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Abstract

This paper presents an efficient method namely He’s Homotopy Perturbation Method (HHPM) is
introduced for solving hybrid fuzzy differential equations based on Seikkala derivative with initial value
problem [2]. The proposed method is tested on hybrid fuzzy differential equations. The discrete solutions
obtained through He’s Homotopy Perturbation Method are compared with Leapfrog method [13]. The
applicability of the He’s Homotopy Perturbation Method is more suitable to solve the hybrid fuzzy
differential equations. Error graphs are presented to highlight the efficiency of the He’s Homotopy
Perturbation Method.
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1 Introduction

Hybrid systems are devoted to modelling, design, and validation of interactive systems of computer
programs and continuous systems. That is, control systems that are capable of controlling complex systems
which have discrete event dynamics as well as continuous time dynamics can be modelled by hybrid system.
The differential systems containing fuzzy valued functions and interaction with a discrete time controller
are named hybrid fuzzy differential systems. For analytical results on stability properties and comparison
theorems we refer reader to [V. Lakshmikantham and X. Z. Liu [9]; V.Lakshmikantham and R. N. Mohapatra
[8]; M. Sambandham [11]].

Hyunsoo Kim and Rathinasamy Sakthivel [7] obtained the numerical solution of hybrid fuzzy differential
equations using improved predictorcorrector method. T.Jayakumar and K. Kanakarajan [2] obtained
numerical solution for hybrid fuzzy system by improved Euler method. T. Jayakumar and K. Kanagarajan
[4] derived the numerical solution for hybrid fuzzy system by Runge-Kutta method of order five, T.
Jayakumar and K. Kanakarajan [2] claimed that the numerical solution for hybrid fuzzy system by improved
Euler method. K. Kanagarajan and M. Sambath [6] stated the numerical solution hybrid fuzzy differential
equations by improved predictor- corrector method. K. Kanagarajan and S. Muthukumar [5] extended
Runge-Kutta method of order four for hybrid fuzzy differential equations. S. Pederson and M.Sambandham
[10] proposed the numerical solution to hybrid fuzzy systems.

Recently, T.Jayakumar and K. Kanagarajan [3] solved the hybrid fuzzy differential equations using
Adams Fifth Order Predictor-Corrector Method. S. Sekar and K. Prabhavathi [13] solved the same hybrid
fuzzy differential equations using Leapfrog method. The objective of this paper is to use the He’s Homotopy
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Perturbation Method (discussed by Sekar et al. [14–16]) to solve the hybrid fuzzy differential equations
(discussed by T.Jayakumar and K. Kanagarajan [3] and S. Sekar and K. PRabhavathi [13]).

2 He’s Homotopy Perturbation Method

In this section, we briefly review the main points of the powerful method, known as the He’s homotopy
perturbation method [14–16]. To illustrate the basic ideas of this method, we consider the following
differential equation:

A(u)− f (t) = 0, u(0) = u0, t ∈ Ω (2.1)

where A is a general differential operator, u0 is an initial approximation of Eq. (2.1), and f (t) is a known
analytical function on the domain of Ω. The operator A can be divided into two parts, which are L and N,
where L is a linear operator, but N is nonlinear. Eq. (2.1) can be, therefore, rewritten as follows:

L(u) + N(u)− f (t) = 0

By the homotopy technique, we construct a homotopy U(t, p) : Ω× [0, 1]→ <, which satisfies:

H(U, p) = (1− p)[LU(t)− Lu0(t)] + p[AU(t)− f (t)] = 0, p ∈ [0, 1], t ∈ Ω (2.2)

or
H(U, p) = LU(t)− Lu0(t) + pLu0(t) + p[NU(t)− f (t)] = 0, p ∈ [0, 1], t ∈ Ω (2.3)

where p ∈ [0, 1] is an embedding parameter, which satisfies the boundary conditions. Obviously, from Eqs.
(2.2) or (2.3) we will have H(U, 0) = LU(t)− Lu0(t) = 0, H(U, 1) = AU(t)− f (t) = 0.

