H| divides |K| or |K| divides |H|. Thus OD(G) is the empty graph if and only if
|G| = 1, and OD(G) in the nonempty graph if and only if |G| 6= 1.

The main aim of this paper is to study the interplay of group theoretic properties of G with graph theoretic
properties of OD(G). This study helps illuminate the structure of S(G) through the structure of OD(G). For
H, K ∈ S(G), define H ∼ K if either |H| divides |K| or |K| divides |H|. So, the relation ∼ is always not
reflexive, not symmetric but transitive because OD(G) is undirected simple graph having without multiple
edges. Further the relation ∼ is transitive if and only of OD(G) is complete.

In this paper, some properties of the order divisor graph OD(G) are studied, the number of vertices in
each order divisor graph, the density, the girth and diameter are found. Complete characterizations, in
terms of |G| 6= p, are given of the cases in which the graph OD(G) is never Eulerian, never a path, never
a bipartite, never a star, or never a complete bipartite. Further we verify that the results G ∼= G′ if and only if
OD(G) ∼= OD(G′) and Auto(G) ⊆ Auto(OD(G)) with few examples. This study investigates compositions
between finite group theory, number theory and graph theory via studying properties of order division graph
OD(G) of a finite group G.

2 Basic Definitions and Notations

In this paper basic definitions and concepts of graph theory are briefly presented. A graph X consist of a
nonempty set V(X) of vertices and a set E(X) of elements called edges together with a relation of a incidence
which associates with each member a pair of vertices, called its ends. A graph with no loops and no multiple
edges is called a simple graph whose order and size are |V(X)| and |E(X)| respectively.

For any vertex x in a graph X, deg(x) be the number of edges with the vertex x as an end point. A graph
in which all vertices have the same degree is called a regular graph. A graph X is called connected if there is
a path between any two distinct vertices in X. A graph X is complete if every two distinct vertices in X are
adjacent. A complete graph with n vertices is denoted by Kn.

A graph X is called planar if it can drawn in the plane so that its edges intersect only at their ends. Also, a
connected graph X is called Eulerian if their exist a closed trial congaing every edge of X. A path of length n is
called an n-path and is denoted by Pn. A cycle of length n is called n-cycle and is denoted by Cn. A complete
bipartite graph denoted by Km,n and the graph K1,n is called star graph. For further definitions and proofs of
graph theory the reader may refer to Pirzada [13] and West [14].

Let G be a finite set. Then a group G is called finite. So, the number of elements in G is the order of G and
is denoted by |G|. Unless mentioned otherwise, all groups considered in this paper are finite. A nonempty
subset H of G is called subgroup of G if H is itself a group under the same binary operation on G. Every group
G has at least two subgroups, G itself and the set {e} consisting of the identity element alone, called trivial
subgroups of G, otherwise subgroups of G are called proper. Throughout the paper, we consider S(G) as a set
of subgroups of G and |S(G)| denote cardinality of S(G).

A subgroup of a given group G can always be constructed by choosing any element a in G and forming
the set of all its powers an, n = 0,±1,±2, · · · this is called the cyclic subgroup generated by an element a and
is denoted by Cn = {a, a2, · · · , an−1, an = e} = 〈a〉.

Usually, Z, Zn, Un, Sn, An, Q8, D4 and V4 denotes by the group of integers, integers modulo n, non zero
integers modulo n, permutations, even permutations, Quaternions, Dihedral and Kelians respectively. Basic
definitions for group theory see [15, 16].

Theorem 2.1. (Lagranges theorem) [15] Let H be a subgroup of a finite group G. Then the order of H divides the order
of G.

Theorem 2.2. Let a be any element of a group G. Then 〈a〉 is a cyclic subgroup of G.
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Let n ≥ 1 be a positive integer. Then the cardinality of the set D(n) = {d : d|n} is called divisor function
of n and denoted by d(n). In particular, |D(n)| = d(n), n ≥ 1 an integer. If m and n are positive integers, then
gcd(m, n) is the greatest common divisor and lcm[m, n] is the least common multiple of m and n. However,
gcd(m, n) = 1 if and only m and n are relatively primes, which play an important role in the algebraic graph
theory. For further definitions of number theory, the reader may refer to Rose [17].

Theorem 2.3. If G is a finite cyclic group, then |S(G)| = d(|G|), and if G is a finite non cyclic group, then
|S(G)| > d(|G|).

3 Properties of Order Divisor graph

In this section, we show that OD(G) is always connected and has small density, girth and diameter, and
we determine a necessary and sufficient condition for OD(G) is complete.

