

https://doi.org/10.26637/MJM0504/0014

α -Stable local necks of fuzzy automata

N. Mohanarao¹ and V. Karthikeyan^{2*}

Abstract

In this paper we introduce α -stable local necks, α -stable monogenically directable, α -stable monogenically strongly directable, α -stable monogenically trap directable, α -stable uniformly monogenically directable, α -stable uniformly monogenically trap-directable fuzzy automata. We have shown that α -stable local necks of fuzzy automaton exists then it is α -stable subautomaton. Further we prove a some equivalent conditions on fuzzy automaton.

Keywords

 α -Stable local necks, α -Stable monogenically directable, α -Stable monogenically trap-directable, α -Stable uniformly monogenically trap-directable.

AMS Subject Classification

03D05, 20M35, 18B20, 68Q45, 68Q70, 94A45.

¹ Department of Mathematics, Government College of Engineering, Bodinayakkanur, Tamilnadu, India.

² Department of Mathematics, Government College of Engineering, Dharmapuri, Tamilnadu, India.

*Corresponding author: ¹ mohanaraonavuluri@gmail.com; ²vkarthikau@gmail.com

Article History: Received 06 September 2017; Accepted 10 December 2017

©2017 MJM.

Contents

1	Introduction 698
2	Preliminaries
3	α -Stable Local Necks of Fuzzy Automata699
4	Properties of $\alpha\text{-}Stable$ Local Necks of Fuzzy Automata
5	Conclusion
	References

1. Introduction

Fuzzy set was introduced by L. A. Zadeh in 1965 [8]. The fuzzy set is a simple mathematical tool for representing the inevitability of vagueness, uncertainty, and imprecision in everyday life. W.G. Wee extended the fuzzy idea to automata in 1967 [7]. Later, numerous academics adapted the fuzzy notion to a wide range of domains, and it has a wide range of applications. J.N. Mordeson and D. S. Malikgave a detailed account of fuzzy automata and languages in their book [6].

T. Petkovic et al. [1] discussed directable automata, monogenically directable, generalized directable using necks. T. Petkovic et al.[3] introduce and studied trapdirectable, trapped automata and other related automata. Also, we refer the survey paper Directable automata and their generalizations were investigated by S. Bogdanovic et al [2]. Further the necks and local necks of fuzzy automata were studied and discussed in [4, 5]. In this paper we introduce α -stable local necks, α -stable monogenically directable, α -stable monogenically strongly directable, α -stable monogenically trap directable, α -stable uniformly monogenically directable, α stable uniformly monogenically strongly directable, α stable uniformly monogenically trap-directable fuzzy automata. We have shown that α -stable local necks of fuzzy automata exists then it is α -stable subautomata. Further we prove a some equivalent conditions on fuzzy automaton.

2. Preliminaries

Definition 2.1. [6] where,

A fuzzy automaton $S = (D, I, \psi)$,

D - set of states $\{d_0, d_1, d_2, ..., d_n\},\$

I - alphabets (or) input symbols,

 Ψ - function from $D \times I \times D \rightarrow [0,1]$,

The set of all words of I is denoted by I^* . The empty word is denoted by λ , and the length of each $t \in I^*$ is denoted by |t|.

Definition 2.2. [6] Let $S = (D, I, \psi)$ be a fuzzy automaton. The extended transition function is defined by $\psi^* : D \times I^* \times D \rightarrow [0,1]$ and is given by

$$\boldsymbol{\psi}^*(d_i, \ \boldsymbol{\lambda}, \ d_j) = \begin{cases} 1 & \text{if } d_i = d_j \\ 0 & \text{if } d_i \neq d_j \end{cases}$$

 $\psi^*(d_i,tt',d_j) = \bigvee_{q_r \in D} \{ \psi^*(d_i,t,d_r) \land \psi(d_r,t',d_j) \}, t \in I^*, t' \in I.$

Definition 2.3. [4] Let $S = (D, I, \psi)$ be a fuzzy automaton. Let $D' \subseteq D$. Let ψ' is the restriction of ψ and let $S' = (D', I, \psi')$. The fuzzy automaton S' is called a subautomaton of S if

(i) $\psi': D' \times I \times D' \rightarrow [0,1]$ and

(ii) For any $d_i \in D'$ and $\psi'(d_i, t, d_j) > 0$ for some $t \in I^*$, then $d_j \in D'$.

