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On Iσ arithmetic convergence
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Abstract. In this paper, we introduce the concepts of I-invariant arithmetic convergence, I∗-invariant arithmetic
convergence, strongly q-invariant arithmetic convergence for real sequences and give some inclusion relations.
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1. Introduction and Background

Statistical convergence of a real number sequence was firstly defined by Fast [10]. It became a noteworthy
topic in summability theory after the work of Fridy [11] and Šalát [12].

In the wake of the study of ideal convergence defined by Kostyrko et al. [13], there has been comprehensive
research to discover applications and summability studies of the classical theories. A lot of development have
been seen in area about ideal convergence of sequences after the work of [14–23]

A family of sets I ⊆ 2N is called an ideal iff (i) ∅ ∈ I, (ii) For each A,B ∈ I we have A∪B ∈ I, (iii) For
each A ∈ I and each B ⊆ A we have B ∈ I.

A family of sets F ⊆ 2N is a filter in N iff (i) ∅ /∈ F , (ii) For each A,B ∈ F we have A ∩B ∈ F , (iii) For
each A ∈ F and each B ⊇ A we have B ∈ F .

If I is proper ideal of N (i.e., N /∈ I), then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I : M = N \ A}

is a filter of N it is called the filter associated with the ideal.
An ideal I on N for which I 6= P (N) is called a proper ideal. A proper ideal I is called admissible if I

contains all finite subsets of N.
A sequence (xk) is said to be I-convergent to L if for each ε > 0,

A (ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I.

If (xk) is I-convergent to L, then we write I− limx = L.
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An admissible ideal I ⊆ 2N is said to have the property (AP ) if for any sequence {A1, A2, ...} of mutually
disjoint sets of I, there is sequence {B1, B2, ...} of sets such that each symmetric differenceAi∆Bi (i = 1, 2, ...)

is finite and
∞⋃
i=1

Bi ∈ I.

Let σ be a mapping such that σ : N+ → N+ (the set of all positive integers). A continuous linear functional
Φ on l∞, the space of real bounded sequences, is said to be an invariant mean or a σ mean, if it satisfies the
following conditions:

(1) Φ (xn) ≥ 0, when the sequence (xn) has xn ≥ 0 for all n ∈ N;

(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;

(3) Φ
(
xσ(n)

)
= Φ (xn) for all (xn) ∈ l∞.

The mappings Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers n and m, where
σm (n) denotes the m th iterate of the mapping σ at n. Thus, Φ extends the limit functional on c, the space of
convergent sequences, in the sense that Φ (xn) = limxn, for all (xn) ∈ c.

In case σ is translation mappings σ (n) = n+ 1, the σ-mean is often called a Banach limit.
The space Vσ , the set of bounded sequences whose invariant means are equal, can be shown that

Vσ =

{
(xk) ∈ l∞ : lim

m→∞

1

m

m∑
k=1

xσk(n) = L

}

uniformly in n.
Several authors studied invariant mean and invariant convergent sequence (for examples, see [24–33]).
Savaş and Nuray [26] introduced the concepts of σ-statistical convergence and lacunary σ-statistical

convergence and gave some inclusion relations. Nuray et al. [28] defined the concepts of σ-uniform density of
subsets A of the set N, Iσ-convergence for real sequences and investigated relationships between
Iσ-convergence and invariant convergence also Iσ-convergence and [Vσ]p-convergence. Ulusu and Nuray [29]
investigated lacunary I-invariant convergence and lacunary I-invariant Cauchy sequence of real numbers.
Recently, the concept of strong σ-convergence was generalized by Savaş [30]. The concept of strongly
σ-convergence was defined by Mursaleen [32].

Let E ⊆ N and

sm : = min
n

{∣∣E ∩ {σ (n) , σ2 (n) , ..., σm (n)
}∣∣}

Sm : = max
n

{∣∣E ∩ {σ (n) , σ2 (n) , ..., σm (n)
}∣∣} .