Definition 3.1. Let S(G) = {H : H is a subgroup of G}. An undirected simple graph OD(G) is called an order
divisor graph of subgroups of a finite group G whose vertex set is S(G) and two distinct vertices H, K ∈ S(G) are
adjacent in OD(G) if and only if either |H|

∣∣|K| or |K|
∣∣|H|, where |H|, |K| denotes the order of H and K respectively.

Before studying properties of the order divisor graph of a group we give an example to illustrates their
usefulness.

Example 3.1. The graphs shown in Figure 1 are the order divisor graphs of groups Z6 and S6 respectively.

Theorem 3.4. For any finite group G, the order divisor graph OD(G) is connected.

Proof. Let G be a finite group with identity element e. Then the vertex 〈e〉 is adjacent to all the remaining
vertices of the order divisor graph OD(G), since | 〈e〉 |

∣∣|H| for every vertex H 6= 〈e〉 in OD(G). This implies
that there exist a path between any two vertices in OD(G), and hence OD(G) is connected.

Theorem 3.5. Let order of a finite group G is not a power of single prime. Then OD(G) is never complete.

Proof. Consider the group G, whose order is |G| = pα1
1 , pα2

2 , · · · , pαr
r , r > 1, a prime decomposition. Suppose

the graph OD(G) is complete. Then any two vertices Hi and Hj are adjacent in OD(G), i 6= j. That is, either
|Hi|

∣∣|Hj| or |Hj|
∣∣|Hi| for i 6= j. So without loss of generality, we may assume that |Hi| = pi and |Hj| = pj. It is

clear that |Hi|6 | |Hj| and |Hj|6 | |Hi| in OD(G), since pi 6 | pj and pj 6 | pi for each i 6= j. It turns out that OD(G)

is never complete.

Theorem 3.6. Let G be a group of Composite order. Then the order divisor graph of G must contain a cycle of length 3.

Proof. Suppose |G| 6= p, a prime. Then there is at least one proper subgroup H of G. By the Lagranges
Theorem [2.1], |H|

∣∣|G|, | 〈e〉 |∣∣|H| and | 〈e〉 |
∣∣|G|. It is clear that the unordered pairs (〈e〉 , H), (H, G) and (G, 〈e〉)

form a cycle C3 = (〈e〉 , H, G, 〈e〉) of length 3 in OD(G).

Theorem 3.7. [15] Let H and K be two subgroups of a finite group G. Then |HK| = |H||K|
|H ∩ K| . In particular,

|HK| = |H||K| if either H ∩ K = {e} or gcd(|H|, |K|) = 1.
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Theorem 3.8. [16] Let Cp and Cq be cyclic groups with respect to multiplication of prime orders p and q respectively.
Then Cp × Cq ∼= Cpq.

Theorem 3.9. (Syllows Third Theorem)[16] Let G be a group of order pnm, where p is a prime, n ≥ 1 and
gcd(p, m) = 1. Then the number of Sylow p-subgroups of G by np is of the form 1 + kp, k ≥ 0 and 1 + kp divides m.

Theorem 3.10. [13] A graph is non-planar if and only if it has a subgraph homomorphic to either K5 or K3,3.

Theorem 3.11. [13] Let X be simple planar graph having |V(X)| ≤ 3 vertices and |E(X)| edges. Then |E(X)| ≤
3|V(X)| − 6.

Theorem 3.12. [13] For a maximal planar graph X of order |V(X)| ≥ 3, |E(X)| = 3|V(X)| − 6.

Theorem 3.13. Let p and q be distinct prime with p < q. If G is a group of order pq, then the order divisor graph of G
is either planar or maximal planar.

Proof. Suppose |G| = pq, where p and q are distinct primes with p < q. Then, by the third Sylow Theorem
[3.6], there is a unique q-Sylow subgroup, say Q of order q. So there exist two cases on p and q.

Case:1 If p 6 | q − 1, then there is a normal p-subgroup, say P of G such that P ∩ Q = {e} and |PQ| =
|P||Q| = pq = |G|. Thus G = P× Q ∼= Cp × Cq ∼= Cpq, by Theorem [3.5]. So, in this case the vertex set of the
order divisor graph OD(G) is S(G) =

(
〈e〉 , H, K, G

)
where H and K are proper subgroup of Cpq with H is not

adjoint to K, since |H|6 | |K| and |K|6 | |H|. It is clear that the order and side of OD(G) are 4 and 5 respectively.
Therefore by the Theorem [3.10], OD(G) 6∼= K5 or K3,3, and hence OD(G) is planar.

