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Abstract. In this paper, we presents some partial differential operators defined on suitably chosen function spaces such as
H−1(Ω), Lp(Ω), with p ∈ [1,+∞). Laplace operator on a domain Ω in Rn subject to the Dirichlet boundary condition
was established by generating a C0-semigroup, which is generated by an infinitesimal generator ω-order reversing partial
contraction (ω-ORCPn).
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1. Introduction and Background

Considering heat equation in a domain Ω in R3
vs = ∆v (s, x) ∈ Q∞
v = 0 (s, x) ∈ Σ∞

v(0, x) = v0(x) x ∈ Ω,

(1.1)

where ∆ is the Laplace operator, Q∞ = R+×Ω and Σ∞ = R+×Γ. We rewrite this partial differential equation
as an ordinary differential equation of the form {

v
′

= Av

v(0) = v0

(1.2)

in an infinite-dimensional Banach space X which is chosen suitably, so that the unbounded linear operator
A : D(A) ⊆ X → X generate a C0-Semigroup of contractions.
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Let X be a Banach space, Xn ⊆ X be a finite set, H is a Hibert space, (T (s))s≥0 is a C0-semigroup, ω −
ORCPn is the ω-order reversing partial contraction mapping, Mm be matrix, Pn is a partial transformation
semigroup,L(X) is a bounded linear operator on X , ρ(A) is a resolvent set, σ(A) is the spectrum and A ∈
ω −ORCPn is a generator of C0-semigroup.
Akinyele et al. [1], introduced some results on perturbation of infinitesimal generator in semigroup and also in
[2], Akinyele et al. obtained infinitesimal generator of Mean Ergodic theorem in semigroup of linear operator.
Amann [3], established and solved some linear quasilinear parabolic problems and also in [4], Amann introduced
measures to a linear parabolic problems. Arendt [5], introduced some Laplace transform in vector-valued and
Cauchy problems. Balakrishnan [6], obtained an operator in infinitesimal generator of semigroup. Banach [7],
established and introduced the concept of Banach spaces. Barbu [8], deduced some boundary problems for partial
differential equation. Carja and Vrabie [9], obtained some results on new viability for semilinear differential
insertion. Rauf and Akinyele [10], obtained ω-order-preserving partial contraction mapping and established the
properties, also in [11], Rauf et al. established some stability and spectra properties on semigroup of linear
operator. Vrabie [12], deduced some results of C0-semigroup and its applications. Yosida [13], established made
a representation and differentiability of one-parameter semigroup.

2. Preliminaries

Definition 2.1 (ω-ORCPn) [10]
A transformation α ∈ Pn is called ω-order-reversing partial contraction mapping if
∀x, y ∈Domα : x ≤ y =⇒ αx ≥ αy and at least one of its transformation must satisfy αy = y such that
T (s+ t) = T (s)T (t) whenever t, s > 0 and otherwise for T (0) = I .
Definition 2.2 (C0-semigroup) [12]
A C0-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.3 (C0-semigroup of contraction)[12]
A C0-semigroup {T (s); s ≥ 0} is called of type (ζ, ω) with ζ ≥ 1 and ω ∈ R, if for each t ≥ 0, we have
‖T (s)‖L(X) ≤ ζetω .

A C0-semigroup {T (s); s ≥ 0} is called a C0-semigroup of contraction or non expansive operator, if it is of type
1 < α < 0 for all α ∈ R, and for each s ≥ 0, we have
‖T (s)‖L(X) ≤ 1.

Definition 2.4 (Differential operator) [8]
A differential operator is an operator defined as a function of the differentiation operator.

Example 1
Consider the 3× 3 matrix [Mm(C)], and for each β > 0 such that β ∈ ρ(A), where ρ(A) is a resolvent set on X .
Suppose

A =

3 2 1

2 2 1

3 2 2


and assume T (t) = etAβ , then

etAβ =

e3tβ e2tβ etβ

e2tβ e2tβ etβ

e3tβ e2tβ e2tβ

 .