The changing process of p from zero to unity is just that of U(t, p) from u0(t) to u(t). In topology, this
is called homotopy. According to the He’s Homotopy Perturbation method, we can first use the embedding
parameter p as a small parameter, and assume that the solution of Eqs. (2.2) or (2.3) can be written as a power
series in p :

U =
∞

∑
n=0

pnUn = U0 + pU1 + p2U2 + p3U3 + ... (2.4)

Setting p = 1, results in the approximate solution of Eq.(2.1)

U(t) = lim
p→1

U = U0 + U1 + U2 + U3 + ...

Applying the inverse operator L−1 =
∫ t

0 (.)dt to both sides of Eq. (2.3), we obtain

U(t) = U(0) +
∫ t

0
Lu0(t)dt− p

∫ t

0
Lu0(t)dt− p[

∫ t

0
(NU(t)− f (t))dt] (2.5)

where U(0) = u0.
Now, suppose that the initial approximations to the solutions, Lu0(t), have the form

Lu0(t) =
∞

∑
n=0

αnPn(t) (2.6)

where αn are unknown coefficients, and P0(t), P1(t), P2(t), ... are specific functions. Substituting (2.4) and (2.6)
into (2.5) and equating the coefficients of p with the same power leads to

p0 : U0(t) = u0 + ∑∞
n=0 αn

∫ t
0 Pn(t)dt

p1 : U1(t) = −∑∞
n=0 αn

∫ t
0 Pn(t)dt−

∫ t
0 (NU0(t)− f (t))dt

p2 : U2(t) = −
∫ t

0 NU1(t)dt
...

pj : Uj(t) = −
∫ t

0 NUj−1(t)dt

(2.7)
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Now, if these equations are solved in such a way that U1(t) = 0, then Eq. (2.7) results in U1(t) = U2(t) =
U3(t) = . . . = 0 and therefore the exact solution can be obtained by using

U(t) = U0(t) = u0 +
∞

∑
n=0

αn

∫ t

0
Pn(t)dt (2.8)

It is worth noting that, if U(t) is analytic at t = t0, then their Taylor series

U(t) =
∞

∑
n=0

an(t− t0)
n

can be used in Eq. (2.8), where a0, a1, a2, ... are known coefficients and αn are unknown ones, which must be
computed.

3 Some basic results on hybrid fuzzy differential equations

Denote by E1 the set of all functions u : R→ [0, 1] such that

(i) u is normal, that is, there exist an x0 ∈ R such that u(x0) = 1,

(ii) u is a fuzzy convex, that is, for x, y ∈ R and 0 ≤ λ ≤ 1, u(λx + (1λ)y) ≥ min{u(x), u(y)}

(iii) u is upper semicontinuous, and

(iv) [u]0 = {x ∈ R : u(x) > 0} is compact. For 0 < α ≤ 1, we define [u]α = {x ∈ R : u(x) ≥ α}.

An example of a u ∈ E1 is given by

u(x) =


4x− 3, if x ∈ (0.75, 1],

−2x + 3, if x ∈ (1, 1.5),

0, if x /∈ (0.75, 1.5).

The α-level sets of u in (6.1) are given by [u]α = [0.75 + 0.25α, 1.50.5α]. For later purpose, we define ô ∈ E1 as
ô(x) = 1 if x = 0 and ô(x) = 0 if x 6= 0.

Next we review the Seikkala derivative [12] of x : I → E1 where I ⊂ R is an interval. If [x(t)a] =

[xa(t), x̄a(t)] for all t ∈ I and a ∈ [0, 1], then [x′(t)a] = [x′(t)a, (x̄a)′(t)] if x′(t) ∈ E1. Next consider the initial
value problem (IVP)

u(x) =

{
x′(t) = f (t, x(t)),

x(0) = x0
(3.9)

where f : [0, ∞) × R → R is continuous. We would like to interpret (3.9) using the Seikkala derivative
and x0 ∈ E1. Let [x0]

a = [xa
0, x̄a

0] and [x(t)]a = [xa(t), x̄a(t)]. By the Zadeh extension principle we get
f : [0, ∞) × E1 → E1 where [ f (t, x)]a = min f (t, u) : u ∈ [xa(t), x̄a(t)], max f (t, u) : u ∈ [xa(t), x̄a(t)]. Then
x : [0, ∞)→ E1 is a solution of (6.1) using the Seikkala derivative and x0 ∈ E1 if

