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Abstract

In this paper, we have proved the existence of unique common fixed point of four contractive maps on

2-cone Banach space through a contractive modulus and weakly compatible maps.
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1 Introduction

In 2007, Huang and Zhang [1] introduced the concept of cone metric spaces and fixed point theorems of
contraction mappings ; Any mapping T of a complete cone metric space X into itself that satisfies, for some
0 < k < 1, the inequality d(Tx, Ty) < kd(x,y),Vx,y € X has a unique fixed point. In 2009, Karapinar[Z2]
establish Some fixed theorems in cone Banach space. The common fixed point theorems with the assumption
of weakly compatible and coincidence point of four maps on an upper semi continuous contractive modulus
in cone Banach space are proved by R. Krishnakumar and D.Dhamodharan [5]. Ahmet Sahiner and Tuba
Yigit[11] proved 2 -cone Banach spaces and fixed point theorem.

In this paper, we investigate the common fixed point theorems with the assumption of weakly compatible

and coincidence point of four maps on an upper semi continuous contractive modulus in 2-cone Banach space
Definition 1.1. Let E be the real Banach space. A subset P of E is called a cone if and only if:
i. P is closed, non empty and P # 0
ii. ax+ by € P forall x,y € P and non negative real numbers a, b
iii. PN (—P) = {0}.

Given a cone P C E, we define a partial ordering < with respect to P by x < yifand only ify — x € P. We
will write x < y to indicate that x < y but x # y, while x, y will stand for y — x € intP, where intP denotes the
interior of P. The cone P is called normal if there is a number K > 0 such that 0 < x < y implies ||x|| < K||y||

for all x,y € E. The least positive number satisfying the above is called the normal constant.
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Example 1.1. Let K > 1. be given. Consider the real vector space with
E={ax+b:abeRxe[l— %,1]}
with supremum norm and the cone
P={ax+b:a>0,b<0}
in E. The cone P is reqular and so normal.
Definition 1.2. Let X be a nonempty set. Suppose the mapping d : X x X — E satisfies
i. d(x,y) >0, and d(x,y) = 0ifand only if x =y Vx,y € X,

ii. d(x,y) =d(y,x), Vx,y € X,

iii. d(x,y) <d(x,z)+d(z,y), Vx,y,z € X,
Then (X, d) is called a cone metric space (CMS).

Example 1.2. Let E = R?
P={(xy):xy =0}
X =Randd: X x X — E such that
d(x,y) = (Ix =yl alx —yl)

where & > 0 is a constant. Then (X, d) is a cone metric space.
Definition 1.3. [2]] Let X be a vector space over R. Suppose the mapping ||.||c : X — E satisfies

i. ||x|lc > 0forall x € X,

ii. ||x|lc = 0ifand only if x =0,

iii. ||x +ylle < [lxllc + [[yllc forall x,y € X,

iv. ||kx||c = |k|||x||c for all k € R and for all x € X, then ||.||c is called a cone norm on X, and the pair (X, ||.||c) is

called a cone normed space (CNS).

Remark 1.1. Each Cone normed space is Cone metric space with metric defined by
d(x,y) =[x —ylle
Example 1.3. Let X = R?>, P = {(x,y) : x > 0,y > 0} C R%>and ||(x,y),ullc = (a|x|,bly|),a > 0,b > 0. Then

(X, ||., ul|c) is a cone normed space over R?

Definition 1.4. Let (X, ||.|[c) be a CNS, x € X and {x,},>0 be a sequence in X. Then {x,},>0 converges to x
whenever for every ¢ € E with 0 < E, there is a natural number N € N such that ||x, — x| < ¢ foralln > N. It is

denoted by limy, 00 Xy, = X OF Xy — X

Definition 1.5. Let (X, ||.||c) be a CNS, x € X and {x,},>0 be a sequence in X. {x,}n>0 is a Cauchy sequence
whenever for every ¢ € E with 0 <K c, there is a natural number N € N, such that ||x, — Xm||c < cforalln,m > N

Definition 1.6. Let (X, ||.||c) bea CNS, x € X and {xy, },>0 be a sequence in X. (X, ||.||c) is a complete cone normed

space if every Cauchy sequence is convergent. Complete cone normed spaces will be called cone Banach spaces.