Definition 2.4. [6] Let $S = (D, I, \psi)$ be a fuzzy automaton. S is said to be strongly connected if for every $d_i, d_j \in D$, there exists $t \in I^*$ such that $\psi^*(d_i, t, d_j) > 0$. Equivalently, S is strongly connected if it has no proper sub-automaton.

Definition 2.5. [4] Let $S = (D, I, \psi)$ be a fuzzy automaton. A state $d_j \in D$ is called a neck of S if there exists $t \in I^*$ such that $\psi^*(d_i, t, d_j) > 0$ for every $d_i \in D$.

In that case d_j is also called t-neck of S and the word t is called a directing word of S.

If S has a directing word, then we say that S is a directable fuzzy automaton.

Definition 2.6. [5] Let $S = (D, I, \psi)$ be a fuzzy automaton. If $d_i \in Q$ is called local neck of S, if it is neck of some directable subautomaton of S. The set of all local necks of S is denoted by LN(S).

3. α-Stable Local Necks of Fuzzy Automata

Definition 3.1. Let $S = (D, I, \psi)$ be a fuzzy automaton. If S is said to be α -stable fuzzy automaton then $\psi(d_i, t', d_j) \ge \alpha > 0, \forall t' \in I, \alpha = Fixed value in [0,1].$

Definition 3.2. Let $S = (D, I, \psi)$ be a fuzzy automaton and let $d_i \in D$. The α -stable subautomaton of S generated by d_i is denoted by $\langle d_i \rangle$. It is given by

 $\langle d_i \rangle = \{ d_j \mid \psi^*(d_i, t, d_j) \ge \alpha > 0, t \in I^* \}$. If it exists, then it is called the α -stable least subautomaton of S containing d_i .

Definition 3.3. Let $S = (D, I, \psi)$ be a fuzzy automaton. For any non-empty $D' \subseteq D$, the α -stable subautomaton of S generated by D' is denoted by $\langle D' \rangle$ and is given by

 $\langle D' \rangle = \{ \{ d_j \mid \psi^*(d_i, t, d_j) \ge \alpha \} > 0, d_i \in D', t \in I^* \}.$ It is called the α -stable least subautomaton of S containing D'. The α -stable least subautomaton of a fuzzy automaton S if it exists is called the α -stable kernel of S.

Definition 3.4. Let $S = (D, I, \psi)$ be a fuzzy automaton. A state $d_i \in D$ is called α -stable local neck of S if it

is α -stable neck of some α -stable directable subautomaton of S. The set of all α -stable local necks of S is denoted by α SLN(S).

Definition 3.5. Let $S = (D, I, \psi)$ be a fuzzy automaton. *S* is called α -stable monogenically directable if every monogenic subautomaton of *S* is α -stable directable.

Definition 3.6. Let $S = (D, I, \psi)$ be a fuzzy automaton. *S* is called α -stable monogenically strongly directable if every monogenic subautomaton of *M* is α -stable strongly directable.

Definition 3.7. Let $S = (D, I, \psi)$ be a fuzzy automaton. S is called α -stable monogenically trap-directable if every monogenic subautomaton of S has a single α -stable neck.

Definition 3.8. Let $S = (D, I, \psi)$ be a fuzzy automaton. If $t \in I^*$ is α -stable common directing word of S if t is a α -stable directing word of every monogenic subautomaton of S. The set all α -stable common directing words of S will be denoted by α SCDW(S). In other words, α SCDW $(S) = \bigcap_{d_i \in D} \alpha$ SDW $(\langle d_i \rangle)$.