Case:2 If p
∣∣q− 1, then the group G isomorphic to either of the following groups:

〈a, b : aq = bp = 1, ab = ba〉 and 〈a, b : aq = bp = 1, ab = aα〉 where α 6= 1.

(i) Suppose G ∼= 〈a, b : aq = bp = 1, ab = ba〉 . Then

G ∼= 〈a : aq = 1〉 × 〈b : bp = 1〉 ⇒ G ∼= Cp × Cq ∼= Cpq this is similar to case(1).

(ii) Suppose G ∼=
〈

a, b : aq = bp = 1, b−1ab = aα
〉

. Then G 6= Cpq. This implies that G is a non abelian
group of order pq generate by a and b. Thus the vertex set of the graph OD(G) is S(G) =

{〈e〉 , 〈a〉 , 〈b〉 , 〈ab〉 ,
〈

a2b
〉

, G} where
〈

a2b
〉

=
〈

ab2〉. It is clear that | 〈e〉 | = 1, | 〈a〉 | = q| 〈b〉 | =

| 〈ab〉 |
∣∣| 〈a2b

〉
| = p and |G| = pq. Consequently, order and size of the graph OD(G) are 6 and 12

respectively. We shall now show that OD(G) is maximal planar. Suppose OD(G) is not maximal planar.
Then it must satisfy the relation |E

(
OD(G)

)
| 6= 3|V

(
OD(G)

)
| − 6, by the Theorem [3.9]. This implies

that that 12 6= 3× 6− 6⇒ 12 6= 12, which is not true. So our assumption is wrong, and hence OD(G) is
a maximal planar grpah.

Lemma 3.1. Let H and K be two subgraphs of a finite non-cyclic group G. Then |H ∩ K| 6= gcd
(
|H|, |K|

)
.

Proof. Since H ∩ K is a subgroup of both H and K in G. So, by the Lagranges Theorem [2.1], |H ∩ K|
∣∣|H|

and |H ∩ K|
∣∣|K|. Hence |H ∩ K|

∣∣gcd
(
|H|, |K|

)
. Further, suppose gcd

(
|H|, |K|

)∣∣|H ∩ K|, then there exists
two positive integers q and q′ such that qgcd

(
|H|, |K|

)
= q′|H ∩ K| = |G|, since gcd

(
|H|, |K|

)
and |H ∩ K|

both divides |G|. Hence q 6= q′. Therefore, if q′|q then q = nq′ for some positive integer n. Then
|H ∩ K| = ngcd

(
|H|, |K|

)
, a contradiction since H ∩ K is the subgroup of both H and K. Hence |H ∩ K| 6=

gcd
(
|H|, |K|

)
.

Our next example turns out to be a very useful one for abelian groups and another for non-abelian groups.

Example 3.2. Consider the subgroups H = 〈a〉 = {e, a} and K = 〈b〉 = {e, b} of the finite abelian group V4 =

{e, a, b, c : a2 = b2 = c2 = e}. Therefore, |H| = 2, |K| = 2, |H ∩ K| = 1. Hence gcd
(
|H|, |K|

)
= 2 6= 1 = |H ∩ K|.

Next, H = 〈(12)(345)〉 , K = 〈(123)(45)〉, are both cyclic subgroups of order 6 and H ∩ K = {I} in the
finite non-abelain group S5. Therefore gcd

(
|H|, |K|

)
= 6 6= 1 = |H ∩ K|.

The Example [3.2] tells us that the result |HK| 6= lcm
[
|H|, |K|

]
for finite non-cyclic groups, but it must be

true for finite cyclic groups. This illustrates the following lemmas.

Lemma 3.2. Let H and K be two subgraphs of a finite non-cyclic group G. Then |HK| 6= lcm
[
|H|, |K|

]
.
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Proof. Follows from Lemma [3.1 ] and Theorem [3.7].

Lemma 3.3. Let H and K be two subgraphs of a finite cyclic group G. Then |HK| = lcm
[
|H|, |K|

]
.

Proof. Let d = gcd
(
|H|, |K|

)
.Then d divides both H and K. Also, by the Lagranges Theorem [2.1], d

∣∣|G|, so
there exists a unique subgroup, say L such that |L| = d, since G is cyclic. But H and K must have a subgroup
of this order d and there is only one subgroup in G. Therefore L is a subgroup of H ∩ K. But |H ∩ K| divides
both H and K. It is clear that |H ∩ K|

∣∣gcd
(
|H|, |K|

)
⇒ |H ∩ K|

∣∣d ⇒ |H ∩ K|
∣∣|L|. Hence L = H ∩ K and

|L| = |H ∩ K| = d = gcd
(
|H|, |K|

)
. Applying Theorem [3.7] yields |HK| = |H||K|

gcd
(
|H|, |K|

) = lcm
[
|H|, |K|

]
.