Lemma 1.1. [2] Let (X, ||.||c) be a CNS, P be a normal cone with normal constant K, and {x, } be a sequence in X.
Then

i. the sequence {xy} converges to x if and only if || x, — x|| — 0asn — oo,
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ii. the sequence {x,} is Cauchy if and only if ||x, — Xm||c = 0as n,m — oo,
iii. the sequence {xy} converges to x and the sequence {y,} converges toy, then ||x, — ynullc — ||x — y||c.

Definition 1.7. [11]] Let X be a linear space over R with dimension greater then or equal to 2, E be Banach space with
the norm ||.|| and P C E be a cone. If the function

...l : Xx X — (E,P, )
satisfies the following axioms:
1. ||x,y|lc > 0 forevery x,y € X, ||x,y||c = 0 if and only if x and y are linearly dependent,
2. %, ylle = |ly, x||c, for every x,y € X
3. |lax,y|lc = |al||x,y||c for every x,y € X and « € R

4. ||x,y+zlc < % ylle + ly zl|c, for every x,y,z € X,

then (X, ||, .||c) is called a 2 -cone normed space.
Example 1.4.
If we fix {uy, uy, ..., u;} to be a basis for X, we can give the following lemma.

Lemma 1.2. [11] Let (X, |, ., ||c) be a 2 -cone normed space. Then a sequence {x,} converges to x € X if and only
if for each ¢ € E with ¢ > 0 (0 is zero element of E) there exists an N = N(c) € N such that n > N implies
lxn — x, uil|c < cforeveryi=1,2,...,d.

Lemma 1.3. [11] Let (X, ||.,.||c) be a 2 -cone normed space. Then a sequence {x,} converges to x in X if and only if
’}grgomax l|xn — x, uil|c = 0.

Definition 1.8. [11] A 2 -cone normed space (X, ||.,.||c) is a 2-cone Banach spaces if any Cauchy sequence in X is

convergent to an x in X.

Theorem 1.1. Any 2-cone normed space X is a cone normed spaces and its topology agrees with the norm generated by
[P

Definition 1.9. Let f and g be two self maps defined on a set X maps f and g are said to be commuting of fgx = gfx
forallx € X

Definition 1.10. Let f and g be two self maps defined on a set X maps f and g are said to be weakly compatible if they
commute at coincidence points. that is if fx = gx forall x € X then fgx = gfx

Definition 1.11. Let f and g be two self maps on set X. If fx = gx, for some x € X then x is called coincidence point
of fand g

Lemma 1.4. Let f and g be weakly compatible self mapping of a set X. If f and g have a unique point of coincidence,
that is w = fx = gx then w is the unique common fixed point of f and g.

2 Main Result

Theorem 2.2. Let X be a 2-cone Banach space (with dim X > 2). Suppose that the mappings P, Q, S and T are four
self maps of X such that T(X) C P(X) and S(X) C Q(X) and satisfying
ITy = Sx,ullc < al|[Px = Qy, ullc + b{[[Px — Sx,ullc +[|Qy — Ty, ullc} + c{[[Px — Ty, ullc +[|Qy — Sx, ullc}
(2.1)
forall x,y € X, wherea,b,c > 0and a+ 2b+ 2c < 1. suppose that the pairs { P, S} and {Q, T} are weakly compatible,
then P, Q, S and T have a unique common fixed point.
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Proof. Suppose X is an arbitrary initial point of X and define the sequence {y, } in X such that
Yon = SXop = QX1

Yon1 = Txopq1 = Pxoyyo

By implies that

Y2041 = Yon, ulle = || Tx2n+1 — Sxon, ulfc
< al|Pxay — Qxnt1, wlle + b{||Px2n — Sxan, ulc + [|Qxon — Txop41, ullc}
+ c{l|Px2n — Txgui1,ullc + [[Qx2n+1 — Sxom, llc}
< allyan-1— Yan tllc + b{llyan-1 — yan, ullc + ly2n — y2us1, ullc}
+ c{lly2n—1 = vons1, ulle + [lyan — yon, ulle}
< allyan—1 = yan ulle + b{lly2n-1 — yon, ullc + llyan — y2n+1, ullc}
+cllyan—1 — yan+1,ullc

(@+b+c)lly2n1 = yan ulle + (b + ) [y2n = yansalle

a+b+c
lyan+1 — yan, ullc < m“yzn — Yon—1,ulc

IN

N

lyon+1 — von, ullc < hllyan — yon—1,ullc

where h = 1‘1‘%3) <1foralln € N

lyon — vans1, ullc < hllyan—1 — Yon, ullc

< K?||yan—2 — yon_1,1lc

< B Hyo =y, ullc
Forallm >n
yn = ym ulle < lyn =y ulle + ([yns1 — ynr2, ulle + -+ lYm—1 — ym, ullc
<R ) [lyo =y ulle
SH' A +h+R2 4+ H" ) lyo — y, ulc

n

h
< 7 lvo =y ule

= ”]/n _]/m/uHc < 0asn,m— oo.
Hence {y,} is a Cauchy sequence.