Example 2
In the H−1(Ω) setting, assume Ω be a nonempty and open subset in Rn, let X = H−1(Ω), and suppose we
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define A : D(A) ⊆ X → X by {
D(A) = H1

0 (Ω)

Av = ∆v,
(2.1)

for each v ∈ D(A) and A ∈ ω − ORCPn. It follows that H1
0 (Ω) is equipped with the usual norm on H−1(Ω)

defined by
‖v‖H1(Ω) = (‖v‖2L2(Ω) + ‖∇‖2L2(Ω))

1
2 .

Example 3
In the L2(Ω) setting, suppose Ω be a nonempty and open subset in Rn and assume X = L2(Ω). Consider the
operator A on X , defined by {

D(A) = {x ∈ H1
0 (Ω); ∆v ∈ L2(Ω)}

Av = ∆v,
(2.2)

for each x ∈ D(A) and A ∈ ω −ORCPn.
Theorem 2.1
Suppose Ω is a nonempty, open and bounded subset in Rn whose boundary is of class C1, r ∈ N and p, q ∈
[1,+∞). Then,

i. if rp < n and q < np
n−rp , we have that W r,p(Ω) is compactly imbedded in Lq(Ω);

ii. if rp = n and q ∈ [1,+∞) is compactly imbedded in Lq(Ω); and

iii. if rp > n, then W r,p(Ω) is compactly imbedded in C(Ω).

Theorem 2.2
Assume H is a Hibert space and {A,D(A)} a densely defined operator. Then we have,

i. if (I −A)−1 ∈ L(H), then A is self-adjoint if and only if A is symmetric; and

ii. if (I ±A)−1 ∈ L(H), then A is skew - adjoint if and only if A is skew - symmetric.

Theorem 2.3
For any β > 0 and f ∈ H−1(Ω), the equation βv −∆v = f has a unique solution v ∈ H1

0(Ω).
Theorem 2.4
Suppose Ω is a nonempty open and bounded subset in Rn whose boundary Γ is of class C1. Then ‖.‖ : H1(Ω)→
R+. defined by

‖v‖ = (‖∇v‖2L2(Ω) + ‖vΓ‖2L2(Γ))
1
2

for each v ∈ H1(Ω), is a norm on H1(Ω) and equivalent with the usual one. In particular, the restriction of this
norm to H1

0 (Ω), i.e. ‖.‖ : H1
0 (Ω)→ R+ defined by

‖v‖0 = ‖∇v‖L2(Ω),

for each v ∈ H1
0 (Ω), is a norm on H1

0 (Ω) (called the gradient norm) equivalent with the usual one. In respect
with this norm the application D : H1

0 (Ω)→ H−1(Ω), defined by

< u,∆v >H1
0 (Ω),H−1(Ω)=

∫
Ω

∇v∇udw,

is a canonical isomorphism between H1
0 (Ω) and its dual H−1. The restriction of this application to H2 coincides

with −∆, where ∆ is the Laplace operator in the sense of distributions over ∆(Ω).
Theorem 2.5
The application I − ∆ : H1

0 (Ω) → H−1(Ω) is the canonical isomorphism between H1
0 (Ω), endowed with the
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usual norm on H1(Ω) and its dual H−1(Ω), equipped with the usual dual norm. In addition, for each v ∈ H1
0

and each u ∈ L2(Ω), we have
< v, u >L2(Ω)=< v, u >H1

0 (Ω),H−1(Ω) .