Theorem 3.14. Let |G| be a composite number. Then deg(H) ≥ 2, for every vertex H in OD(G).

Proof. Let |G| 6= p, a prime. Then G has at least one proper subgroup, say H. It is clear that deg
(
〈e〉
)
≥ 2 and

deg(G) ≥ 2 for 〈e〉 , G ∈ S(G), since 〈e〉 − H − G− 〈e〉 is a cycle of length 3 in the graph OD(G).
Now we show that deg(H) ≥ 2, for every vertex H in OD(G). First suppose S(G) = {〈e〉 , H, G} be the

vertex set of OD(G). Then, by the Lagranges Theorem [2.1], vertex H is adjacent to both the vertices 〈e〉 and
G in OD(G). Therefore, deg(H) = 2. Further, if K is another vertex of OD(G) such that K 6= H, 〈e〉 , G. Now
consider two cases on the group G.

Case (1): If G is a finite cyclic group then we have the following subcases.
Subcase (1): Suppose H is adjacent to K in OD(G).Then trivially deg(H) > 2.
Subcase (2): Suppose H is not adjacent to K in OD(G). Then |H|

∣∣|K| and |K|
∣∣|H|.

⇒ |H|
∣∣lcm

[
|H|, |K|

]
⇒ |H|

∣∣|HK|, by the Lemma [3.3]

⇒ H is adjoint to another vertex HK in OD(G).

This shows that deg(H) > 2.
Case (2): If G is a finite non-cyclic group, then the edges in OD(G) has any one of the following

possibilities:
Subcase (1): Suppose either |H|

∣∣|K| or |K|
∣∣|H|. Then H is adjacent to K, and hence deg(H) > 2.

Subcase (2): Suppose |H|6 | |K| and |K|6 | |H|. Then either gcd
(
|H|, |K|

)
= 1 or gcd

(
|H|, |K|

)
= d, d > 1. If

gcd
(
|H|, |K|

)
= 1, then |H|

∣∣|H|∣∣|K|
⇒ |H|

∣∣|HK|, by the Theorem [3.4]

⇒ H is adjoint to HK and thus deg(H) > 2.

Otherwise, if gcd
(
|H|, |K|

)
= d, d > 1, then gcd

(
|H|
d

,
|K|
d

)
= 1 this implies that the vertex H is adjacent to

another new vertex whose order is
|H|
d
|K|
d

in OD(G). Therefore, deg(H) > 2.

Summarizing the results of the two cases we find deg(H) ≥ 2 for every vertex H in OD(G).

Now we are going to study the useful consequences of the Theorem [3.14].

Corollary 3.1. For any finite group G, the order divisor graph is never a path of length 2.

Proof. Suppose OD(G) is the path Pn : H0 − H1 − · · · − Hn−1 − Hn of length n > 2, where H0 and Hn are the
initial and terminal vertices of Pn. Then, by the definition of the path, we have deg(H0) = deg(Hn) = 1. This
violates result of the Theorem [3.14]. Hence OD(G) is never a path of length n > 2.

Corollary 3.2. If G is a group of composite order, then OD(G) is never a star graph.

Proof. Let |G| 6= p, a prime. Assume OD(G) is a star graph of order |S(G)|. If H1, H2, · · · , H|S(G)|−1, H|S(G)|
are the vertices of the OD(G), where |S(G)| > 2, then the graph OD(G) contains |S(G)| − 1 pendent vertices.
That is, deg(Hi) = 1, for every 1 ≤ i ≤ |S(G)| − 1. This is a contradiction to the Theorem [ 3.14] . So our
assumption is wrong, and hence OD(G) is never a star graph.

Theorem 3.15. [14] A simple graph is Eulerian if and only if degree of each vertex is even.
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Corollary 3.3. Let |G| 6= P2n, n ≥ 1. Then OD(G) is never Eulerian.

Proof. suppose that the graph OD(G) is Eulerian. Then the degree of each vertex is even. From the Theorem
[3.14], degree of each vertex in OD(G) is at least 2, that is deg(Hi) ≥ 2, for every Hi ∈ S(G) and 1 ≤ i ≤ |S(G)|.
So without loss of generality, we may assume that deg(H1) = 2, deg(H2) = 3, deg(H3) = 4, and so on. Then,
we found that degree of each vertex can not be even. This is a contradiction to the result of the Theorem [3.15].
Thus, by contraposition, the result follows.