There exists a point ! in (X, ||., u||c) such that

dgtynt =1, lim, Son = g, Qanes = Land iy, Txzes = Jimg, Pz =1

that is,
lim Sy = lim Qppy1 = lim Txgpy1 = lim Pxgy42 = x*
Since T(X) C P(X), there exists a point z in X Such that x* = Pz then by (1)
ISz — x*, ullc < ||Sz — Txpp_1,ullc + [| Tx2—1 — x*, 14|
< a||Pz — Qxpy 1, tllc + b{||Pz — Sz, u||c + [|Qx2n_1 — Txop_1,ullc}
+ c{[|Pz — Txgp—1,ulc + |Qx2n—1 — Sz, ullc} + [ Txan—1 — x*, uc
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Taking the limit as n — oo

152 =%, ulle < aflx™ =%, ufle +b{[|lx* — 2% uflc + [[x" — Sz, ullc}
+etlle® = 2% ufle + [x" = Sz ufle} + [l — % ulc

<0+ b{||lx* — Sz, ullc + 0} + c{0+ ||x* — Sz, ufle} + 0+ (b+c)|x* — Sz, ulc

Which is a contraction since a + 2b + 2¢ < 1.
therefore Sz = Pz = x*

Since S(X) C Q(X) there exists a point w € X such that x* = Qu.
by (1)

ISz — x*, ull. < ||Sz — Tw, u||.
< a||Pz — Qw, ul|c + b{||Pz — Sz, ul|c + ||Qw — Tw, u||.} + c{||Pz — Tw, u|c + ||Qw — Sw, u||. }
<al|x* —x*,ulle + b{||x* — x*, ullc + ||x* — Tw, u||c} + c{||x* — Tw, ul|c + [|x* — x*, ul|}
<0+ +b{0+ ||x* — Tw,u||c} + c{||x* — Tw, ul|. + 0}

[[x* — Tw, u|l. < (b+c)||x* — Tw, u|c

which is a contradiction since a +2b + 2¢ < 1.
therefore Tw = Qw = x*

Thus Sz = Pz = Tw = Qw = x*
Since P and S are weakly compatible maps,
Then SP(z) = PS(2)
Sx* = Px*
To prove that x* is a fixed point of S
Suppose Sx* # x* then by

|Sx* — x*, ullc < ||Sx* — Tx*, ul|.
< a||Px* — Qw, u||c + b{||Px* — Sx*, u||c + ||Qw — Tw, u||. }+
+ o{||Px* — Tw, uf|c + [|Qw — Sx*, ul|c}
< a||Sx* — x*, ullc + b{||Sx* — Sx*, u||c + [|x* — xF, ull }+
+c{||Sx* — x*, ullc + ||x* — Sx*, ullc}
< a||Sx* — x*, ullc + b{0+ 0} + 2¢||Sx™ — x*, ul|,

ISx* — x*,ullc < (a+20)]|Sx™ — x*, uc

Which is a contradiction, Since a + 2b + 2¢ < 1.

Sx* = x*

Hence Sx* = Px* = x* Similarly, Q and T are weakly compatible maps then TQw = QTw, thatis Tx* =
Qx*

To prove that x* is a fixed point of T.
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Suppose Tx* # x* by
|1Tx* —x*,ulle <||Sx* — Tx*, ul.
< a||Px* — Qx*,ul|c + b{||Px* — Sx*, u||c + ||Qx* — Tx*, u||.}+
+c{||Px* — Tx*, ullc + [|Qx" — Sx™, ul|.}
<al|x* —Tx*,ul|c + b{||x* — x*, ul|c + || Tx* — Tx*, ul|.}+
+c{llx" = T, ufle + [ Tx* — %, ullc}
< a||Tx* — x*,ullc + b{0+ 0} + 2¢|| Tx™ — x*, u|.