Theorem 2.6(Hille-Yoshida)[12]
A linear operator {A,D(A)} is the infinitesimal generator for a C0-semigroup of contraction if and only if

i. A is densely defined and closed; and

ii. (0,+∞) ⊆ ρ(A) and for each β > 0, we have

‖R(β,A)‖L(X) ≤
1

β
. (2.3)

Theorem 2.7
Assume {A,D(A)} is the infinitesimal generator of a C0-semigroup and let ‖.‖D(A) : D(A)→ R+ and |.|D(A) :

D(A) → R+ be defined by ‖x‖D(A) = ‖x‖ + ‖Ax‖, and respectively by |x|D(A) = ‖X − Ax‖, for each
x ∈ D(A). Then:

i. ‖.‖D(A) is a norm on D(A), called the graph norm, with respect to which D(A) is a Banach space;

ii. D(A) endowed with the norm ‖.‖D(A) is continuously imbedded in X;

iii. A ∈ L(D(A), X) where D(A) is endowed with ‖.‖D(A);

iv. |.|D(A) is a norm on D(A) equivalent with ‖.‖D(A);

v. I −A is an isometry from (D(A), |.|D(A)) to (X, ‖.‖); and

vi. for each x ∈ D(A), S(.)x ∈ C[0,+∞); D(A) ∪ C1([0,+∞);X)1.

3. Main Results

This section section presents results of ω-ORCPn on Laplace operator with respect to the Dirichlet boundary
condition by generating a C0-semigroup of contractions:
Theorem 3.1
The operator A ∈ ω −ORCPn defined by

‖v‖H1(Ω) = (‖v‖2L2(Ω) + ‖∇v‖2L2(Ω))
1
2 .

is the generator of a C0-semigroup of contractions. In addition, A is self-adjoint and ‖.‖D(A) is equivalent with
the norm of the space H−1(Ω).
Proof:
By virtue of Theorem 2.5, we know that I − ∆ is the canonical isomorphism between H1

0 (Ω), endowed with
usual norm of H1(Ω), and its dual H−1(Ω). Let us denote that F = (I −∆)−1 is an isometry joining H−1(Ω)

and H1
0 (Ω). Consequently

< v, u >H−1(Ω)=< Fv, Fu >H1
0 (Ω) (3.1)

for each u, v ∈ H−1(Ω). Let u, v ∈ H1
0 (Ω), then we have

< v, Fu >H1
0 (Ω)=

∫
Ω

∇v∇(Fu)dw +

∫
Ω

uFvdw

=

∫
Ω

v(−∆(Fu))dw +

∫
Ω

vFudw

=

∫
Ω

v(I −∆)F (u)dw =< v, u >L2(Ω) .

(3.2)
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From (3.1), taking into account that F (I −∆) = I , we deduce

< −∆v, u >H−1(Ω)=< v −∆v, u >H−1(Ω) − < v, u >H−1(Ω)

=< F (v −∆v), Fu >H1
0 (Ω) − < v, u >H−1(Ω)

=< v, Fv >H−1(Ω) − < v, u >H−1(Ω) .

From (3.2), we have
< ∆v, u >H−1(Ω)=< v, u >H−1(Ω) − < v, u >L2(Ω) . (3.3)

Therefore A is symmetric. But (I − A)−1 ∈ L(H−1(Ω)), and therefore by Theorem 2.2, it follows that A is
self-adjoint. Taking u = v in (3.3), we obtain

< Av, v >H−1(Ω)= ‖v‖2H−1(Ω) − ‖v‖
2
L2(Ω) ≤ 0. (3.4)

Theorem 2.3 shows that, for β > 0, we have (βI −A)−1 ∈ L(H−1(Ω)), while (3.4) implies that, for β > 0, we
have

< λv −Av, v >H−1(Ω)≥ λ‖v‖2H−1(Ω).

Hence ‖R(β;A)‖L(H−1(Ω)) ≤ 1
β . Since H1

0 (Ω) is dense in H−1(Ω), we are in the hypothesis of Theorem 2.6,
from where it follows that A generates a C0-semigroup of contractions on H−1(Ω). Finally by (iv) in Theorem
2.7 and (3.4), it follows that ‖.‖D(A) is equivalent with the norm of the space HΩ and this complete the proof.
Theorem 3.2
The linear operator A ∈ ω −ORCPn defined by{

D(A) = {v ∈ H1
0 (Ω); ∆v ∈ L2(Ω)}

Av = ∆v,
(3.5)

for each v ∈ D(A) is the infinitesimal generator of a C0-semigroup of contractions. Moreover, A is self-
adjoint and (D(A), ‖.‖D(A)) is continuously included in H1

