MALAYA JOURNAL OF MATEMATIK Malaya J. Mat. 09(03)(2021), 91–98.

http://doi.org/10.26637/mjm0903/004

Results of ω -order reversing partial contraction mapping generating a differential operator

AKINOLA YUSSUFF AKINYELE*¹, JOS USMAN ABUBAKAR², KAREEM AKANBI BELLO³, LIMAN KINBOKUN ALHASSAN⁴ AND MOSES ADEBOWALE AASA⁵

¹,2,3,4,⁵ *Department of Mathematics, University of Ilorin, Ilorin, Nigeria.*

*R*eceived 12 January 2021; *A*ccepted 30 May 2021

Abstract. In this paper, we presents some partial differential operators defined on suitably chosen function spaces such as $H^{-1}(\Omega)$, $L^p(\Omega)$, with $p \in [1, +\infty)$. Laplace operator on a domain Ω in \mathbb{R}^n subject to the Dirichlet boundary condition was established by generating a C_0 -semigroup, which is generated by an infinitesimal generator ω -order reversing partial contraction (ω -ORCP_n).

AMS Subject Classifications: 40A05, 40A99, 46A70, 46A99.

Keywords: ω -ORCP_n, C₀-semigroup, C₀-Semigroup of Contraction, Differential Operator.

Contents

1. Introduction and Background

Considering heat equation in a domain Ω in \mathbb{R}^3

$$
\begin{cases}\nv_s = \Delta v & (s, x) \in Q_\infty \\
v = 0 & (s, x) \in \Sigma_\infty \\
v(0, x) = v_0(x) & x \in \Omega,\n\end{cases}
$$
\n(1.1)

where Δ is the Laplace operator, $Q_{\infty} = \mathbb{R}_+ \times \Omega$ and $\Sigma_{\infty} = \mathbb{R}_+ \times \Gamma$. We rewrite this partial differential equation as an ordinary differential equation of the form

$$
\begin{cases}\nv' = Av \\
v(0) = v_0\n\end{cases} \tag{1.2}
$$

in an infinite-dimensional Banach space X which is chosen suitably, so that the unbounded linear operator $A: D(A) \subseteq X \rightarrow X$ generate a C_0 -Semigroup of contractions.

[∗]Corresponding author. Email address: olaakinyele04@gmail.com (Akinola Yussuff Akinyele)

Let X be a Banach space, $X_n \subseteq X$ be a finite set, H is a Hibert space, $(T(s))_{s\geq 0}$ is a C_0 -semigroup, ω – ORCP_n is the ω -order reversing partial contraction mapping, M_m be matrix, P_n is a partial transformation semigroup, $L(X)$ is a bounded linear operator on X, $\rho(A)$ is a resolvent set, $\sigma(A)$ is the spectrum and $A \in$ ω – $ORCP_n$ is a generator of C_0 -semigroup.

Akinyele *et al.* [1], introduced some results on perturbation of infinitesimal generator in semigroup and also in [2], Akinyele *et al.* obtained infinitesimal generator of Mean Ergodic theorem in semigroup of linear operator. Amann [3], established and solved some linear quasilinear parabolic problems and also in [4], Amann introduced measures to a linear parabolic problems. Arendt [5], introduced some Laplace transform in vector-valued and Cauchy problems. Balakrishnan [6], obtained an operator in infinitesimal generator of semigroup. Banach [7], established and introduced the concept of Banach spaces. Barbu [8], deduced some boundary problems for partial differential equation. Carja and Vrabie [9], obtained some results on new viability for semilinear differential insertion. Rauf and Akinyele [10], obtained ω -order-preserving partial contraction mapping and established the properties, also in [11], Rauf *et al.* established some stability and spectra properties on semigroup of linear operator. Vrabie [12], deduced some results of C_0 -semigroup and its applications. Yosida [13], established made a representation and differentiability of one-parameter semigroup.

2. Preliminaries

Definition 2.1 (ω - $ORCP_n$) [10]

A transformation $\alpha \in P_n$ is called ω -order-reversing partial contraction mapping if $\forall x, y \in \text{Dom}\alpha : x \leq y \implies \alpha x \geq \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that $T(s + t) = T(s)T(t)$ whenever $t, s > 0$ and otherwise for $T(0) = I$.