Before going to the study of further properties of order divisor graph we shall prove that the following
consequences of the Theorem [3.14]. First we study the completeness of the order divisor graph OD(G). In
particular, we give a necessary and sufficient condition for OD(G) to be completed.

Theorem 3.16. The order divisor graph of a group G is complete if and only if no two proper divisors of |G| are relatively
prime.

Proof. Necessity: Suppose OD(G) is a complete graph of order |S(G)|. Then any two vertices Hi, Hj ∈ S(G)

are adjacent in OD(G), i 6= j. Therefore, |Hi|
∣∣|Hj| or |Hj|

∣∣|Hi| for each i 6= j.⇒ gcd
(
|Hi|, |Hj|

)
6= 1, for each

i 6= j. This implies that |Hi| and |Hj| are two proper divisors of |G| which are not relatively prime. So no two
proper divisors of |G| are relatively prime.

Sufficient: Suppose no two proper divisor of |G| are relatively prime. That is, gcd
(
|Hi|, |Hj|

)
6= 1, for every

two proper subgroups Hi and Hj of G. We shall now show that OD(G) is a complete graph. Suppose that
OD(G) is not complete. Then there exists two vertices Hi and Hj in S(G) such that |Hi|6 | |Hj| and |Hj|6 | |Hi|
. That is, either gcd

(
|Hi|, |Hj|

)
= 1 or gcd

(
|Hi|, |Hj|

)
= d, d > 1. But, by hypothesis gcd

(
|Hi|, |Hj|

)
6= 1,

for proper divisors |Hi| and |Hj| of |G|, i 6= j. Therefore, gcd
(
|Hi|, |Hj|

)
= d, d > 1 ⇒ gcd

(
|Hi|

d
,
|Hj|

d

)
and

|Hi|
d

∣∣∣∣|G| and
|Hj|

d

∣∣∣∣|G| ⇒ |Hi|
d

and
|Hj|

d
are both proper divisors of |G| and which are relatively prime, a

contradiction to our hypothesis. Hence OD(G) is a complete graph.

The following results are immediate consequences of the Theorem [3.16].

Theorem 3.17. Let G be a finite group. Then the following statements are equivalent.

(a) The graph OD(G) is complete.

(b) |G| = Pn, n ≥ 1 an integer.

Proof. For (a) implies (b), first assume that OD(G) is a complete graph of a graph G. There are two possibilities:
either G is cyclic or not. If G is cyclic group and |G| is a composite number not divisible by pn+1 for any prime
p, since in this case 〈p〉 is not adjacent to

〈
pn+1〉 in OD(G). Moreover, |G| is not divisible by square free integer

P1, p2, · · · , pn, pi’s are distinct primes, since in this case 〈pi〉 ,
〈

pj
〉
∈ S(G), i 6= j, are not adjacent in OD(G)

because
(
| 〈pi〉 |, |

〈
pj
〉
|
)
= 1. Finally, qn 6 |pn, since if q is prime, then 〈q〉 is not adjacent to 〈p〉 in OD(G). So,

〈G〉 = pn. If G is not a cyclic group, then we have to prove that 〈G〉 = pn. Assume that 〈G〉 6= pn. In view of
the Theorem [3.16], OD(G) is never complete. Thus 〈G〉 = pn.

For (b) implies (a), we assume that 〈G〉 = pn. Then we shall now show that OD(G) is a complete graph.
We consider the following two cases:

Case (1): If G is a cyclic group, then the order of OD(G) is |S(G)| = d(pn) = n + 1, which are
1, p, p2, · · · , pn−1, pn. It is clear that for any two vertices H, K ∈ S(G), |H|, |K| ∈ {1, p, p2, · · · , pn−1, pn}. This
implies that |H|

∣∣|K| or |K|
∣∣|H|, since pi

∣∣pj or pj
∣∣pi for i 6= j. That is, no two proper divisors of |G| are relatively

prime, hence OD(G) is complete.
Case (2): If G is not a cyclic graph, then |S(G)| > d

(
|G|
)
. But by Lagranges Theorem [2.1], order of each

and every subgroup divides |G|, that is |H|
∣∣pn, for every H ∈ S(G). Therefore |H| ∈ {1, p, p2, · · · , pn−1, pn}.

This implies that no two proper divisors in |G| are relatively prime, so in this case also OD(G) is complete.