0 (Ω). Suppose Ω is bounded with C1 boundary, then
(D(A), ‖.‖D(A)) is compactly imbedded in L2(Ω).
Proof:
Assume C∞0 (Ω) is dense in L2(Ω), and C∞0 (Ω) ⊆ D(A), it follows that A is densely defined. Let λ > 0 and
f ∈ L2(Ω). Since L2(Ω) is continuously imbedded in H−1(Ω), and −∆ : H1

0 (Ω) → H−1(Ω) is the duality
mapping with respect to the gradient norm on H1

0 (Ω), we have

< Av, u >L2(Ω)=< ∇v,∇u >L2(Ω)=< u,∆v >H1
0 (Ω), H1(Ω) . (3.6)

By Theorem 3.1, we know that for any λ > 0 and f ∈ L2(Ω) (notice that L2(Ω) ⊂ H−1(Ω)), the equation

λv −∆v = f (3.7)

has a unique solution vλ ∈ H1
0 (Ω) ⊂ L2(Ω). So, ∆vλ = λvλ− f is in L2(Ω), which shows that vλ ∈ D(A) and

λvλ − Avλ = f . Taking the L2 inner product on both sides of (3.7) above by vλ and taking into account that by
(3.6), we have < Av, v >L2(Ω)≤ 0 for each v ∈ D(A), then we deduce that

λ‖vλ‖2L2(Ω) ≤ < f, vλ >L2(Ω)≤ ‖f‖L2(Ω)‖vλ‖L2(Ω),

which shows that ‖R(λ;A)‖L(X) ≤ 1
λ . Finally from (3.6) and Theorem 2.2, it follows that A is self-adjoint.

Considering both inclusions, then D(A) ⊂ H1
0 ⊂ L2(Ω) are continuous, and the latter is compact whenever Ω

is bounded by Theorem 2.1. Hence the proof is achieved.
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Theorem 3.3
Let A ∈ ω − ORCPn be the Laplace operator with the Dirichlet boundary condition in H−1(Ω), let λ > 0 and
1 ≤ p < +∞. Then:
(1.) There exists a unique Rλ ∈ L(Lp(Ω)) so that Rλu = R(λ;A)u for all u ∈ H−1(Ω) ∩ Lp(Ω) and Rλ
satisfies:

i. ‖Rλu‖Lp(Ω) ≤ 1
λ‖u‖Lp(Ω);

ii. for each f ∈ Lp(Ω), ARλf ∈ Lp(Ω) and λRλf −ARλf = f ; and

iii. for each λ > 0 and µ > 0,Rλ(Lp(Ω)) = Rµ(Lp(Ω)).

(2.) Let R1 ∈ L(Lp(Ω)) for each u ∈ R(Lp(Ω)), we have ∆u ∈ Lp(Ω), and the operator A : D(A) ⊆
Lp(Ω)→ Lp(Ω), defined by {

D(A) = R1(Lp(Ω))

Au = ∆u for u ∈ D(A),

is the generator of a C0-semigroup of contractions.
Proof:
Since H−1(Ω) ∩ Lp(Ω) is dense in Lp(Ω), then it follows that R(λ;A) has a unique extensionRλ ∈ L(Lp(Ω))

satisfying (i). Next, let (fk)k∈N be a sequence in D(Ω) convergent to f in Lp(Ω). AsRλfk − λARλfk = fk in
H−1(Ω), we haveRλf − λARλf = f in D1(Ω), from there we get (ii). Finally, let f ∈ H−1(Ω)∩Lp(Ω), and
u = Rλf ∈ H−1(Ω) ∩ Lp(Ω). For each µ > 0, we have

µu−∆u = f + (µ− λ)Rλf (3.8)

Let us denote by g the right-hand side of (3.8), i.e.

g = f + (µ− λ)Rλf

and let us observe thatRλf = u = Rµg ∈ H−1(Ω) ∩ Lp(Ω) and therefore

Rλ(H−1(Ω) ∩ Lp(Ω)) ⊆ Rµ(H−1(Ω) ∩ Lp(Ω)).

