Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

Intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring

N. Anitha^{*a*} and K. Tamilvanan^{*b*,*}

^aDepartment of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.

^b Department of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.

Abstract

www.malayajournal.org

In this paper, a generalized intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring is proposed. Further, some important notions and basic algebraic properties of intuitionistic fuzzy sets are discussed.

Keywords: Q-fuzzy subhemiring, *Q*-fuzzy ternary subhemiring, intuitionistic fuzzy ternary subhemiring, homomorphism, anti-homomorphism.

2010 MSC: 03F55, 06D72, 08A72, 16Y30, 16Y60.

©2012 MJM. All rights reserved.

1 Introduction

An algebra $(R; +; \cdot)$ is said to be a semiring if (R; +) and $(R; \cdot)$ are semigroups satisfying a.(b + c) = a.b + a.c and (b + c).a = b.a + c.a for all a, b and c in R. A Semiring R is said to be additively commutative if a + b = b + a for all a and b in R. Ternary rings are introduced by Lister [9]. And he investigated some of their properties and radical theory of such rings. A Semiring R may have an identity 1, defined by 1.a = a = a.1 and a zero 0, defined by 0 + a = a = a + 0 and a.0 = 0 = 0.a for all a in R. Ternary semirings arise naturally as follows-consider the ring of integers Z which plays a vital role in the theory of ring. The concept of intuitionistic fuzzy subsets (IFS) was presented by K.T.Atanassov [5], as a generalization of the notion of fuzzy set. Solairaju.A and R.Nagarajan, have given a new structure in construction of Q-fuzzy groups [14]. Also Giri.R.D and Chide.B.R [8], given the structure of Prime Radical in Ternary Hemiring. In this paper, we introduce some properties and theorems in intuitionistic Q-fuzzy ternary subhemiring of a hemiring.

2 Preliminaries

Definition 2.1. Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of X is function $A: X \times Q \rightarrow [0,1]$.

Definition 2.2. *Let R be a hemiring. A fuzzy subset A of R is said to be a Q-fuzzy ternary subhemiring (FTSHR) of R if it satisfies the following conditions:*

(*i*) $A(x+y,q) \ge \min\{A(x,q), A(y,q)\},\$

(ii) $A(xyz,q) \ge \min\{A(x,q), A(y,q), A(z,q)\}$, for all x, y and z in R and q in Q.

Definition 2.3. *Let R be a hemiring. A Q-fuzzy subset A of R is said to be an anti Q-fuzzy subhemiring (AFTSHR) of R if it satisfies the following conditions:*

^{*}Corresponding author.

E-mail address: anithaarenu@gmail.com (Anitha), tamiltamilk7@gmail.com (Tamilvanan).

- (*i*) $A(x+y,q) \le \max\{A(x,q), A(y,q)\},\$
- (ii) $A(xyz,q) \le \max\{A(x,q), A(y,q), A(z,q)\}$, for all x, y and z in R and q in Q.

Definition 2.4. An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form $A = \{ < x, \mu_A(x), \mu_A(x) > /x \in X \}$, where $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Definition 2.5. Let *R* be a hemiring. An intuitionistic *Q*-fuzzy subset *A* of *R* is said to be an intuitionistic *Q*-fuzzy ternary subhemiring (IFTSHR) of *R* if it satisfies the following conditions:

- (*i*) $\mu_A(x+y,q) \ge \min\{\mu_A(x,q),\mu_A(y,q)\},\$
- (*ii*) $\mu_A(xyz,q) \ge \min\{\mu_A(x,q), \mu_A(y,q), \mu_A(z,q)\},\$
- (*i*) $\nu_A(x+y,q) \le \max\{\nu_A(x,q),\nu_A(y,q)\},\$
- (*ii*) $v_A(xyz,q) \le \max\{v_A(x,q), v_A(y,q), v_A(z,q)\}$, for all x, y and z in R and q in Q.

Definition 2.6. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f : R \to R'$ is called a homomorphism if f(x + y, q) = f(x, q) + f(y, q) and f(xyz, q) = f(x, q)f(y, q)f(z, q), for all x, y and z in R and q in Q.

Definition 2.7. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f : R \to R'$ is called an anti-homomorphism if f(x + y, q) = f(y, q) + f(x, q) and f(xyz, q) = f(z, q)f(y, q)f(x, q), for all x, y and z in R and q in Q.