The following example show how the result in the Theorem [3.17] can be used to study the structures of
order divisor graphs of abelian and nonabelian groups.
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Example 3.3. Figure 2 illustrates the Theorem [3.14].

Remark 3.1. Theorem [3.14] tells us that the following properties, if |G| = pn, n > 1 then OD(G) is
(
|S(G)| − 1

)
-

regular graph and the size of OD(G) is

(
|S(G)|

)(
|S(G)| − 1

)
2

.

(1) If G is a cyclic group of order pn, then complete order divisor graph OD(G) is n-regular.

(2) If G is not a cyclic group of order pn, then the order divisor graph OD(G) is also complete but not n-regular. This
point is illustrated as follows.

Example 3.4. (1) The order divisor graph of a cyclic group Z8 is complete 3-regular.

(2) The order divisor graph of a non-cyclic group Q8 is complete but 5-regular.

(3) If is an abelian but not cyclic group of order pn, then the order divisor graph of G is also complete but never
n-regular.

For example, the Figure 3 shows that Lattice of subgroups of Klein 4 group V4 and its order divisor graph.

Corollary 3.4. Let G be a finite group. Then the order divisor graph OD(G) is isomorphic to K2 if and only if G is

isomorphic to one of the groups: Zp, Cp,
Sn

An
, Aut(Z),

A4

V4
.

Proof. It is obvious, since OD(G) ∼= K2 if and only if |G| = p, a prime.

Corollary 3.5. The order divisor graph of a group G is complete if and only if G is isomorphic to one of the groups:

(a) p-group

(b) Diag(n, Z).

Proof. (a) Since G is a p-group if and only if |G| = pn, n ≥ 1. Hence OD(G) is complete.
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(b) Since Diag(n, Z) is an abelian group of all n×n diagonal matrices over the set of integers whose diagonal
elements are ±1. So, Diag(n, Z) = 2n. Hence OD(Diag(n, Z)) is complete.

Definition 3.2. The density of a simple graph is the ratio of order and size of the graph respectively.

Theorem 3.18. Let |G| = pn, n ≥ 1, Then density(OD(G)) =
2

|S(G)| − 1
.

Proof. We have, density(OD(G)) =
|S(G)|

1
2 |S(G)|(|S(G)| − 1)

=
2

|S(G)| − 1
.

Corollary 3.6. If G is a cyclic group of order pn, n ≥ 1 then density(OD(G)) =
2
n

.

Proof. The number of subgroups of a cyclic group of order pn, n ≥ 1 is |S(G)| = d
(
|G|
)
= d(pn) = n + 1.

Therefore density(OD(G)) =
2

(n + 1)− 1
=

2
n

.

The girth of a simple graph X, denoted by gir(X) is the length of a shortest cycle in X. If X is acyclic graph,
then gir(X) = ∞. Let m and n be two distinct vertices of a simple graph X. Then the diameter of X, denoted
by diam(X), is given by diam(X) = sup{d(m, n) : m, n distinct vertices of X}, where d(m, n) is the length of
the shortest path between m and n.

Theorem 3.19. For |G| > 1, the girth of order divisor graph of a group G is given by

gir
(
OD(G)

)
=

{
∞ if |G| = p

3 if |G| 6= p.

Proof. If |G| = p, a prime, then OD(G) ∼= K2, an acyclic graph. It is clear that the girth of OD(G) is infinite.
If |G| 6= p, then there are two possibilities on |G|: either |G| = pn, n > 1, or |G| 6= pn, n ≥ 1. Suppose
|G| = pn. Then, in view of Theorem [3.17], OD(G) is complete graph with three or more than three vertices
and so gir

(
OD(G)

)
= 3. On the other hand, if |G| 6= pn, in view of Theorem [3.5], the order divisor graph

OD(G) always have a three cycle C3 =
(
〈e〉 , H, G, 〈e〉

)
which is smallest for any proper subgroup H of G.

Hence gir
(
OD(G)

)
= 3.

Corollary 3.7. Let G be a group of composite order. Then the graph OD(G) is never complete bipartite.

Proof. Follows directly from Theorem [3.19], since the girth of complete bipartite graph is 4.

Theorem 3.20. Let G be a finite group. Then diam(OD(G)) ≤ 2.

Proof. Let p be a prime and n ≥ 1 be a positive integer. Then we consider the following two cases on |G|, G is
a finite group.

Case (1) Suppose |G| = pn, n ≥ 1. Then the diameter of OD(G) is 1, since this is possible from the Theorem
[3.14] and the diameter of a compete graph is 1.