If the following limits exist

V (E) = lim
m→∞

sm
m
, V (E) = lim

m→∞

Sm
m
,

then they are called a lower invariant uniform density and an upper invariant uniform density of the set E,
respectively. If V (E) = V (E), then V (E) = V (E) = V (E) is called the invariant uniform density of E.

The idea of arithmetic convergence was firstly originated by Ruckle [1]. Then, it was further investigated by
many authors (for examples, [2–8]).

A sequence x = (xm) is called arithmetically convergent if for each ε > 0, there is an integer n such that for
every integer m we have |xm − x〈m,n〉| < ε, where the symbol 〈m,n〉 denotes the greatest common divisior of
two integers m and n. We denote the sequence space of all arithmetic convergent sequence by AC.

A sequence x = (xm) is said to be arithmetic statistically convergent if for ε > 0, there is an integer n such
that

lim
t→∞

1

t
|{m ≤ t : |xm − x〈m,n〉| ≥ ε}| = 0.

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. We shall write ASC −
limxm = x〈m,n〉 to denote the sequence (xm) is arithmetic statistically convergent to x〈m,n〉.
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Kişi [7] investigated the concepts of invariant arithmetic convergence, strongly invariant arithmetic
convergence, invariant arithmetic statistically convergence, lacunary invariant arithmetic statistical convergence
for real sequences and obtained interesting results.

In [8], arithmetic I-statistically convergent sequence space AISC, I-lacunary arithmetic statistically
convergent sequence space AISCθ, strongly I-lacunary arithmetic convergent sequence space ANθ [I] were
investigated and some inclusion relations between these spaces were proved.

Kisi [9] gave the notion of lacunary Iσ arithmetic convergence for real sequences and examined relations
between this new type convergence notion and the notions of lacunary invariant arithmetic summability, lacunary
strongly q-invariant arithmetic summability and lacunary σ-statistical arithmetic convergence. Finally, giving
the notions of lacunary Iσ arithmetic statistically convergence, lacunary strongly Iσ arithmetic summability, he
proved the inclusion relation between them.

A sequence x = (xp) is said to be invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

xσp(s) = x〈p,n〉

uniformly in s. In this case we write xp → x〈p,n〉 (AVσ) and the set of all invariant arithmetic convergent
sequences will be demostrated by AVσ.

A sequence x = (xp) is said to be strongly invariant arithmetic convergent if for an integer n

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,n〉| = 0

uniformly in s. In this case we write xp → x〈p,n〉 [AVσ] to denote the sequence (xp) is strongly invariant
arithmetic convergent to x〈p,n〉 and the set of all invariant arithmetic convergent sequences will be demostrated
by [AVσ] .

A sequence x = (xp) is said to be invariant arithmetic statistically convergent if for every ε > 0, there is an
integer n such that

lim
m→∞

1

m

∣∣{p ≤ m : |xσp(s) − x〈p,n〉| ≥ ε}
∣∣ = 0

uniformly in s. We shall use ASσC to denote the set of all invariant arithmetic statistical convergent sequences.
In this case we write ASσC − limxp = x〈p,n〉 or xp → x〈p,n〉 (ASσC) .

2. Main Results

Definition 2.1. A sequence x = (xp) is called to be I-invariant arithmetic convergent if for every ε > 0, there is
an integer η such that

A (ε) :=
{
p ∈ N : |xp − x〈p,η〉| ≥ ε

}
belongs to Iσ; i.e., V (A (ε)) = 0. We can use AIσC to denote the set of all Iσ arithmetic convergent sequences.
Thus, we define

AIσC =
{
x = (xp) : for some x〈p,η〉, AIσC − limxp = x〈p,η〉

}
.

In this case we write AIσC − limxp = x〈p,η〉 or xp → x〈p,η〉 (AIσC) .

Theorem 2.2. Assume x = (xp) is a bounded sequence. If x is I-invariant arithmetic convergent to x〈p,η〉, then
x is invariant arithmetic convergent to x〈p,η〉.

