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Oscillation criteria for nonlinear difference equations with superlinear

neutral term
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Abstract

In this paper, the authors obtain sufficient conditions for the oscillation of all solutions of the equation

∆(an∆(xn + pnxα
n−k)) + qnxβ

n+1−l = 0

where α ≥ 1 and β > 0 are ratio of odd positive integers, and {an}, {pn} and {qn} are real positive sequences.
Examples are provided to illustrate the importance of the main results.
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1 Introduction

In this paper, we are concerned with the oscillatory behavior of nonlinear neutral difference equation of
the form

∆(an∆(xn + pnxα
n−k)) + qnxβ

n+1−l = 0, n ≥ n0 (1.1)

where n0 is a nonnegative integer, subject to the following conditions:

(H1) α ≥ 1, and β are ratios of odd positive integers;

(H2) {an}, {pn}, and {qn} are positive real sequences for all n ≥ n0;

(H3) k is a positive integer, and l is a nonnegative integer.

Let θ = max{k, l}. By a solution of equation (1.1), we mean a real sequence {xn} defined for all n ≥ n0 − θ

that satisfies equation (1.1) for all n ≥ n0. A solution of equation (1.1) is called oscillatory if its terms are neither
eventually positive nor eventually negative, and nonoscillatory otherwise. If all solutions of the difference
equation are oscillatory then the equation itself called oscillatory.

As mentioned by Hale [4] and others, neutral equations having a nonlinearity in the neutral term arise
in various applications. We choose to investigate the oscillatory behavior of equation (1.1) since similar
properties of difference equations with linear neutral term are extensively studied in [1–3, 8, 10].

In particular in [6, 7, 9, 11, 12], the authors considered equation of the type (1.1) when 0 < α ≤ 1 and either

∞

∑
n=n0

1
an

= ∞, (1.2)

or
∞

∑
n=n0

1
an

< ∞. (1.3)
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In all the results the condition pn → 0 as n→ ∞ is required to apply the theorems. Further in [11], the authors
considered equation of the type (1.1) with α > 1 and studied the oscillatory behavior under the condition that
limn→∞ inf qn > 0. Motivated by this observation, in this paper we examine the other case α ≥ 1 and we do
not require that either pn → 0 as n→ ∞ or limn→∞ inf qn > 0. Our method of proof is different from that of in
and hence our results are new and complement to that of reported in [6, 7, 9, 11, 12]. Examples are presented
to illustrate the importance of the main results.

2 Oscillation Results

In this section, we obtain sufficient conditions for the oscillation of all solutions of the equation (1.1). Define

Rn =
n−1

∑
s=n0

1
as

, An =
∞

∑
s=n

1
as

,

Bn =
1

pn+k

1−
M

1
α R

1
α
n+2k

R
1
α
n+k p

1
α
n+2k

 > 0 for all constants M > 0,

and

En =
1

pn+k

1−
M

1
α−1
1 A

1
α−1
n+k

p
1
α
n+2k

 > 0 for all constants M1 > 0.

We set
zn = xn + pnx

1
α
n−k.

Due to the from of our equation (1.1), we only need to give proofs for the case of eventually positive solutions
since the proofs for the eventually negative solution would be similar.

We begin with the following theorem.

Theorem 2.1. Assume that (H1)− (H3), and (1.2) hold. If

∞

∑
n=n1

qnB
β
α
n+1−l = ∞ (2.4)

then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that equation (1.1) has an eventually positive solution, say xn > 0, xn−k > 0,
and xn−l > 0 for all n ≥ n1 for some n1 ≥ n0. From equation (1.1), we have

∆(an∆zn) = −qnxβ
n+1−l < 0, n ≥ n1. (2.5)

In view of condition (1.2), it is easy to see that ∆zn > 0 for all n ≥ n1. Now, it follows from the definition of zn,
one obtains

xα
n =

1
pn+k

(zn+k − xn+k). (2.6)

On the other hand xn+k ≤
z1/α

n+2k

p1/α
n+2k

, and therefore from (2.6), we have

xα
n ≥

1
pn+k

zn+k −
z1/α

n+2k

p
1
α
n+2k

 . (2.7)

From (2.5), we have an∆zn is positive and decreasing and therefore

zn ≥ Rnan∆zn, n ≥ n1, (2.8)



582 B.Kamaraj et al. / Oscillation criteria for nonlinear difference...

and hence

∆
(

zn

Rn

)
≤ 0, n ≥ n1. (2.9)