Definition 3.9. Let $S = (D, I, \psi)$ be a fuzzy automaton. *S* is called α -stable uniformly monogenically directable fuzzy automaton if every monogenic subautomaton of *S* is α -stable directable and have atleast one β -weak common directing word.

Definition 3.10. Let $S = (D, I, \psi)$ be a fuzzy automaton. *S* is called α -stable uniformly monogenically strongly directable fuzzy automaton if every monogenic subautomaton of *S* is strongly α -stable directable and have atleast one α -stable common directing word.

Definition 3.11. Let $S = (D, I, \psi)$ be a fuzzy automaton. S is called α -stable uniformly monogenically trap directable fuzzy automaton if every monogenic subautomaton of S has a single α -stable neck and have atleast one α -stable common directing word.

4. Properties of α-Stable Local Necks of Fuzzy Automata

Theorem 4.1. Let $S = (D, I, \psi)$ be a fuzzy automaton and $d_i \in D$. Then the following conditions are equivalent:

(*i*) d_i is a α -stable local neck;

(ii) $\langle d_i \rangle$ is a strongly α -stable directable fuzzy automaton; (iii) for every $t' \in I^*$, there exists $t \in I^*$ such that $\Psi^*(d_i, t't, d_i) \ge \alpha > 0$.

Proof. $(i) \Rightarrow (ii)$

Let d_i be a α -stable local neck of S. Then there exists a α -stable directable subautomaton S' of S such that $d_i \in \alpha SN(S')$. Thus $\alpha SN(S')$ is a strongly α -stable directable fuzzy automaton. Also, $\langle d_i \rangle \subseteq \alpha SN(S')$, and $\alpha SN(S')$ is strongly connected, then $\langle d_i \rangle = \alpha SN(S')$. Therefore, $\langle d_i \rangle$ is a

strongly α -stable directable fuzzy automaton. (*ii*) \Rightarrow (*iii*)

Let $\langle d_i \rangle$ be a strongly α -stable directable fuzzy automaton. Then d_i is a *t*- α -stable neck of $\langle d_i \rangle$ for some $t \in I^*$. Since $\langle d_i \rangle$ is strongly α -stable directable, for every $t' \in I^*$, there exists some $d_l \in \langle d_i \rangle$ such that $\{ \psi^*(d_i, t', d_l) \ge \alpha \} > 0$. Now,

$$\psi^*(d_i, t't, d_i) = \{ \wedge_{d_l \in D} \{ \psi^*(d_i, t', d_l), \psi^*(d_l, t, d_i) \} \ge \alpha > 0. (iii) \Rightarrow (i)$$

(iii) clearly shows that d_i is a $t - \alpha$ -stable neck of $\langle d_i \rangle$, and hence, it is a α -stable local neck of S.

Theorem 4.2. Let $S = (D, I, \psi)$ be a fuzzy automaton. If $\alpha SLN(S) \neq \phi$, then $\alpha SLN(S)$ is a α -stable subautomaton of *S*.

Proof. Let $d_i \in \alpha SLN(S)$ and $t \in I$. Then, the monogenic α -stable subautomaton $\langle d_i \rangle$ of *S* is strongly α -stable directable. Now, $\langle d_i \rangle \subseteq \langle d_l \rangle$, for some $d_l \in \langle d_i \rangle$. Since $\langle d_i \rangle$ is strongly connected, $\langle d_i \rangle = \langle d_l \rangle$. Therefore, d_l is also a α -stable local neck of *S*, i.e., $d_l \in \alpha SLN(S)$. Hence, $\alpha SLN(S)$ is a α -stable subautomaton of *S*.