(xa)′(t) = min f (t, u) : u ∈ [xa(t), x̄a(t)], xa(0) = xa
0,

(x̄a)′(t) = max f (t, u) : u ∈ [xa(t), x̄a(t)], x̄a(0) = x̄a
0, for all t ∈ [0, ∞) and a ∈ [0, 1]. Lastly consider an

f : [0, ∞)× R× R→ R which is continuous and the IVP{
x′(t) = f (t, x(t), k),

x(0) = x0
(3.10)

As in (3.9), to interpret (3.10) using the Seikkala derivative and x0, k ∈ E1, by the Zadeh extension principle
we use f : [0, ∞)× E1 × E1 → E1 where

[ f (t, x, k)]a = [min f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a],
max f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a]],

where ka = [ka, k̄a]]. Then x : [0, ∞)→ E1 is a solution of (6.2) using the Seikkala derivative and x0, k ∈ E1 if
(xa)′(t) = min f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a], xa(0) = xa

0,
(x̄a)′(t) = max f (t, u, uk) : u ∈ [xa(t), x̄a(t)], uk ∈ [ka, k̄a], xa(0) = xa

0,
for all t ∈ [0, ∞) and a ∈ [0, 1].
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4 The hybrid fuzzy differential systems

In this section, we study the fuzzy initial value problem for a hybrid fuzzy differential systems.

x′(t) = f (t, x(t), λkx(tk)), t ∈ [tk, tk+1], x(tk) = xtk (4.11)

where x′ denotes Seikkala differentiation, 0 ≤ t0 < t1 < ... < tk < ..., tk → ∞, f ∈ C[R+ × E1 × E1, E1], λk ∈
C[E1, E1]. To be specific the system look like

x′(t) =



x′0(t) = f (t, x0(t), λ0x(t0)), x0(t0) = x0, t0 ≤ t ≤ t1,

x′1(t) = f (t, x1(t), λ1x(t1)), x1(t1) = x1, t1 ≤ t ≤ t2,

...

x′k(t) = f (t, xk(t), λkx(tk)), xk(tk) = xk, tk ≤ t ≤ tk+1,

...

(4.12)

Assuming that the existence and uniqueness of solution of (4.11) hold for each [tk, tk+1], by the solution of
(4.12) we mean the following function:

x(t) = x(t, t0, x0)



x0(t), t0 ≤ t ≤ t1,

x1(t), t1 ≤ t ≤ t2,

...

xk(t), tk ≤ t ≤ tk+1,

...

(4.13)

We note that the solution of (4.13) are piecewise differentiable in each interval for t ∈ [tk, tk+1] for a fixed
xk ∈ E1 and k = 0, 1, 2, ...

Using a representation of fuzzy numbers studied by Goestschel and Woxman [1] and Wu and Ma [17], we
may represent x ∈ E1 by a pair of functions (x(r), x̄(r)), 0 ≤ r ≤ 1, such that

(i) (x(r), is bounded, left continuous, and non decreasing,
(ii) x̄(r) is bounded, left continuous, and non increasing, and
(iii) (x(r) ≤ x̄(r)), 0 ≤ r ≤ 1.

For example, u ∈ E1 given in (1) is represented by (u(r), ūr) = (0.75 + 0.25r, 1.5− 0.5r), 0 ≤ r ≤ 1, which is
similar to [u]a given by (3.10).

Therefore we may replace (4.13) by an equivalent system{
x′(t) = f (t, x, λkx(tk)) ≡ Fk(t, x, x̄), (x(tk) = x̄k),

x′(t) = f̄ (t, x, λkx(tk)) ≡ Gk(t, x, x̄), (x(tk) = x̄k),

which possesses a unique solution (x, x̄) which is a fuzzy function. That is for each t, the pair [x(t; r), x̄(t; r)]
is a fuzzy number, where x(t; r), x̄(t; r) are respectively the solutions of the parametric form given by{

x′(t) = Fk(t, x(t; r), x̄(t, r)), x(tk; r) = xk(r),

x′(t) = Gk(t, x(t; r), x̄(t, r)), x(tk; r) = xk(r),

for r ∈ [0, 1].

5 Numerical Experiments

In this section, the exact solutions and approximated solutions obtained by Leapfrog method and He’s
Homotopy Perturbation Method. To show the efficiency of the He’s Homotopy Perturbation Method, we
have considered the following problem taken from [13], with step size r = 0.1 along with the exact solutions.