Proof. Let r,m ∈ N be arbitrary and ε > 0. We estimate

t (r,m) :=

∣∣∣∣xσ(r) + xσ2(r) + ...+ xσm(r)

m
− x〈p,η〉

∣∣∣∣
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Then, we have
t(r,m) ≤ t1(r,m) + t2(r,m),

where

t1(r,m) :=
1

m

∑
1≤j≤m, |xσj(r)−x〈p,η〉|≥ε

|xσj(r) − x〈p,η〉|

and

t2(r,m) =
1

m

∑
1≤j≤m, |xσj(r)−x〈p,η〉|<ε

|xσj(r) − x〈p,η〉|.

Therefore, we have t2(r,m) < ε, for every r = 1, 2, .... The boundedness of (xp) implies that there is K > 0

such that
|xσj(r) − x〈p,η〉| ≤ K, (j = 1, 2, ...; r = 1, 2...),

then, this implies that
t1(r,m) ≤ K

m

∣∣{1 < j ≤ m : |xσj(r) − x〈p,η〉| ≥ ε
}∣∣

≤ K.maxr|{1<j≤m:|xσj(r)−x〈p,η〉|≥ε}|
m

= K.Smm

Hence, (xp) is invariant arithmetic convergent to x〈p,η〉. �

The converse of the previous theorem does not hold. For example, x = (xp) is the sequence defined by
xp = 1 if p is even and xp = 0 if p is odd. When σ (r) = r + 1, this sequence is invariant arithmetic convergent
to 1

2 , but it is not I-invariant arithmetic convergent.

Definition 2.3. A sequence (xp) is said to be strongly q-invariant arithmetic summable to x〈p,η〉, if for an integer
η

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,η〉|q = 0, uniformly in s = 1, 2, ...

where 0 < q <∞. In this case, we write xp → x〈p,η〉([AVσ]q).

Theorem 2.4. Let Iσ ⊂ 2N be an admissible ideal and 0 < q <∞.

(i) If xp → x〈p,η〉([AVσ]q), then xp → x〈p,η〉 (AIσC).

(ii) If x = (xp) ∈ l∞ and xp → x〈p,η〉 (AIσC), then xp → x〈p,η〉([AVσ]q).

Proof. (i) Let ε > 0 and xp → x〈p,η〉([AVσ]q). Then, we can write

m∑
p=1
|xσp(s) − x〈p,η〉|q

≥
∑

1≤p≤m
|xσp(s)−x〈p,η〉|≥ε

|xσp(s) − x〈p,η〉|q

≥ εq.
∣∣{1 ≤ p ≤ m : |xσp(s) − x〈p,η〉| ≥ ε

}∣∣
≥ εq.maxs

∣∣{1 ≤ p ≤ m : |xσp(s) − x〈p,η〉| ≥ ε
}∣∣
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and
1
m

m∑
p=1
|xσp(s) − x〈p,η〉|q

≥ εq.maxs|{p≤m:|xσp(s)−x〈p,η〉|≥ε}|
m

= εq.Smm

for every s = 1, 2, .... This implies limm→∞
Sm
m = 0 and so xp → x〈p,η〉 (AIσC).

(ii) Presume that x ∈ l∞ and xp → x〈p,η〉 (AIσC). Let ε > 0. Since (xp) is bounded, then there is M > 0

such that
|xσp(s) − x〈p,η〉| ≤M,

for p = 1, 2, ...; s = 1, 2, .... Observe that for every s ∈ N we have that

1
m

m∑
p=1
|xσp(s) − x〈p,η〉|q

= 1
m

∑
1≤p≤m

|xσp(s)−x〈p,η〉|≥ε

|xσp(s) − x〈p,η〉|q

+
∑

1≤p≤m
|xσp(s)−x〈p,η〉|<ε

|xσp(s) − x〈p,η〉|q

≤M maxs|{1≤p≤m: |xσp(s)−x〈p,η〉|≥ε}|
m + εq

≤M Sm
m + εq.