Definition 2.8. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f : R \to R'$ is called an *isomorphism if f is bijection.*

Definition 2.9. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemirings. Then the function $f : R \to R'$ is called an *anti-isomorphism if f is bijection.*

3 Some properties of intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring

Theorem 3.1. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R, +, \cdot)$, then $H = \{(x,q) | x \in R : \mu_A(x,q) = 1, \nu_A(x,q) = 0\}$ is either empty or is a ternary subhemiring of R.

Proof. If none of the elements satisfies this condition, then *H* is empty. If (x, q) and (y, q) in *H*, then $\mu_A(x + y, q) \ge \min\{\mu_A(x, q), \mu_A(y, q)\} = \min\{1, 1\} = 1$. Therefore $\mu_A(x + y, q) = 1$, for all (x, q) and (y, q) in *H*. And $\mu_A(xyz, q) \ge \min\{\mu_A(x, q), \mu_A(y, q), \mu_A(z, q)\} = \min\{1, 1, 1\} = 1$. Therefore $\mu_A(xyz, q) = 1$, for all (x, q), (y, q) and (z, q) in *H*. And $\nu_A(x + y, q) \le \max\{\nu_A(x, q), \nu_A(y, q)\} = \max\{0, 0\} = 0$. Therefore $\nu_A(x + y, q) = 0$, for all (x, q) and (y, q) in *H*. And $\nu_A(xyz, q) \le \max\{\nu_A(x, q), \nu_A(y, q), \nu_A(z, q)\} = \max\{0, 0\} = 0$. Therefore $\nu_A(xyz, q) = 0$, for all (x, q), in *H*. And $\nu_A(xyz, q) \le \max\{\nu_A(x, q), \nu_A(y, q), \nu_A(z, q)\} = \max\{0, 0\} = 0$. Therefore $\nu_A(xyz, q) = 0$, for all (x, q), in *H*. And $\nu_A(xyz, q) \le \max\{\nu_A(x, q), \nu_A(y, q), \nu_A(z, q)\} = \max\{0, 0\} = 0$. Therefore $\mu_A(xyz, q) = 0$, for all (x, q), in *H*. Therefore *H* is a ternary subhemiring of *R*. Hence *H* is either empty or is a ternary subhemiring of *R*.

Theorem 3.2. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R, +, \cdot)$, then $H = \{ \langle (x,q), \mu_A(x,q) \rangle : 0 < \mu_A(x,q) \le 1 \text{ and } \nu_A(x,q) = 0 \}$ is either empty or is a Q-fuzzy ternary subhemiring of R.

Proof. By using Theorem 3.1.

Theorem 3.3. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R, +, \cdot)$, then $H = \{ \langle (x,q), \mu_A(x,q) \rangle : 0 < \mu_A(x,q) \le 1 \}$ is either empty or is a Q-fuzzy ternary subhemiring of R.

Proof. By using Theorem.3.2.