Case (2) Suppose |G| 6= pn, n ≥ 1. Then OD(G) is never complete graph by the Theorem [3.5]. Therefore
diam(OD(G)) ≥ 1. But we have to prove that diam(OD(G)) ≤ 2. For this let H and K be any two distinct
vertices of OD(G). If H is adjacent to K, then obviously d(H, K) = 1 because H − K is a path of length 1.
Otherwise if H is not adjacent to K, then H and K must be proper subgroups of G. So there exist a path of
length 2 in OD(G), which is either of the following:

(1) H − 〈e〉 − K

(2) H − G− K

(3) H − H ∩ K− K

(4) H − HK− K. Therefore, d(H, K) = 2.

From the above two cases we conclude that diam(OD(G)) ≤ 2.
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4 Isomorphisms of Order Divisor Graphs

This section describes the necessary and sufficient condition for two isomorphic groups and their order
divisor graphs. Further we study Auto(OD(G)), the group of graph automorphisms of OD(G), and we show
that Auto(G) ⊆ Auto(OD(G)).

We know that a graph isomorphism f of a graph X to a graph Y is a bijection f : X → Y which preserves
adjacency. The set Auto(X) of all graph automorphisms of X forms a group under the usual composition of
functions.

Theorem 4.21. Let G and G′ be any two distinct finite groups. Then G is isomorphic to G′ if and only if |G| = |G′|
and |S(G)| = |S(G′)|.

Proof. Let S(G) and S(G′) be the set of subgroups of finite groups G and G′ respectively.
Sufficient: Suppose G ∼= G′. Then there exist an isomorphism ϕ from G onto G′.

(i) Since ϕ is bijetive, G and G′ have the same cardinality, that is, |G| = |G′|.

(ii) Let H ∈ S(G). Then ϕ(H) = {ϕ(x) : x ∈ H} is a subgroup of G′. Now define a map f : S(G) → S(G′)
by the relation f (H) = ϕ(H), for every H ∈ S(G).

f is one-to-one: Suppose that f (H) = f (K). Then ϕ(H) = ϕ(K)⇒ H = K, since ϕ is bijection.
f is onto: Let H′ belongs to S(G′). We must find a subgroup H in S(G) such that f (H) = H′. If such

a subgroup H is to exist, it must have the property that ϕ(H) = H′. For we can solve for H to obtain
H = ϕ−1(H′) = {g ∈ G : ϕ(g) ∈ H′} and verify that ϕ(ϕ−1(H′)) = H′. It is clear that f is onto.

Therefore f is a bijection from S(G) onto S(G′), hence |S(G)| = |S(G′)|.
Necessity: Let |G| = |G′| and |S(G)| = |S(G′)|. Then we shall show that G ∼= G′.
For this we define a map ψ : G → G′ by ψ(a) = a′, for every a ∈ G. Put a′ = ψ(a) and b′ = ψ(b) for

a, b ∈ G, then a bijection ψ : G → G′ satisfying ψ(ab) = a′b′ = ψ(a)ψ(b). Then we say that G and G′ are
isomorphic under the corresponding group elements. Further we shall show that G and G′ are isomorphic
under corresponding subgroups. Let a ∈ G. Then we define a map g : G → G′ by the relation g

(
〈a〉
)
= 〈ψ(a)〉

where 〈a〉 ∈ S(G) and 〈ψ(a)〉 ∈ S(G′).
g is one-to-one: For this let a, b ∈ G, then g

(
〈a〉
)
= g

(
〈b〉
)
⇒ 〈ψ(a)〉 = 〈ψ(b)〉

⇒ ψ
(
〈a〉
)
= ψ

(
〈b〉
)
⇒ 〈a〉 = 〈b〉, since ψ is a bijection.

g is onto: By the way of construction of map g, for every subgroup 〈ψ(a)〉 of G′, there exist a subgroup 〈a〉
in G such that g

(
〈a〉
)
= 〈ψ(a)〉. Therefore g is onto.

g is a homomorphism Let 〈a〉 , 〈b〉 ∈ S(G). Then

g
(
〈a〉 〈b〉

)
= g

(
〈ab〉

)
= 〈ψ(ab)〉 = ψ

(
〈ab〉

)
= ψ

(
〈a〉 〈b〉

)
= ψ

(
〈a〉
)
ψ
(
〈b〉
)

= 〈ψ(a)〉 〈ψ(b)〉 = g
(
〈a〉
)(
〈b〉
)
.