Now (2.7) and (2.9) implies that

xα
n ≥

1
pn+k

1−
M

1
α−1R

1
α
n+2k

R
1
α
n+k p

1
α
n+2k

 zn+k (2.10)

where we have used zn ≥ M > 0 for all n ≥ n1. In view of (2.5) and (2.10), we obtain

∆(an∆zn) + qnB
β
α
n+1−lz

β
α
n+1+k−l , n ≥ n1. (2.11)

Summing the equation (2.11) from n1 to n, we have

n

∑
s=n1

qsB
β
α
s+1−lz

β
α
n+1+k−l ≤ an1 ∆zn1 .

Since zn ≥ M, it is easy to see from the last inequality that we can obtain a contradiction with (2.4) as n→ ∞.
This completes the proof.

Remark 2.1. In Theorem 2.1, we are not required the conditions α ≥ β or α ≤ β and l ≥ k or l ≤ k.

Theorem 2.2. Assume that (H1)− (H3), and (1.2) hold. If l > k, and the first order delay difference equation

∆wn + qnB
β
α
n+1−l R

β
α
n+1+k−lw

β
α
n+1+k−l = 0 (2.12)

is oscillatory, then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that equation (1.1) has an eventually positive solution such that xn > 0, xn−k >

0, and xn−l > 0 for all n ≥ n1 ≥ n0. Proceeding as in proof of Theorem 2.1, we obtain (2.8) and (2.11). Now
combining (2.8) and (2.11), we have

∆(an∆zn) + qnB
β
α
n+1−l R

β
α
n+1+k−l(an+1+k−l∆zn+1+k−l

)
β
α ≤ 0.

Let wn = an∆zn. Then {wn} is a positive solution of the inequality

∆(an∆zn) + qnB
β
α
n+1−l R

β
α
n+1+k−lw

β
α
n+1+k−l ≤ 0, n ≥ n1.

But by Lemma 2.7 of [8], the corresponding difference equation (2.12) has positive solution. This contradiction
completes the proof.

Corollary 2.1. Assume that (H1)− (H3) and (1.2) hold. If l > k + 1, α = β and

lim
n→∞

inf
n−1

∑
s=n+1+k−l

qsBs+1−l Rs+1+k−l >

(
l − k− 1

l − k

)l−k
(2.13)

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Theorem 7.5.1 of [3] and Theorem 2.2.

Corollary 2.2. Assume that (H1)− (H3), and (1.2) hold. If β < α and l > k and

∞

∑
n=n1

qnB
β
α
n+1−l R

β
α
n+1+k−l = ∞ (2.14)

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Theorem 1 of [5] and Theorem 2.2.
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Corollary 2.3. Assume that (H1)− (H3), and (1.2) hold. If β > α and l > k + 1 and there exists a λ > 1
l−k−1 log β

α

such that

lim
n→∞

inf
[

qnB
β
α
n+1−l R

β
α
n+1+k−l exp(−eλn)

]
> 0

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Theorem 2 of [5] and Theorem 2.2.

Our next results are for the case where (1.3) holds in place of (1.2).

Theorem 2.3. Let β
α > 1, (H1)− (H3), and (1.3) hold. If condition (2.4) holds, and

lim
n→

sup
n−1

∑
s=n1

A
β
α
s+1qsE

β
α
s+1−l −

β
α M1− β

α
1 A

β
α−1
s

4as A
β
α
s+1

 = ∞ (2.15)

for all constants M1 > 0, then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that equation (1.1) has an eventually positive solution such that xn > 0, xn−k >

0, and xn−l > 0 for all n ≥ n1 ≥ n0. From equation (1.1) that (2.5) holds, we then have either ∆zn > 0 or
∆zn < 0 eventually. If ∆zn > 0 holds, then proceeding as Theorem 2.1, we obtain a contradiction to condition
(2.4). Next assume that ∆zn < 0 for all n ≥ n1. Define

un =
an∆zn

z
β
α
n

, n ≥ n1. (2.16)

Then un < 0 for n ≥ n1, and from (2.5) we have

∆zs ≤ an∆zn

as
, s ≥ n.