Theorem 3.4. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R, +, \cdot)$, then A is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let *A* be an intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring *R*. Consider $A = \{\langle (x,q), \mu_A(x,q), \nu_A(x,q) \rangle\}$, for all *x* in *R*. $A = B = \{\langle (x,q), \mu_B(x,q), \nu_B(x,q) \rangle\}$, where $\mu_B(x,q) = \mu_A(x,q), \nu_B(x,q) = 1 - \mu_A(x,q)$. clearly, $\mu_B(x+y,q) \ge \min\{\mu_B(x,q), \mu_B(y,q)\}$ and $\mu_B(xyz,q) \ge \min\{\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)\}$. Since *A* is an intuitionistic *Q*-fuzzy ternary subhemiring of *R*, we have, $\mu_A(x+y,q) \ge \min\{\mu_A(x,q), \mu_A(y,q)\}$ for all *x* and *y* in *R*, which implies that $1 - \nu_B(x+y,q) \ge \min\{(1 - \nu_B(x,q)), (1 - \nu_B(y,q))\}$ which implies that $\nu_B(x+y,q) \le 1 - \min\{(1 - \nu_B(x,q)), (1 - \nu_B(y,q))\}$ for all *x* and *y* in *R* and *q* in *Q*. And $\mu_A(xyz,q) \ge \min\{\mu_A(x,q), \mu_A(y,q), \mu_A(y,q), \mu_A(z,q)\}$ which implies that $1 - \nu_B(xyz,q) \ge \min\{(1 - \nu_B(x,q)), (1 - \nu_B(y,q)), (1 - \nu_B(y,q))\}$ minterform $\{\nu_B(x,q), \nu_B(y,q)\}$ for all x and y in *R* and q in Q. And $\mu_A(xyz,q) \ge \min\{\mu_A(x,q), \mu_A(y,q), \mu_A(y,q), \mu_A(z,q)\}$ which implies that $1 - \nu_B(xyz,q) \ge \min\{(1 - \nu_B(x,q)), (1 - \nu_B(y,q)), (1 - \nu_B(z,q))\}$ minterform $\{\nu_B(x,q), \nu_B(y,q), \nu_B(y,q)\}$. Therefore, $\nu_B(x+y,q) \le \max\{\nu_B(x,q), \nu_B(y,q)\}$ for all x and y in *R* and q in Q. And $\mu_A(xyz,q) \ge \min\{(1 - \nu_B(x,q)), (1 - \nu_B(x,q))\}$ minterform $\{\nu_B(x,q), \nu_B(y,q), \nu_B(y,q)\}$. Therefore $\nu_B(xyz,q) \ge \min\{(1 - \nu_B(x,q)), (1 - \nu_B(x,q))\}$ minterform $\nu_B(xyz,q) \ge \min\{(1 - \nu_B(x,q)), (1 - \nu_B(x,q))\}$ minterform $\nu_B(x,q), \nu_B(y,q), \nu_B(y,q)$. Therefore $\nu_B(xyz,q) \le \max\{\nu_B(x,q), \nu_B(y,q), \nu_B(y,q)\}$. Therefore $\nu_B(xyz,q) \le \max\{\nu_B(x,q), \nu_B(y,q)\}$. Therefore $\nu_B(xyz,q) \le \max\{\nu_B(x,q), \nu_B(y,q), \nu_B(z,q)\}$ for all x, y and z in *R*. Hence B = A is an intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring *R*.

Remark 3.1. The converse of the above theorem is not true. It is shown by the following example: Consider the hemiring $Z_5 = \{0, 1, 2, 3, 4\}$ with addition modulo and multiplicative modulo operation and $Q = \{p\}$. Then $A = \{(\langle 0, 0.7, 0.2 \rangle, p), (\langle 1, 0.5, 0.1 \rangle, p), (\langle 2, 0.5, 0.4 \rangle, p), (\langle 3, 0.5, 0.1 \rangle, p), (\langle 4, 0.5, 0.4 \rangle, p)\}$ is not an intuitionistic Q-fuzzy ternary subhemiring of Z_5 , but $A = \{(\langle 0, 0.7, 0.3 \rangle, p), (\langle 1, 0.5, 0.5 \rangle, p), (\langle 2, 0.5, 0.5 \rangle, p), (\langle 3, 0.5, 0.5 \rangle, p), (\langle 4, 0.5, 0.5 \rangle, p)\}$ is an intuitionistic Q-fuzzy ternary subhemiring of Z_5 .