Analogously
Rµ(H−1(Ω) ∩ Lp(Ω)) ⊆ (Rλ(H−1(Ω) ∩ Lp(Ω)),

and so
Rλ(H−1(Ω) ∩ Lp(Ω)) = (Rµ(H−1(Ω) ∩ Lp(Ω)).

Since H−1(Ω) ∩ Lp(Ω) is dense in Lp(Ω), and Rλ, Rµ are linear and continuous operators in Lp(Ω), then we
deduce (iii). And this complete the proof of (1). To prove (2), for each u ∈ R1(Lp(Ω)) and A ∈ ω − ORCPn,
we have ∆u ∈ Lp(Ω), follows from (ii) in (1) above. So let u ∈ D(A), λ > 0, A ∈ ω−ORCPn and denote that
f = λu−∆u. From (iii) in (1), there exists g ∈ Lp(Ω) such that u = Rλg. We then conclude that g = λu−∆u

and so f = g. Then λ ∈ ρ(A) and R(λ;A) = (λI − A)−1 = Rλ. This relation in (i) from (1) above show that
‖R(λ;A)‖Lp(Ω) ≤ 1

λ‖u‖Lp(Ω). Thus A satisfies (ii) in Theorem 2.6. To complete the proof, we have to merely
to show that D(A) is dense in Lp(Ω). To this aim, let u ∈ D(Ω) and f = u−∆u ∈ D(Ω). Obviously u = R1f

and therefore D(Ω) ⊆ D(A). Hence D(A)is dense in LP (Ω) which complete the proof.
Theorem 3.4
Let Ω be a nonempty and open subset in Rn with C1 boundary Γ, let X = [H−1(Ω)]∗ then:
(i.) operator A : D(A) ⊆ X → X , defined by{

D(A) = H1(Ω)

< Au, v >H1(Ω),[H1(Ω)]∗ =< ∇u,∇v >L2(Ω)

96



Results of ω-order reversing partial contraction mapping generating a differential operator

for each u, v ∈ H1(Ω) and A ∈ ω −ORCPn is the generator of a C0-semigroup of contraction on X; and
(ii.) the operator {B,D(B)}, defined by{

D(B) = {u ∈ H2(Ω);uv = 0 on Γ

Bu = ∆, for u ∈ D(B)

is the generator of a C0-semigroup of contraction on X .
Proof:
Since H1(Ω) is densely imbedded in [H1(Ω)]∗, in view of Theorem 2.6, we have merely to show that for each
λ > 0, the operator λI −A : D(A) ⊆ X → X , where A is defined as above is one to one onto and

‖(λI −A)−1‖L(X) ≤
1

λ
. (3.9)

But this simply follows from the obvious identity

< λu−Au, u >[H1(Ω)]∗,H1(Ω)= λ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

and this achieves the proof of (i). To prove (ii), let u ∈ D(B). Then, for each v ∈ H1(Ω), we have

< Au, v >H1(Ω),[H1(Ω)]∗=< ∇u,∇v >L2(Ω)=< ∆u, v >L2(Ω)

and thus, Au = Bu for each u ∈ D(B) and A,B ∈ ω −ORCPn. In addition

< Bu, v >L2(Ω)= − < ∇u,∇v >L2(Ω)

for each u, v ∈ D(B) and B ∈ ω−ORCPn. Thus B is symmetric and for each λ > 0, λI −B is bijective from
D(B) to L2(Ω) and

‖(λI −B)−1‖L(X) ≤
1

λ
.

If D(B) is dense in X = L2(Ω), then we are in the hypothesis of the Theorem 2.6 and this complete the proof.

4. Conclusion

This paper have established that ω − ORCPn generates a C0-semigroup of contractions which was obtained by
a Laplace operator with Dirichlet boundary condition.
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