Definition 2.2 (C_0 -semigroup) [12]

A C_0 -Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.3 (C_0 -semigroup of contraction)[12]

A C₀-semigroup $\{T(s); s \ge 0\}$ is called of type (ζ, ω) with $\zeta \ge 1$ and $\omega \in \mathbb{R}$, if for each $t \ge 0$, we have $||T(s)||_{L(X)} \leq \zeta e^{t\omega}$.

A C_0 -semigroup $\{T(s); s \geq 0\}$ is called a C_0 -semigroup of contraction or non expansive operator, if it is of type $1 < \alpha < 0$ for all $\alpha \in \mathbb{R}$, and for each $s \geq 0$, we have

$$
||T(s)||_{L(X)} \le 1.
$$

Definition 2.4 (Differential operator) [8]

A differential operator is an operator defined as a function of the differentiation operator.

Example 1

Consider the 3 × 3 matrix $[M_m(\mathbb{C})]$, and for each $\beta > 0$ such that $\beta \in \rho(A)$, where $\rho(A)$ is a resolvent set on X. Suppose

$$
A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix}
$$

and assume $T(t) = e^{tA_\beta}$, then

$$
e^{tA_{\beta}} = \begin{pmatrix} e^{3t\beta} & e^{2t\beta} & e^{t\beta} \\ e^{2t\beta} & e^{2t\beta} & e^{t\beta} \\ e^{3t\beta} & e^{2t\beta} & e^{2t\beta} \end{pmatrix}.
$$

Example 2

In the $H^{-1}(\Omega)$ setting, assume Ω be a nonempty and open subset in \mathbb{R}^n , let $X = H^{-1}(\Omega)$, and suppose we

Results of ω -order reversing partial contraction mapping generating a differential operator

define $A: D(A) \subseteq X \rightarrow X$ by

$$
\begin{cases}\nD(A) = H_0^1(\Omega) \\
Av = \Delta v,\n\end{cases}
$$
\n(2.1)

for each $v \in D(A)$ and $A \in \omega - ORCP_n$. It follows that $H_0^1(\Omega)$ is equipped with the usual norm on $H^{-1}(\Omega)$ defined by

$$
||v||_{H^1(\Omega)} = (||v||^2_{L^2(\Omega)} + ||\nabla||^2_{L^2(\Omega)})^{\frac{1}{2}}.
$$

Example 3

In the $L^2(\Omega)$ setting, suppose Ω be a nonempty and open subset in \mathbb{R}^n and assume $X = L^2(\Omega)$. Consider the operator A on X , defined by

$$
\begin{cases} D(A) = \{x \in H_0^1(\Omega) ; \Delta v \in L^2(\Omega) \} \\ Av = \Delta v, \end{cases}
$$
\n(2.2)

for each $x \in D(A)$ and $A \in \omega - ORCP_n$.

Theorem 2.1

Suppose Ω is a nonempty, open and bounded subset in \mathbb{R}^n whose boundary is of class C^1 , $r \in \mathbb{N}$ and $p, q \in$ $[1, +\infty)$. Then,

- i. if $rp < n$ and $q < \frac{np}{n-rp}$, we have that $W^{r,p}(\Omega)$ is compactly imbedded in $L^q(\Omega)$;
- ii. if $rp = n$ and $q \in [1, +\infty)$ is compactly imbedded in $L^q(\Omega)$; and

iii. if $rp > n$, then $W^{r,p}(\Omega)$ is compactly imbedded in $C(\overline{\Omega})$.

Theorem 2.2

Assume H is a Hibert space and $\{A, D(A)\}\$ a densely defined operator. Then we have,

i. if $(I - A)^{-1} \in \mathcal{L}(H)$, then A is self-adjoint if and only if A is symmetric; and

ii. if $(I \pm A)^{-1} \in \mathcal{L}(H)$, then A is skew - adjoint if and only if A is skew - symmetric.