Theorem 3.5. If A is an intuitionistic Q-fuzzy ternary subhemiring of a hemiring $(R, +, \cdot)$, then A is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let *A* be an intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring *R*. That is $A = \{\langle (x,q), \mu_A(x,q)\nu_A(x,q)\rangle\}$, for all *x* in *R* and *q* in *Q*. Let $A = B = \{\langle (x,q), \mu_B(x,q), \nu_B(x,q)\rangle\}$, where $\mu_B(x,q) = 1 - \nu_A(x,q), \nu_B(x,q) = \nu_A(x,q)$. clearly, $\nu_B(x+y,q) \leq \max\{\nu_B(x,q), \nu_B(y,q)\}$ and $\nu_B(xyz,q) \leq \max\{\nu_B(x,q), \nu_B(y,q), \nu_B(z,q)\}$ for all *x*, *y* and *z* in *R*. Since *A* is an intuitionistic *Q*-fuzzy ternary subhemiring of *R*, we have, $\nu_A(x+y,q) \leq \max\{\nu_A(x,q), \nu_A(y,q)\}$ for all *x* and *y* in *R*, which implies that $1 - \mu_B(x+y,q) \leq \max\{(1 - \mu_B(x,q)), (1 - \mu_B(y,q))\}$ which implies that $\mu_B(x+y,q) \geq 1 - \max\{(1 - \mu_B(x,q)), (1 - \mu_B(x,q), \mu_B(y,q))\}$ for all *x* and *y* in *R* and *q* in *Q*. And $\nu_A(xyz,q) \leq \max\{\nu_A(x,q), \nu_A(y,q), \nu_A(z,q)\}$ which implies that $1 - \mu_B(xyz,q) \leq \max\{(1 - \mu_B(x,q)), (1 - \mu_B(y,q))\}$. Therefore, $\mu_B(x,q), \nu_A(z,q)$, which implies that $1 - \mu_B(xyz,q) \leq \max\{(1 - \mu_B(x,q)), (1 - \mu_B(y,q))\}$. Therefore, $\mu_B(x,q), \nu_A(z,q)$, which implies that $1 - \mu_B(xyz,q) \leq \max\{(1 - \mu_B(x,q)), (1 - \mu_B(y,q))\}$. Therefore, $\mu_B(x,q), \nu_A(z,q)$, which implies that $1 - \mu_B(xyz,q) \leq \max\{(1 - \mu_B(x,q)), (1 - \mu_B(y,q))\}$. Therefore, $\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)\}$ which implies that $\mu_B(xyz,q) \geq 1 - \max\{(1 - \mu_B(x,q)), (1 - \mu_B(x,q))\}$. Therefore, $\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)\}$. Therefore, $\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)$, $\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)$. Therefore, $\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)$, $\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)$. Therefore, $\mu_B(xyz,q) \geq \min\{\mu_B(x,q), \mu_B(y,q), \mu_B(z,q)\}$, for all *x*, *y* and *z* in *R*. Hence *B* = *A* is an intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring *R*.

Remark 3.2. The converse of the above theorem is not true. It is shown by the following example: Consider the hemiring $Z_5 = \{0, 1, 2, 3, 4\}$ with addition modulo and multiplicative modulo operation and $Q = \{p\}$. Then $A = \{(\langle 0, 0.5, 0.1 \rangle, p), (\langle 1, 0.6, 0.4 \rangle, p), (\langle 2, 0.5, 0.4 \rangle, p), (\langle 3, 0.6, 0.4 \rangle, p), (\langle 4, 0.5, 0.4 \rangle, p)\}$ is not an intuitionistic Q-fuzzy ternary subhemiring of Z_5 , but $A = \{(\langle 0, 0.9, 0.1 \rangle, p), (\langle 1, 0.6, 0.4 \rangle, p), (\langle 2, 0.6, 0.4 \rangle, p), (\langle 3, 0.6, 0.4 \rangle, p), (\langle 4, 0.6, 0.4 \rangle, p)\}$ is an intuitionistic Q-fuzzy ternary subhemiring of Z_5 .

In The Following Theorem \circ Is The Composition Operation of Functions:

Theorem 3.6. Let A be an intuitionistic Q-fuzzy ternary subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. Then $A \circ f$ is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let *x* and *y* in *R* and *A* be an intuitionistic *Q*-fuzzy ternary subhemiring *H*. Then we have $(\mu_A \circ f)(x + y, q) = \mu_A(f(x + y, q)) = \mu_A(f(x, q) + f(y, q)) \ge \min \{\mu_A(f(x, q)), \mu_A(f(y, q))\}$ (as A is an IFTSHR of H) $\ge \min \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(y, q)\}$ which implies that $(\mu_A \circ f)(x + y, q) \ge \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(x, q), (\mu_A \circ f)(x, q)\}$, for all *x* and *y* in *R* and *q* in *Q*. And $(\mu_A \circ f)(xyz, q) = \mu_A(f(xyz, q)) = \mu_A(f(x, q)f(y, q)f(z, q))$, as *f* is an isomorphism $\ge \min \{\mu_A(f(x, q)), \mu_A(f(y, q)), \mu_A(f(z, q))\}$, as *A* is an IFTSHR of $H \ge \min \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(y, q)\}$ which implies that $(\mu_A \circ f)(xyz, q) \ge \min \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(y, q)\}$ which implies that $(\mu_A \circ f)(xyz, q) \ge \min \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(y, q)\}$ which implies that $(\mu_A \circ f)(xyz, q) \ge \min \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(y, q)\}$ which implies that $(\mu_A \circ f)(xyz, q) \ge \min \{(\mu_A \circ f)(x, q), (\mu_A \circ f)(y, q)\}$ which implies that $(\mu_A \circ f)(xyz, q) \ge \min \{(\mu_A \circ f)(xyz, q)\}$ is a function of the function of the