Summing the last inequality from n to j and the letting j→ ∞, we obtain

an∆zn An

zn
≥ −1, n ≥ n1. (2.17)

Thus

−an∆zn(−an∆zn)
β
α−1 A

β
α
n

z
β
α
n

≤ 1

for n ≥ n1. Since −an∆zn > 0 and from (2.16), we have

− 1

L
β
α−1
≤ un A

β
α
n ≤ 0, (2.18)

where L = −an1 ∆zn1 . On the other hand from (2.17), one obtains

∆
(

zn

An

)
≥ 0, n ≥ n1. (2.19)

From the definition of zn and (2.19), we have

xα
n ≥

1
pn+k

1−
M

1
α−1
1 A

1
α−1
n+k

p
1
α
n+2k

 , n ≥ n1, (2.20)

where we have used zn
An
≥ M1 for all n ≥ n1. From (2.5) and (2.20), we obtain

∆(an∆zn) + qnE
β
α
n+1−lz

β
α
n+1+k−l ≤ 0, n ≥ n1. (2.21)
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From (2.16), we have

∆un =
∆(an∆zn)

z
β
α
n+1

− un∆z
β
α
n

z
β
α
n+1

, n ≥ n1. (2.22)

By Mean value theorem

∆z
β
α
n ≤

 β
α z

β
α−1
n+1 ∆zn, if β

α > 1;
β
α z

β
α−1
n ∆zn, if β

α < 1,
(2.23)

and so combining (2.23) with (2.22) and then using the fact that ∆zn < 0 gives

∆un ≤ −qnE
β
α
n+1−l −

β

α
M

β
α−1
1 A

β
α−1
n

u2
n

an
(2.24)

since zn
zn+1
≥ 1 for all n ≥ n1. Multiplying (2.24) by A

β
α
n+1 and then summing it from n1 to n− 1, we obtain

n−1

∑
s=n1

A
β
α
s+1∆us +

n−1

∑
s=n1

A
β
α
s+1qsE

β
α
s+1−l +

n−1

∑
s=n1

β

α
M

β
α−1
1 A

β
α
s+1 A

β
α−1
s

u2
n

an
≤ 0.

(2.25)

Summation by parts formula yields

n−1

∑
s=n1

A
β
α
s+1∆us ≥ A

β
α
n un − A

β
α
n1 un1 +

n−1

∑
s=n1

β

α
A

β
α−1
s

us

as
. (2.26)

Combining (2.25) and (2.26) implies

A
β
α
n un − A

β
α
n1 un1 +

n−1

∑
s=n1

β

α
A

β
α−1
s

us

as
+

n−1

∑
s=n1

β

α
M

β
α−1
1 A

β
α
s+1 A

β
α−1
s

u2
n

an

+
n−1

∑
s=n1

A
β
α
s+1qsE

β
α
s+1−l ≤ 0

which on using completing the square yields

n−1

∑
s=n1

A
β
α
s+1qsE

β
α
s+1−l −

β
α M1− β

α
1 A

β
α−1
s

4as A
β
α
s+1

 ≤ 1

L
β
α−1

+ A
β
α
n1 un1

when using (2.18). This contradicts (2.15) as n→ ∞, and the proof is now completed.

Theorem 2.4. Let 0 < β
α < 1, (H1)− (H3), and (1.3) hold. If l > k, condition (2.14) hold, and

lim
n→∞

sup
n−1

∑
s=n1

[
K

β
α−1 As+1qsE

β
α
s+1−l −

1
4as As+1

]
= ∞ (2.27)

for all constants K > 0, then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.3, we see that ∆zn > 0 or ∆zn < 0 eventually. If ∆zn > 0, then
proceeding as in Corollary 2.2, we obtain a contradiction with condition (2.14). Next, assume that ∆zn < 0 for
all n ≥ n1. Proceeding as in the proof of Theorem 2.3 we obtain (2.21). Define

un =
an∆zn

zn
, n ≥ n1. (2.28)

Thus un < 0 for all n ≥ n1, and

∆un ≤ ∆(an∆zn)

zn+1
− an(∆zn)2

znzn+1

≤ −qnE
β
α
n+1−l

z
β
α
n+1+k−l
zn+1

− u2
n

an
, n ≥ n1. (2.29)
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Since {zn} is decreasing there exists a constant K > 0 such that zn ≤ K for all n ≥ n1. Using the last inequality
in (2.29), we see that

∆un ≤ −qnE
β
α
n+1−lK

β
α−1 − u2

n
an

, n ≥ n1.