Theorem 2.3

For any $\beta > 0$ and $f \in H^{-1}(\Omega)$, the equation $\beta_v - \Delta v = f$ has a unique solution $v \in H^1_{0(\Omega)}$. Theorem 2.4

Suppose Ω is a nonempty open and bounded subset in \mathbb{R}^n whose boundary Γ is of class C^1 . Then $\|.\|: H^1(\Omega) \to$ \mathbb{R}_+ . defined by

$$
||v|| = (||\nabla v||^2_{L^2(\Omega)} + ||v_{\Gamma}||^2_{L^2(\Gamma)})^{\frac{1}{2}}
$$

for each $v \in H^1(\Omega)$, is a norm on $H^1(\Omega)$ and equivalent with the usual one. In particular, the restriction of this norm to $H_0^1(\Omega)$, i.e. $\|.\|: H_0^1(\Omega) \to \mathbb{R}_+$ defined by

$$
||v||_0 = ||\nabla v||_{L^2(\Omega)},
$$

for each $v \in H_0^1(\Omega)$, is a norm on $H_0^1(\Omega)$ (called the gradient norm) equivalent with the usual one. In respect with this norm the application $D: H_0^1(\Omega) \to H^{-1}(\Omega)$, defined by

$$
_{H_0^1(\Omega),H^{-1}(\Omega)}=\int_{\Omega}\nabla v\nabla u dw,
$$

is a canonical isomorphism between $H_0^1(\Omega)$ and its dual H^{-1} . The restriction of this application to H^2 coincides with $-\Delta$, where Δ is the Laplace operator in the sense of distributions over $\Delta(\Omega)$.

Theorem 2.5

The application $I - \Delta : H_0^1(\Omega) \to H^{-1}(\Omega)$ is the canonical isomorphism between $H_0^1(\Omega)$, endowed with the

usual norm on $H^1(\Omega)$ and its dual $H^{-1}(\Omega)$, equipped with the usual dual norm. In addition, for each $v \in H_0^1$ and each $u \in L^2(\Omega)$, we have

$$
{L^2(\Omega)}={H^1_0(\Omega),H^{-1}(\Omega)}.
$$

Theorem 2.6(Hille-Yoshida)[12]

A linear operator $\{A, D(A)\}$ is the infinitesimal generator for a C_0 -semigroup of contraction if and only if

- i. A is densely defined and closed; and
- ii. $(0, +\infty) \subseteq \rho(A)$ and for each $\beta > 0$, we have

$$
||R(\beta, A)||_{L(X)} \le \frac{1}{\beta}.
$$
\n
$$
(2.3)
$$

Theorem 2.7

Assume $\{A, D(A)\}$ is the infinitesimal generator of a C_0 -semigroup and let $\|.\|_{D(A)} : D(A) \to \mathbb{R}_+$ and $|.|_{D(A)} : D(A) \to \mathbb{R}_+$ $D(A) \to \mathbb{R}_+$ be defined by $||x||_{D(A)} = ||x|| + ||Ax||$, and respectively by $|x|_{D(A)} = ||X - Ax||$, for each $x \in D(A)$. Then:

- i. $\|.\|_{D(A)}$ is a norm on $D(A)$, called the graph norm, with respect to which $D(A)$ is a Banach space;
- ii. $D(A)$ endowed with the norm $\| \cdot \|_{D(A)}$ is continuously imbedded in X;
- iii. $A \in L(D(A), X)$ where $D(A)$ is endowed with $\|.\|_{D(A)}$;
- iv. $\|.\|_{D(A)}$ is a norm on $D(A)$ equivalent with $\|.\|_{D(A)}$;
- v. $I A$ is an isometry from $(D(A), |.|_{D(A)})$ to $(X, ||.||)$; and
- vi. for each $x \in D(A)$, $S(.)x \in C[0, +\infty)$; $D(A) \cup C^1([0, +\infty); X)^1$.