 $f)(x,q), (\mu_A \circ f)(y,q), (\mu_A \circ f)(z,q) \}, \text{ for all } x, y \text{ and } z \text{ in } R. \text{ We have } (\nu_A \circ f)(x+y,q) = \nu_A(f(x+y,q)) = \nu_A(f(x,q)+f(y,q)), \text{ as } f \text{ is an isomorphism} \leq \max \{\nu_A(f(x,q)), \nu_A(f(y,q))\} \leq \max \{(\nu_A \circ f)(x,q), (\nu_A \circ f)(y,q)\} \text{ which implies that } (\nu_A \circ f)(x+y,q) \leq \max \{(\nu_A \circ f)(x,q), (\nu_A \circ f)(y,q)\}, \text{ for all } x \text{ and } y \text{ in } R. \text{ And } (\nu_A \circ f)(xyz,q) = \nu_A(f(xyz,q)) = \nu_A(f(x,q)f(y,q)f(z,q)), \text{ as } f \text{ is an isomorphism} \leq \max \{\nu_A(f(x,q)), \nu_A(f(y,q)), \nu_A(f(z,q))\} \leq \max \{(\nu_A \circ f)(x,q), (\nu_A \circ f)(y,q), (\nu_A \circ f)(z,q)\} \text{ which implies that } (\nu_A \circ f)(xyz,q) \leq \max \{(\nu_A \circ f)(x,q), (\nu_A \circ f)(y,q), (\nu_A \circ f)(z,q)\} \text{ for all } x, y \text{ and } z \text{ in } R. \text{ Therefore } (A \circ f) \text{ is an intuitionistic } Q-fuzzy ternary subhemiring of a hemiring } R.$

Theorem 3.7. Let A be an intuitionistic Q-fuzzy ternary subhemiring of a hemiring H and f is an antiisomorphism from a hemiring R onto H. Then $A \circ f$ is an intuitionistic Q-fuzzy ternary subhemiring of R.

Proof. Let *x* and *y* in *R* and *A* be an intuitionistic *Q*-fuzzy ternary subhemiring *H*. Then we have $(\mu_A \circ f)(x + y, q) = \mu_A(f(x + y, q)) = \mu_A(f(y, q) + f(x, q))$, as *f* is an anti-homomorphism $\geq \min \{\mu_A(f(y,q)), \mu_A(f(x,q))\}$ as *A* is an IFTSHR of $H \geq \min \{(\mu_A \circ f)(x,q), (\mu_A \circ f)(y,q)\}$ which implies that $(\mu_A \circ f)(x + y, q) \geq \min \{(\mu_A \circ f)(x,q), (\mu_A \circ f)(y,q)\}$, for all *x* and *y* in *R*. And $(\mu_A \circ f)(xyz,q) = \mu_A(f(xyz,q)) = \mu_A(f(z,q)f(y,q)f(x,q))$, as *f* is an anti-isomorphism $\geq \min \{\mu_A(f(z,q)), \mu_A(f(y,q)), \mu_A(f(x,q))\}$ as *A* is an IFTSHR of $H \geq \min \{(\mu_A \circ f)(x,q), (\mu_A \circ f)(y,q)\}$ which implies that $(\mu_A \circ f)(xyz,q) \geq \min \{(\mu_A \circ f)(x,q), (\mu_A \circ f)(y,q), (\mu_A \circ f)(z,q)\}$ for all *x*, *y* and *z* in *R*. We have $(v_A \circ f)(x + y, q) = v_A(f(x + y, q)) = v_A(f(y,q) + f(x,q))$, as *f* is an anti-isomorphism $\leq \max \{v_A(f(y,q)), v_A(f(x,q))\} \leq \max \{(v_A \circ f)(x,q), (v_A \circ f)(y,q)\}$ which implies that $(v_A \circ f)(x,q), (v_A \circ f)(x,q), (v_A \circ f)(y,q)\}$ for all *x* and *y* in *R*. And $(v_A \circ f)(xyz,q) = v_A(f(xyz,q)) = v_A(f(z,q)f(y,q)f(x,q))$, as *f* is an anti-isomorphism $\leq \max \{v_A(f(z,q)f(y,q), v_A \circ f)(y,q)\}$ for all *x* and *y* in *R*. And $(v_A \circ f)(xyz,q) = v_A(f(xyz,q)) = v_A(f(z,q)f(y,q)f(x,q))$, as *f* is an anti-isomorphism $\leq \max \{(v_A \circ f)(x,q), (v_A \circ f)(y,q)\}$ for all *x* and *y* in *R*. And $(v_A \circ f)(xyz,q) = v_A(f(xyz,q)) = v_A(f(z,q)f(y,q)f(x,q))$, as *f* is an anti-isomorphism $\leq \max \{v_A(f(z,q)), v_A(f(y,q)), v_A(f(x,q))\} \leq \max \{(v_A \circ f)(x,q), (v_A \circ f)(y,q), (v_A \circ f)(z,q)\}$ which implies that $(v_A \circ f)(xyz,q) \leq \max \{(v_A \circ f)(x,q), (v_A \circ f)(z,q)\}$ for all *x* and *y* in *R* and *q* in *Q*. Therefore $(A \circ f)$ is an intuitionistic *Q*-fuzzy ternary subhemiring of a hemiring *R*.