The discrete solutions obtained by the two methods, Leapfrog method and He’s Homotopy Perturbation
Method. The absolute errors between them are tabulated and are presented in Table 1. To distinguish the
effect of the errors in accordance with the exact solutions, graphical representations are given for selected
values of ′r′ and are presented in Figures 1 – 2 for the following problem, using three dimensional effects.
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5.1 Example

Consider the following hybrid fuzzy IVP, [13]

x′(t) = x(t) + m(t)λkx(tk), t ∈ [tk, tk+1], tk = k, k = 0, 1, 2, 3, ...
x(t, r) = [(0.75 + 0.25r)et, (1.125− 0.125r)et], 0 ≤ r ≤ 1,

}
(5.14)

Where

m(t) =

{
2(t(mod1)) if t(mod1) ≤ 0.5

2(1− t(mod1)) if t(mod1) > 0.5

λk(µ) =

{
0̂ if k = 0

µ if k = 1, 2, ...

The hybrid fuzzy IVP (5.14) is equivalent to the following systems of fuzzy IVPs:
x′0(t) = x0(t), t ∈ [0, 1],
x(0; r) = [(0.75 + 0.25r)et, (1.125− 0.125r)et], 0 ≤ r ≤ 1,
x′i(t) = xi(t) + m(t)xi−1(t), t ∈ [ti, ti+1], xi(t) = xi−1(ti), i = 1, 2, ...

In (5.14) x(t) + m(t)λkx(tk) is continuous function of t, x and λkx(tk). Therefore by Example 5.1 of Kaleva [?
], for each k = 0, 1, 2, ... the fuzzy IVP

x′(t) = x(t) + m(t)λkx(tk), t ∈ [tk, tk+1], tk = k,
x(tk) = xtK

}
(5.15)

has a unique solution [tk, tk+1]. To numerically solve the hybrid fuzzy IVP (5.15) we applied the He’s
Homotopy Perturbation Method for hybrid fuzzy differential equation with N = 2 to obtain y1,2(r)
approximating x(2.0; r). The Exact and Approximate solutions by Leapfrog method and He’s Homotopy
Perturbation Method are compared and the absolute error were shown in Table 1. From the Table 1, shows
that He’s Homotopy Perturbation Method approximate solutions have less error compare to Leapfrog
method solutions [? ] in the all the stages.

Table 1: Error calculations

Leapfrog Error HHPM Error
t Y1(ti; r) Y2(ti; r) Y1(ti; r) Y2(ti; r)

0.1 1.01E-09 1.11E-09 1.01E-11 1.11E-11
0.2 2.01E-09 2.11E-09 2.01E-11 2.11E-11
0.3 3.01E-09 3.11E-09 3.01E-11 3.11E-11
0.4 4.01E-09 4.11E-09 4.01E-11 4.11E-11
0.5 5.01E-09 5.11E-09 5.01E-11 5.11E-11
0.6 6.01E-09 6.11E-09 6.01E-11 6.11E-11
0.7 7.01E-09 7.11E-09 7.01E-11 7.11E-11
0.8 8.01E-09 8.11E-09 8.01E-11 8.11E-11
0.9 9.01E-09 9.11E-09 9.01E-11 9.11E-11
1.0 1.01E-08 1.11E-08 1.01E-10 1.11E-10

6 Conclusion

The obtained results of the fuzzy hybrid differential equation show that the He’s Homotopy Perturbation
method works well for finding the solutions. From the Table 1, it can be observed that for most of the time
intervals, the absolute error is less in He’s Homotopy Perturbation method when compared to the Leapfrog
method [13], which yields a little error, along with the exact solutions of the problem.

From the results shown in the Figures 1 – 2, it can be said that the error is very less in He’s Homotopy
Perturbation method when compared to the Leapfrog method [S. Sekar and K. Prabhavathi [13]]. Moreover,



480 S. Sekar et al. / Numerical investigation of the hybrid...

Figure 1: Error estimation of Example 5.1 at Y1(ti; r)

Figure 2: Error estimation of Example 5.1 at Y2(ti; r)
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the He’s Homotopy Perturbation method is highly stable because it is based on the Perturbation method and
hence one can get the results for any length of time.
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