Theorem 4.3. Let $S = (D, I, \psi)$ be a fuzzy automaton. Then the following conditions are equivalent:

(i) Every state of D in S is a α -stable local neck;

(ii) S is α -stable monogenically strongly directable;

(iii) S is α -stable monogenically directable and α -stable reversible;

(iv)S is a direct sum of α -stable strongly directable fuzzy automata;

 $(v) (\forall d_i \in D) (\exists t \in I^*) (\forall t' \in I^*) \text{ such that } \psi^*(d_i, t't, d_i) \ge \alpha > 0.$

Proof. $(i) \Rightarrow (ii)$

If every state $d_i \in D$ is a α -stable local neck of S. Then we have that for every $d_i \in D$ the α -stable monogenic subautomaton $\langle d_i \rangle$ of D in S is α -stable strongly directable. Hence, S is α -stable monogenically strongly directable. $(ii) \Rightarrow (iii)$

If S is α -stable monogenically strongly directable, then it is α -stable monogenically directable. Now, every α stable monogenic subautomaton of S is strongly connected, hence S is α -stable reversible.

 $(iii) \Rightarrow (iv)$

If *S* is α -stable reversible, then it is a direct sum of α -stable strongly connected fuzzy automata $S_{\beta}, \beta \in Y$. Let $\beta \in Y$ and $d_i \in D_{\beta}$. Then $\langle d_i \rangle = S_{\beta}$. Since S_{β} is strongly connected, and by the α -stable monogenic directability of *S* we have that $S_{\beta} = \langle d_i \rangle$ is α -stable directable. Therefore, S_{β} is α -stable strongly directable, for any $\beta \in Y$. $(iv) \Rightarrow (i)$

Let *S* be a direct sum of α -stable strongly directable fuzzy automata $S_{\beta}, \beta \in Y$. Then for each state $d_i \in D$, there exists $\beta \in Y$ such that $d_i \in D_{\beta}$, that is, $d_i \in S_{\beta} = \alpha SN(S_{\beta})$, so d_i is a α -stable local neck of *S*. $(i) \Rightarrow (v)$

Since, every state of *S* is a α -stable local neck, for any $d_i \in D$, $\langle d_i \rangle$ is α -stable monogenically strongly directable. Hence, $\langle d_i \rangle$ is α -stable reversible. $(v) \Rightarrow (i)$

This is an immediate consequence of proof of the Theorem 4.1. $\hfill \Box$

5. Conclusion

We introduce α -stable local necks, α -stable monogenically directable, α -stable monogenically strongly directable, α -stable monogenically trap-directable, α -stable uniformly monogenically directable, α -stable uniformly monogenically strongly directable, α -stable uniformly monogenically trapdirectable fuzzy automata. We have shown that α -stable local necks of fuzzy automata exists then it is α -stable subautomata. Further we prove a some equivalent conditions on fuzzy automaton.

References

- M. Bogdanovic, S. Bogdanovic, M. Ciric, and T. Petkovic, Necks of automata, *Novi Sad J. Math.* 34 (2) (2004), 5 -15.
- [2] M. Bogdanovic, B. Imreh, M. Ciric, and T. Petkovic, Directable automata and their generalization (A survey), *Novi Sad J. Math.*, 29 (2) (1999), 31-74.
- [3] S. Bogdanovic, M. Ciric, and T. Petkovic, Directable automata and transition semigroups, *Acta Cybernetica*(*Szeged*), 13 (1998), 385-403.
- [4] V. Karthikeyan, and M. Rajasekar, Necks of fuzzy automata, Proceedings of International Conference on Mathematical Modeling and Applied Soft Computing, Shanga Verlag, July 11-13, (2012), 15-20.
- [5] V. Karthikeyan, and M. Rajasekar, Local necks of fuzzy automata, *Advances in Theoretical and Applied Mathematics*, 7 (4) (2012), 393-402.
- [6] J. N. Mordeson, and D. S. Malik, Fuzzy automata and languages-theory and applications, *Chapman & Hall/ CRC Press*, (2002).
- [7] W. G. Wee, On generalizations of adaptive algorithms and application of the fuzzy sets concepts to pattern classification Ph.D. Thesis, Purdue University, (1967).
- [8] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3) (1965), 338-353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******