References

- N. Anitha and K. Arjunan, Homomorphism in Intuitionistic Fuzzy Subhemiring of a Hemiring, International Journal of Mathematical Science & Engg. Appls, Vol.4(v); 165–172,2010.
- [2] N. Anitha, Intuitionistic Q-Fuzzy Subhemiring of a Hemiring, International Journal on Engineering Technology and Sciences, Vol.II, 70–73,2015.
- [3] N. Anitha, Level set of Intuitionistic Fuzzy Subhemiring of a Hemiring, *International Journal on Engineering Technology and Sciences*, Vol.II, 124–128,2015.
- [4] Asok kumer Ray, On Product of Fuzzy Subgroups, Fuzzy Sets and Systems, 105; 181–183, 1999.
- [5] K. T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol.20 (1); 87–96,1986.
- [6] R. Biswas, Fuzzy Subgroups and Anti-Fuzzy Subgroups, *Fuzzy Sets and Systems*, 35; 121–124, 1990.
- [7] T. K. Dutta, S. Kar, On Prime ideals and Prime Radical of Ternary Semiring, Bull. Calcutta Math. Soc., 97, No.5; 445–454, 2005.
- [8] R. D. Giri and B. R. Chide, Prime Radical in Ternary Hemirings, *International Journal of Pure and Applied Mathematics*, Vol.95 (5), 631–647, 2014.
- [9] W. G. Lister, Ternary Rings, Trans. Amer. Math. Soc., 154; 37–55, 1971.
- [10] N. Palaniappan and R. Muthuraj, The Homomorphism, Anti-Homomorphism of a Fuzzy and An Anti-Fuzzy Groups, *Varahmihir Journal of Mathematical Sciences*, Vol.4 (2); 387–399, 2004.
- [11] N. Palaniappan and K. Arjunan, The Homomorphism, Anti-Homomorphism of a Fuzzy and An Anti-Fuzzy Ideals, *Varahmihir Journal of Mathematical Sciences*, Vol.6 (1), 181–188, 2006.

- [12] N. Palaniappan and K. Arjunan, Some Properties of Intuitionistic Fuzzy Subgroups, *ActaCiencia India*, Vol.XXXIII (2); 321–328, 2007.
- [13] Rajesh Kumar, Fuzzy Algebra, University of Delhi Publication Division, Volume 1,1993.
- [14] A. Solairaju and R. Nagarajan, A New Structure and Construction of *Q*-Fuzzy Groups, *Advances in Fuzzy Mathematics*, Vol.4 (1); 23–29, 2009.
- [15] W. B. Vasantha Kandasamy, *Smarandache Fuzzy Algebra*, American Research Press, Rehoboth, 2003.
- [16] L.A. Zadeh, Fuzzy Sets, Information and Control, Vol.8; 338–353, 1965.

Received: January 19, 2017; Accepted: July 21, 2017

UNIVERSITY PRESS

Website: http://www.malayajournal.org/