I Tx* — x*,ullc < (a+20)||Tx* — x*,ulc

which is a contradiction since a + 2b + 2¢ < 1.
Tx* = x*.

Hence. Tx* = Qx* = x*

Thus Sx* = Px* = Tx* = Qx* = x*

That is, x* is a common fixed point of P, Q,S and T
To prove that the uniqueness of x*

Suppose that x* and y*, x* # y* are common fixed points of P, Q, S and T respectively, by we have,

lv =y ulle < [1Sx° — Ty",ull

< al|Px* — Qy*, ulle + b{[|Px™ — Sx*, uflc + | Qy* — Ty", ulc}+
+ o{||Px* = Ty", ulle + [|Qy™ — Sx*, ullc}
<alx® =y ulle +0{lx" = 2" ulle + [ly* =y ulle} +e{llx" =y ulle + ly" — 2%, ulle}
<alx" =y ulle + {0+ 0} + c{[lx" —y* ulle + lly" — % ullc}
< (a+20)[|x" —y* ulle

which is a contradiction. Since a + 2b + 2¢ < 1.

therefore x* = y*.

Hence x* is the unique common fixed point of P, Q, S and T respectively. O

Corollary 2.1. Let X be a 2-cone Banach space (with dim X > 2). Suppose that the mappings P, S and T are three self
maps of X such that T(X) C P(X) and S(X) C P(X) and satisfying

1S% =Ty, ulle < al|Px— Py, ulle+b{[[Px = Sy, ullc +[|Px = Ty, ullc} +c{[[Px — Ty, ullc + [Py — Sx, ul|c}

forall x,y € X, wherea,b,c > 0and a+2b+2c < 1. suppose that the pairs { P, S} and { P, T} are weakly compatible,
then P, S and T have a unique common fixed point.

Proof. The proof of the corollary immediate by taking P = Q in the above theorem (2.2). O

Definition 2.12. A mapping ® : P U {0} — P U {0} is said to be contractive modulus if it is continuous and which
satisfies

1. ®(t) = 0ifand only if t =0
2. O(t) <tforteP

3. D(t+s) < O(t) +P(s) fort,s e P
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Theorem 2.3. Let X be a 2-cone Banach space (with dim X > 2).. Suppose that the mappings P, Q, S and T are four
self maps of X such that T(X) C P(X) and S(X) C Q(X) satisfying

|Sx — Ty, u||c < P(A(x,y)), (2.2)

where ® is an upper semi continuous contractive modulus and

Ax,y) = max{|[Px — Qy, ullc, |Px — Sx, ulle, [|Qy — Ty, ull, %{IIPX — Ty, ullc + |Qy — Sx, ullc}}
The pair {S, P} and {T, Q} are weakly compatible. Then P, Q, S and T have a unique common fixed point.
Proof. Let us take x( is an arbitrary point of X and define a sequence {y, } in X such that
Yon = Sxon = QXopt1
Yant1 = TX2pq1 = Pxony2
By implies that

lY2n — Yont1, tlle = ||Sx2n — Txopq1, ullc
< q)(A(xZn/ x2n+1))
< A(X2n, X2n41)

= max{ || Pxz; — Qx2n 41, U|c, [Pxan — Sxon, ulle, | Qx2n11 — Txony1, e,
%{pr2n — Txans1, ulle + [[Qx2n1 — Sxon, u|c}}
= max{ | Txan—1 — Sxan, ullc, [| Tx2n—1 — Sxon, ttl|e, || Sx2n — Tx2p11, e,
ST 1 = Taggen e + S50 — vz}
= max{|| Tx2,_1 — Sxo, ullc, || TX2p—1 — Sxop, ulle, [|Sx20 — Txop 11, uc,
1T 201 — Tz, ulle)
= max{||y2n — yan—1,ullc, [[yon — ]/2n+lruHCr%Hy2n71 = Yons1, |}
< max{|ly2n — yan—1,ulle, [yon — yanir, ullc}
Since @ is an contractive modulus, A(x2, — X2,41) = |[V2n — Yan+1, U||c is not possible. Thus,
ly2n — yan+1, ulle < D([ly2n—1 —yon, ullc) (23)

Since @ is an upper semi continuous, contractive modulus. Equation (2.3) implies that the sequence {||y2,4+1 —

Yon, U]|c} is monotonic decreasing and continuous. There exists a real number, say r > 0 such that

nlgrc}o ||y2n+l - yanu”C =1,

as n — oo equation (2.3) =
r < ®(r)

which is only possible if ¥ = 0 because @ is a contractive modulus. Thus
Jim {|y2n+1 = y2n, uflc = 0.