Multiplying the last inequality by An+1 and then summing it from n1 to n− 1, we have

n−1

∑
s=n1

As+1∆us +
n−1

∑
s=n1

As+1
u2

s
as

+
n−1

∑
s=n1

K
β
α−1 As+1qsE

β
α
s+1−l ≤ 0. (2.30)

Using summation by parts formula in the first term of (2.30) and rearranging, we have

Anun − An1 un1 +
n−1

∑
s=n1

(
us

as
+ As+1

u2
s

as

)
+

n−1

∑
s=n1

K
β
α−1 As+1qsE

β
α
s+1−l ≤ 0

which on using completing the square yields

n−1

∑
s=n1

[
K

β
α−1 As+1qsE

β
α
s+1−l −

1
4as As+1

]
≤ 1 + An1 un1

when using (2.17). This contradicts (2.27) as n→ ∞, and the proof is now complete.

Theorem 2.5. Let α = β, (H1)− (H3), and (1.3) hold. If l > k + 1, condition (2.13) hold, and

lim
n→∞

sup
n−1

∑
s=n1

[
As+1qsEs+1−l −

1
4as As+1

]
= ∞ (2.31)

then every solution of equation (1.1) is oscillatory.

Proof. The proof follows from Corollary 2.1 and Theorem 2.4, and thus the details are omitted.

3 Examples

In this section, we present some examples to illustrate the importance of our main results.

Example 3.1. Consider the neutral difference equation

∆
(

1
n

∆
(

xn + nx3
n−1

))
+ nx1/3

n−2 = 0, n ≥ 1. (3.32)

Here an = 1
n , pn = n, qn = n, k = 1, l = 3, α = 3 and β = 1

3 . Simple calculation yields Rn = n(n−1)
2

and Bn = 1
(n+1)

(
1− M−2/3

n1/3

)
. Now, it is easy to see that all conditions of Theorem 2.1 are satisfied, and hence

every solution of equation (3.32) is oscillatory.

Example 3.2. Consider the neutral difference equation

∆
(

1
2n + 1

∆
(

xn + nx3
n−2

))
+ 2x3

n−3 = 0, n ≥ 1. (3.33)

Here an = 1
2n+1 , pn = n, qn = 2, k = 2, l = 4 and α = β = 3. Simple calculation shows that Rn = n2 − 1,

Bn = 1
(n+2)

(
1− M−2/3(n+5)1/3

(n+1)1/3(n+4)1/3

)
, and it is easy to see that all conditions of Corollary 2.1 are satisfied. Hence

every solution of equation (3.33) is oscillatory. In fact {xn} = {(−1)n} is one such solution of equation (3.33).

Example 3.3. Consider the neutral difference equation

∆
(
(n + 1)(n + 2)∆

(
xn + n3x3

n−1

))
+ (n + 1)7x5

n−3 = 0, n ≥ 1. (3.34)
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Here an = (n + 1)(n + 2), pn = n3, qn = (n + 1)7, k = 1, l = 4, α = 3 and β = 5. A simple calculation

yields Rn = n−1
n , An = 1

n+1 , Bn = 1
(n+1)3

(
1− M1/3(n+1)2/3

n1/3(n+2)2/3

)
and En = 1

(n+1)3

(
1− M−2/3

(n+2)1/3

)
. Now, it is easy

to see that all conditions of Theorem 2.3 are satisfied and hence every solution of equation (3.34) is oscillatory.

Example 3.4. Consider the neutral difference equation

∆
(
(n + 1)(n + 2)∆

(
xn + (n− 1)x5/3

n−1

))
+ (n + 2)2x5/3

n−2 = 0, n ≥ 1. (3.35)

Here an = (n + 1)(n + 2), pn = (n− 1), qn = (n + 2)2, k = 1, l = 3, α = β = 5/3. A simple calculation

shows that Rn = n−1
n , An = 1

n+1 , Bn = 1
n

(
1− M−2/5(n+1)3/5

(n(n+2))3/5

)
, and En = 1

n

(
1− M−2/5

1 (n+2)2/5

(n+1)3/5

)
. It is easy to

verify that all conditions of Corollary 2.1 and Theorem 2.5 are satisfied and hence every solution of equation
(3.35) is oscillatory.

We conclude this paper with the following remark.

Remark 3.2. In this paper, we obtain some new oscillation criteria for the equation (1.1) using Riccati type
transformation and comparison method which involves α and β. Further the results presented in this paper are new and
complement to that of in [6, 7, 9, 11, 12].
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