Hence, we obtain

lim
m→∞

1

m

m∑
p=1

|xσp(s) − x〈p,η〉|q = 0 uniformly in s = 1, 2, ... .

�

Definition 2.5. A sequence x = (xp) is said to be I∗-invariant arithmetic convergent to x〈p,η〉, if there exists a
set M = {m1 < m2 < ... < mp < ...} ∈ F (Iσ) and there is an integer η such that

lim
p→∞

xmp = x〈p,η〉.

In this case, we write xp → x〈p,η〉 (AI∗σC) .

AI∗σ-convergence is better applicable in some situations.

Theorem 2.6. Let Iσ be an admissible ideal. If a sequence (xp) is I∗-invariant arithmetic convergent to x〈p,η〉,
then this sequence is I-invariant arithmetic convergent to x〈p,η〉.

Proof. By assumption, there is a set H ∈ Iσ such that for

M = N \ H = {m1 < m2 < ... < mp < ...}

we have
lim
p→∞

xmp = x〈p,η〉. (2.1)
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Let ε > 0. By (2.1), there is p0 ∈ N such that |xmp − x〈p,η〉| < ε for each p > p0. Then, clearly

{p ∈ N : |xp − x〈p,η〉| ≥ ε} ⊂ H ∪ {m1 < m2 < ... < mp0} . (2.2)

Since Iσ is admissible, the set on the right-hand side of (2.2) belongs to Iσ . Hence, xp → x〈p,η〉 (AIσC). �

The converse of the Theorem 2.6 holds if Iσ has property (AP ) .

Theorem 2.7. Let Iσ ⊂ 2N be an admissible ideal with property (AP ). If xp → x〈p,η〉 (AIσC), then xp →
x〈p,η〉 (AI∗σC).

Proof. Presume that Iσ satisfies condition (AP ) . Let xp → x〈p,η〉 (AIσC). Then, we write{
p ∈ N : |xp − x〈p,η〉| ≥ ε

}
∈ Iσ

for each ε > 0. Put
E1 =

{
p ∈ N : |xp − x〈p,η〉| ≥ 1

}
and

Er =

{
p ∈ N :

1

r
≤ |xp − x〈p,η〉| <

1

r − 1

}
for r ≥ 2, and r ∈ N. Clearly, Ei ∩ Fj = ∅ for i 6= j. By condition (AP ) there is a sequence of sets {Fr}r∈N
such that Ej∆Fj are finite sets for j ∈ N and F =

∞⋃
j=1

Fj ∈ Iσ . It is sufficient to demonstrate that for M = N \

F ,
M = {m = (mi) : mi < mi+1 , i ∈ N} ∈ F (Iσ)

we have
lim

p∈M,p→∞
xp = x〈p,η〉. (2.3)

Let λ > 0. Select r ∈ N such that 1
r+1 < λ. Then

{
p ∈ N : |xp − x〈p,η〉| ≥ λ

}
⊂
r+1⋃
j=1

Ej .

Since Ej∆Fj , j = 1, 2, ..., r + 1 are finite sets, there is p0 ∈ N such thatr+1⋃
j=1

Fj

 ∩ {p ∈ N : p > p0} =

r+1⋃
j=1

Ej

 ∩ {p ∈ N : p > p0} (2.4)

If p > p0 and p /∈ F, then p /∈
r+1⋃
j=1

Fj and by (2.4) p /∈
r+1⋃
j=1

Ej . But then |xp−x〈p,η〉| < 1
r+1 < λ; so (2.3) holds

and we obtain xp → x〈p,η〉 (AI∗σC). �

Now, we shall state a theorem that gives a relation between Sσ arithmetic convergence and I-invariant
arithmetic convergence.

Theorem 2.8. A sequence x = (xp) is Sσ arithmetic convergent to x〈p,η〉 iff it is I-invariant arithmetic
convergent to x〈p,η〉.
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