3. Main Results

This section section presents results of ω -ORCP_n on Laplace operator with respect to the Dirichlet boundary condition by generating a C_0 -semigroup of contractions:

Theorem 3.1

The operator $A \in \omega - ORCP_n$ defined by

$$
||v||_{H^1(\Omega)} = (||v||^2_{L^2(\Omega)} + ||\nabla v||^2_{L^2(\Omega)})^{\frac{1}{2}}.
$$

is the generator of a C_0 -semigroup of contractions. In addition, A is self-adjoint and $\|.\|_{D(A)}$ is equivalent with the norm of the space $H^{-1}(\Omega)$.

Proof:

By virtue of Theorem 2.5, we know that $I - \Delta$ is the canonical isomorphism between $H_0^1(\Omega)$, endowed with usual norm of $H^1(\Omega)$, and its dual $H^{-1}(\Omega)$. Let us denote that $F = (I - \Delta)^{-1}$ is an isometry joining $H^{-1}(\Omega)$ and $H_0^1(\Omega)$. Consequently

$$
\langle v, u \rangle_{H^{-1}(\Omega)} = \langle Fv, Fu \rangle_{H_0^1(\Omega)} \tag{3.1}
$$

for each $u, v \in H^{-1}(\Omega)$. Let $u, v \in H_0^1(\Omega)$, then we have

$$
\langle v, Fu \rangle_{H_0^1(\Omega)} = \int_{\Omega} \nabla v \nabla (Fu) dw + \int_{\Omega} uF v dw
$$

$$
= \int_{\Omega} v(-\Delta(Fu)) dw + \int_{\Omega} vFu dw
$$

$$
= \int_{\Omega} v(I - \Delta)F(u) dw = \langle v, u \rangle_{L^2(\Omega)}.
$$
(3.2)

Results of ω -order reversing partial contraction mapping generating a differential operator

From (3.1), taking into account that $F(I - \Delta) = I$, we deduce

$$
\langle -\Delta v, u \rangle_{H^{-1}(\Omega)} = \langle v - \Delta v, u \rangle_{H^{-1}(\Omega)} - \langle v, u \rangle_{H^{-1}(\Omega)}
$$

$$
= \langle F(v - \Delta v), Fu \rangle_{H_0^1(\Omega)} - \langle v, u \rangle_{H^{-1}(\Omega)}
$$

$$
= \langle v, Fv \rangle_{H^{-1}(\Omega)} - \langle v, u \rangle_{H^{-1}(\Omega)}.
$$

From (3.2), we have

$$
\langle \Delta v, u \rangle_{H^{-1}(\Omega)} = \langle v, u \rangle_{H^{-1}(\Omega)} - \langle v, u \rangle_{L^2(\Omega)} . \tag{3.3}
$$

Therefore A is symmetric. But $(I - A)^{-1} \in \mathcal{L}(H^{-1}(\Omega))$, and therefore by Theorem 2.2, it follows that A is self-adjoint. Taking $u = v$ in (3.3), we obtain

$$
\langle Av, v \rangle_{H^{-1}(\Omega)} = ||v||_{H^{-1}(\Omega)}^2 - ||v||_{L^2(\Omega)}^2 \le 0. \tag{3.4}
$$

Theorem 2.3 shows that, for $\beta > 0$, we have $(\beta I - A)^{-1} \in \mathcal{L}(H^{-1}(\Omega))$, while (3.4) implies that, for $\beta > 0$, we have

$$
\langle \lambda v - Av, v \rangle_{H^{-1}(\Omega)} \ge \lambda \|v\|_{H^{-1}(\Omega)}^2.
$$

Hence $||R(\beta; A)||_{L(H^{-1}(\Omega))} \leq \frac{1}{\beta}$. Since $H_0^1(\Omega)$ is dense in $H^{-1}(\Omega)$, we are in the hypothesis of Theorem 2.6, from where it follows that A generates a C_0 -semigroup of contractions on $H^{-1}(\Omega)$. Finally by (iv) in Theorem 2.7 and (3.4), it follows that $\|.\|_{D(A)}$ is equivalent with the norm of the space H^{Ω} and this complete the proof. Theorem 3.2