Therefore g preserves subgroups from G onto G′. Hence G ∼= G′.

Example 4.5. (1) The symmetric group S3 is isomorphic to the Dihedral group D3 because |S3| = |D3| = 6 and
|S(S3)| = |S(D3)| = 6.

(2) The symmetric group S3 is not isomorphic to Z6 since |S3| = |Z6| = 6 but |S(Z6)| = 4 and |S(Z6)| = 4.

(3) The Klein-4 group V4 is not isomorphic to Z4 since |V4| = |Z4| = 4 but |S(V4)| = 5 and |S(Z4)| = 3.

Theorem 4.22. [16] Let ϕ be an isomorphism from a group G onto G′. Then |a| = |ϕ(a)|, for every a ∈ G. Moreover,
|H| = |ϕ(H)|, for every H ∈ S(G). In particular, a group isomorphism preserves the order of elements and the order of
subgroups respectively.

The next theorem provides a necessary and sufficient condition for order divisor graphs are isomorphic.

Theorem 4.23. Let G and G′ be two finite groups. Then G ∼= G′ if and only if OD(G) ∼= OD(G′).
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Proof. Sufficient: Suppose G ∼= G′. Then there exist an isomorphism f from G onto G′. Now to show that
OD(G) ∼= OD(G′). For this we define a map ϕ : OD(G) → OD(G′) by the relation φ(H) = f (H), for every
H ∈ S(G). It is clear that φ is well defined bijective map, and further we show that φ preserves adjacency.
To do this, let (H, K) be an edge of the graph OD(G) with end vertices H and K. Then by the definition
of order divisor graph, either |H|

∣∣|K| or |K|
∣∣|H|. By the Theorem [4.22], this implies that | f (H)|

∣∣| f (K)| or
| f (K)|

∣∣| f (H)| ⇒ |φ(H)|
∣∣|φ(K)| or |φ(K)|

∣∣|φ(H)| is adjacent to φ(K) in OD(G′), it follows that φ preserves
adjacency. Hence OD(G) ∼= OD(G′).

Necessity: Suppose OD(G) ∼= OD(G′). Then there exist an isomorphism φ from a graph OD(G) to a
graph OD(G′) is a bijection that maps V

(
OD(G)

)
to V

(
OD(G′)

)
and E

(
OD(G)

)
to E

(
OD(G′)

)
such that

each edge of OD(G) with end vertices H and K is mapped to an edge with end vertices φ(H) and φ(K).
Therefore |V

(
OD(G)

)
| = |V

(
OD(G′)

)
| and |E

(
OD(G)

)
| = |E

(
OD(G′)

)
|. This shows that |G| = |G′| and

|S(G)| = |S(G′)|. Applying Theorem [4.21] yields G ∼= G′.

Example 4.6. Figure 4 shows that the relation Z2 × Z3 ∼= Z6 ⇔ OD(Z2 × Z3) ∼= OD(Z6) is true.

The following remarks, which are the main results of this section contains the complete description for
isomorphic and non-isomorphic finite groups with their corresponding order divisor graphs.

Remark 4.2. (1) OD(Zm × Zn) ∼= OD(Zm,n)⇔ gcd(m, n) = 1.

(2) OD(Um ×Un) ∼= OD(Um,n)⇔ gcd(m, n) = 1.

Remark 4.3. Let G and G′ be two finite groups. Then G 6∼= G′ ⇔ OD(G) 6∼= OD(G′). Below are the order divisor
graphs of groups V4 and Z4. This example shows that non-isomorphic groups may have the non-isomorphic order divisor
graphs.

Theorem 4.24. Let G be a finite group. Then Auto(G) ⊆ Auto(OD(G)).

Proof. Let G be a finite group. Then Auto(G) and Auto(OD(G)) are both finite groups. Now we show that
Auto(G) ⊆ Auto(OD(G)). For this we consider ϕ ∈ Auto(G), then ϕ is an isomorphism of G onto G.
Suppose two vertices H, K ∈ S(G) are adjacent in OD(G). Then either |H|

∣∣|K| or |K|
∣∣|H|. This implies that

either |ϕ(H)|
∣∣|ϕ(K)| or |ϕ(K)|

∣∣|ϕ(H)|, since |H| = |ϕ(H)|, for every H ∈ S(G).

⇒ ϕ(H) and ϕ(K) are adjacent in OD(G).

⇒ ϕ is an isomorphism from OD(G) to OD(G).

⇒ ϕ ∈ Auto(OD(G)).

Hence Auto(G) ⊆ Auto(OD(G)).
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