Claim: {y,,} is a Cauchy sequence.
Suppose {y2,} is not a Cauchy sequence.

Then there exists an € > 0 and sub sequence {n;} and {m;} such that m; < n; < m;

lym; —yn,ulle > € and  |lym; —yn,_, ullc <€ (2.4)
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€< ||ymi _y”i’uHC < ||ym1 - y”iflquC + ||y”i—l - yniluHC
therefore  lim ||y, — yn, ulc = €
1—00
now
€< Hymi—l _yni—l’uHC < Hymi—l _ymi’uHC + H]/m,- _yni—l’uHC
by taking limit i — co we get,

}E?o Nym;_y — Yn;_y, ulle =€

from (2.3) and
€< Hymi _y”i’uHC = stmi - Tx”i'u”C < q)(/\(xmi’x”i))

where implies
€ < O(A(xpm;, xn))

/\(xmi’xni) = maX{Hmez‘ - Qx”i'uHCr ||mei - Sxmif”HCr ||Qx”i - Tx"i/u”Cr

1
E(prmi - Txni'u”C + ||Qx”i - Sxmi'unc)}

= maX{HTxmiq - sx”i—l’uHC/ ||Txm171 - Sxmi/uHC/ ||Sx"171 - Tx”i’ ”HCr

1
E(HTxmi—l - Tx"i/u”C + st"i—l - Sxmi'”HC)}

= max{”ym;;l - yﬂiq/u”C/ ||]/m,;1 - ymi/uHC/ ||yn1,1 - yﬂi/uHC/

1
E(HymH - yni/”Hc + HynH - ymi/“HC)}
Taking limit as i — oo, we get
. 1
lim A(xp,,, x,,) = max{¢, 0,0, = (¢,€)}
i—o0 ! ! 2

Lim A(x;, xpn,) = €
1—00

Therefore from we have, € < ®(e)

This is a contraction because € > 0 and @ is contractive modulus.
Therefore {1, } is Cauchy sequence in X

There exits a point z in X such that nlgrolo Yon =2

Thus,

lim Sx5, = lim Qx =z and
lim Sxap n_moQ 2n+1

Iim Tx = lim Px =z
S X1 = M EX0p42

(16) lim SX2n = lim sznJrl = lim TX2n+1 = lim Px2n+2 =2z
n—o0 n—o0 n—o0 n—o0

T(X) C P(X), there exists a point u € X such that z = Pu

1Su =z, ulle < [|Su = Txan g, ulle + [ Toxzn1 — 2 ulc

< O(AMu, x2n41)) + | Tx2n 1 — 2z, ullc

where

AU, X2p41) = max{||[Pu — Qxoyy1, e, ||Pu — Su, ullc, || Qx2n+1 — Tx2n41, 4| c,

1
§(||P“ — Txopq1,ullc + ||QXon1 — Su, ullc)}

= max{||z — Sxon, ul|c, ||z — Su, u|c, ||Sx2n — Tx2n11, Ul|c,

1
5(”2 — Txopi1, ]| + ||Sxon — Su, ullc) }-

615

(2.5)
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Now taking the limit as n — oo we have,

1
M, xon11) = max{||z — Su ulle, ||z — Su, ulle, [|Su — Tu,ulle, 5 (12 = Tu, ulle + ||z = Su,uflc) }

1
= max{|lz = Su,ulle, |z = Su, ulle, [|Su =z ulle, 5 (1|2 =z ulle + ||z — Su,ufle) }

= ||z — Su, ul|.
Thus

IS0 — 2 ulle < (IS - z,ullc) + |1z — 2 ull
= (|[Su =z ullc)
If Su # z then ||Su — z,u||c > 0 and hence as @ is contracive modulus
P(||Su — z,u||c) < ||Su — z,ul| Which is a contradiction, Su = z so, Pu = Su =z
So u is a coincidence point if P and S. The pair of maps S and P are weakly compatible SPu = PSu that is
Sz = Pz.
S(X) C Q(X), there exists a point v € X such that z = Qu.