The linear operator $A \in \omega - ORCP_n$ defined by

$$
\begin{cases} D(A) = \{v \in H_0^1(\Omega) ; \Delta v \in L^2(\Omega) \} \\ Av = \Delta v, \end{cases}
$$
\n(3.5)

for each $v \in D(A)$ is the infinitesimal generator of a C_0 -semigroup of contractions. Moreover, A is selfadjoint and $(D(A), \|.\|_{D(A)})$ is continuously included in $H_0^1(\Omega)$. Suppose Ω is bounded with C^1 boundary, then $(D(A), \|\. \|_{D(A)})$ is compactly imbedded in $L^2(\Omega)$. Proof:

Assume $C_0^{\infty}(\Omega)$ is dense in $L^2(\Omega)$, and $C_0^{\infty}(\Omega) \subseteq D(A)$, it follows that A is densely defined. Let $\lambda > 0$ and $f \in L^2(\Omega)$. Since $L^2(\Omega)$ is continuously imbedded in $H^{-1}(\Omega)$, and $-\Delta : H_0^1(\Omega) \to H^{-1}(\Omega)$ is the duality mapping with respect to the gradient norm on $H_0^1(\Omega)$, we have

$$
\langle Av, u \rangle_{L^2(\Omega)} = \langle \nabla v, \nabla u \rangle_{L^2(\Omega)} = \langle u, \Delta v \rangle_{H_0^1(\Omega), H^1(\Omega)} . \tag{3.6}
$$

By Theorem 3.1, we know that for any $\lambda > 0$ and $f \in L^2(\Omega)$ (notice that $L^2(\Omega) \subset H^{-1}(\Omega)$), the equation

$$
\lambda v - \Delta v = f \tag{3.7}
$$

has a unique solution $v_\lambda \in H_0^1(\Omega) \subset L^2(\Omega)$. So, $\Delta v_\lambda = \lambda v_\lambda - f$ is in $L^2(\Omega)$, which shows that $v_\lambda \in D(A)$ and $\lambda v_\lambda - Av_\lambda = f$. Taking the L^2 inner product on both sides of (3.7) above by v_λ and taking into account that by (3.6), we have $\langle Av, v \rangle_{L^2(\Omega)} \leq 0$ for each $v \in D(A)$, then we deduce that

$$
\lambda \|v_{\lambda}\|_{L^{2}(\Omega)}^{2} \leq \langle f, v_{\lambda} \rangle_{L^{2}(\Omega)} \leq \|f\|_{L^{2}(\Omega)} \|v_{\lambda}\|_{L^{2}(\Omega)},
$$

which shows that $||R(\lambda; A)||_{L(X)} \leq \frac{1}{\lambda}$. Finally from (3.6) and Theorem 2.2, it follows that A is self-adjoint. Considering both inclusions, then $D(A) \subset H_0^1 \subset L^2(\Omega)$ are continuous, and the latter is compact whenever Ω is bounded by Theorem 2.1. Hence the proof is achieved.

Theorem 3.3

Let $A \in \omega - ORCP_n$ be the Laplace operator with the Dirichlet boundary condition in $H^{-1}(\Omega)$, let $\lambda > 0$ and $1 \leq p \leq +\infty$. Then:

(1.) There exists a unique $\mathcal{R}_{\lambda} \in \mathcal{L}(L^p(\Omega))$ so that $\mathcal{R}_{\lambda}u = R(\lambda; A)u$ for all $u \in H^{-1}(\Omega) \cap L^p(\Omega)$ and \mathcal{R}_{λ} satisfies:

- i. $\|\mathcal{R}_{\lambda}u\|_{L^p(\Omega)} \leq \frac{1}{\lambda}\|u\|_{L^p(\Omega)}$;
- ii. for each $f \in L^p(\Omega)$, $A\mathcal{R}_{\lambda}f \in L^p(\Omega)$ and $\lambda \mathcal{R}_{\lambda}f A\mathcal{R}_{\lambda}f = f$; and
- iii. for each $\lambda > 0$ and $\mu > 0$, $\mathcal{R}_{\lambda}(L^p(\Omega)) = \mathcal{R}_{\mu}(L^p(\Omega)).$

(2.) Let $\mathcal{R}_1 \in \mathcal{L}(L^p(\Omega))$ for each $u \in \mathcal{R}(L^p(\Omega))$, we have $\Delta u \in L^p(\Omega)$, and the operator $A : D(A) \subseteq$ $L^p(\Omega) \to L^p(\Omega)$, defined by

$$
\begin{cases}\nD(A) = \mathcal{R}_1(L^p(\Omega)) \\
Au = \Delta u \quad \text{for } u \in D(A),\n\end{cases}
$$

is the generator of a C_0 -semigroup of contractions.