Then we have

llz— To,ullc = ||Su — To,u||
< O(A(u,0))
< A(u,v)
= max{||Pu — Qu, u|c, || Pu — Su, ul|¢, ||Qu — To, u||,

1
5 (1Pu = To, ullc +[|Qv — Su, ullc) }
= max{l|z — zullc, |z =z ullc, ||z = To, ul,
1
5Ulz=To,ulle + [z =z ulle)}
=|lz—To,uc
Thus ||z — To, ullc < ®(||z — To, uc).
If Tv € z then ||z — Tv, ul|. > 0 and hence as ® is contractive modulus

D(||z— To,ullc) < ||z — To,ul|c

Therefore ||z — T, u||c < ||z — Tv, ul|,

which is a contradiction. Therefore Tv = Qv = z

So, v is a coincidence point of Q and T.

Since the pair of maps Q and T are weakly compatible, QTv = TQu
(i.e) Qz = Tz

Now show that z is a fixed point of S.

We have

ISz — z|| = ||Sz — To, u|c
< ®(A(z,0))
< A(z,v)
1
= max{[|Pz — Qu,ull¢, [Pz = Sz,ulle, || Qv = To, ulle, 5 (|Pz = To, ullc + [|Qv — Sz, ullc)}

1
= max{||Sz —zullc, |5z = Sz, ulle, ||z =z, ulle, 5 (|52 =z, ulle + ||z = Sz, ulle) }

=||Sz — z,ul|¢
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Thus ||Sz — z, u||c < ®(||Sz — z, ul|c).

If Sz # z then ||Sz — z, u||c > 0 and hence as @ is contractive modulus ®(||Sz — z, ul|.) < ||Sz — z, u||,
which is a contradiction. There exits Sz = z. Hence Sz = Pz =z

Show that z is a fixed point of T.

We have

lz— Tz, ullc = ||Sz — Tz, ul|¢
< ®(A(z2))
< A(z,2)
1
= max{||Pz — Qz, ul|c, |Pz — Sz, ul|, [|Qz — Tz, u|, E(HPZ —Tz,ul|c+ ||Qz — Sz, ull¢)}

1
= max{|lz = Tz ulle, ||z =z ulle, [|Tz = Tz, ulle, 5 (2 = Tz, ullc + [Tz =z, ullc)}
= ||z — Tz ull,

Thus ||z — Tz, u||c < ®(||z — Tz, uc)-

If z # Tz then ||z — Tz, ul|. > 0 and hence as ® is contractive modulus
D(||lz—Tz,u|c) < ||z — Tz, ullc.

which is a contradiction. Hence z = Tz.

Therefore Tz = Qz = z.

Therefore Sz = Pz = Tz = Qz = z.

That is z is common fixed point of P, Q, S and T.

Uniqueness

Suppose, z and w is (z # w) are common fixed point of P, Q,S and T.

we have
Iz - w,ulle = |15z - Tew,ull
< P(A(z,w))
< Az, w)

1
= max{[|Pz — Qu, ullc, |[Pz = Sz, ullc, [| Quw — Tw, ullc, 5 (|[Pz — Tw, ullc + | Qw — Sz, ullc) }
1
= max{|lz —w,ulle, |z =z ule, |w —w,ulle, 5(|lz = w,ulle + ||w =z ullc)}

= [lz = w, ullc

Thus, ||z — w, u|. < O(||z — w, ul|c)

Since z # w, then ||z — w|| > 0 and hence as ® is contractive modulus.
D(llz = w,ulle) < llz —w,ullc

therefore ||z —w,ull < ||z —w, ul|.

which is a contradiction,

therefore z = w

Thus z is the unique common fixed point of P, Q, S and T. O

Corollary 2.2. Let X be a 2-cone Banach space (with dim X > 2). Suppose that the mappings P, S and T are three self
maps of X such that T(X) C P(X) and S(X) C P(X) satisfying

|Sx — Ty, ul|lc < P(A(x,y)), (2.6)
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where @ is an upper semi continuous contractive modulus and
1
A, y) = max{|[Px — Py, ulle, | Px — Sx,ulle, [Py — Ty, ulle, 5 {[[Px — Ty, ullc + || Py — Sx,u[c} ).
The pair {S, P} and {T, P} are weakly compatible. Then P, S and T have a unique common fixed point.

Proof. The proof of the corollary immediate by taking P = Q in the above theorem (2.3). O
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