Proof:

Since $H^{-1}(\Omega) \cap L^p(\Omega)$ is dense in $L^p(\Omega)$, then it follows that $R(\lambda; A)$ has a unique extension $\mathcal{R}_{\lambda} \in \mathcal{L}(L^p(\Omega))$ satisfying (i). Next, let $(f_k)_{k \in \mathbb{N}}$ be a sequence in $D(\Omega)$ convergent to f in $L^p(\Omega)$. As $\mathcal{R}_{\lambda} f_k - \lambda A \mathcal{R}_{\lambda} f_k = f_k$ in $H^{-1}(\Omega)$, we have $\mathcal{R}_{\lambda}f - \lambda A \mathcal{R}_{\lambda}f = f$ in $D^{1}(\Omega)$, from there we get (ii). Finally, let $f \in H^{-1}(\Omega) \cap L^{p}(\Omega)$, and $u = \mathcal{R}_{\lambda} f \in H^{-1}(\Omega) \cap L^p(\Omega)$. For each $\mu > 0$, we have

$$
\mu u - \Delta u = f + (\mu - \lambda) \mathcal{R}_{\lambda} f \tag{3.8}
$$

Let us denote by q the right-hand side of (3.8), i.e.

$$
g = f + (\mu - \lambda) \mathcal{R}_{\lambda} f
$$

and let us observe that $\mathcal{R}_{\lambda}f = u = \mathcal{R}_{\mu}g \in H^{-1}(\Omega) \cap L^{p}(\Omega)$ and therefore

 $\mathcal{R}_{\lambda}(H^{-1}(\Omega) \cap L^p(\Omega)) \subseteq \mathcal{R}_{\mu}(H^{-1}(\Omega) \cap L^p(\Omega)).$

Analogously

$$
\mathcal{R}_{\mu}(H^{-1}(\Omega) \cap L^{p}(\Omega)) \subseteq (\mathcal{R}_{\lambda}(H^{-1}(\Omega) \cap L^{p}(\Omega)),
$$

and so

$$
\mathcal{R}_{\lambda}(H^{-1}(\Omega) \cap L^p(\Omega)) = (\mathcal{R}_{\mu}(H^{-1}(\Omega) \cap L^p(\Omega)).
$$

Since $H^{-1}(\Omega) \cap L^p(\Omega)$ is dense in $L^p(\Omega)$, and \mathcal{R}_{λ} , \mathcal{R}_{μ} are linear and continuous operators in $L^p(\Omega)$, then we deduce (iii). And this complete the proof of (1). To prove (2), for each $u \in \mathcal{R}_1(L^p(\Omega))$ and $A \in \omega - ORCP_n$, we have $\Delta u \in L^p(\Omega)$, follows from (ii) in (1) above. So let $u \in D(A)$, $\lambda > 0$, $A \in \omega - ORCP_n$ and denote that $f = \lambda u - \Delta u$. From (iii) in (1), there exists $g \in L^p(\Omega)$ such that $u = \mathcal{R}_{\lambda} g$. We then conclude that $g = \lambda u - \Delta u$ and so $f = g$. Then $\lambda \in \rho(A)$ and $R(\lambda; A) = (\lambda I - A)^{-1} = \mathcal{R}_{\lambda}$. This relation in (i) from (1) above show that $||R(\lambda; A)||_{L^p(\Omega)} \leq \frac{1}{\lambda} ||u||_{L^p(\Omega)}$. Thus A satisfies (ii) in Theorem 2.6. To complete the proof, we have to merely to show that $D(A)$ is dense in $L^p(\Omega)$. To this aim, let $u \in D(\Omega)$ and $f = u - \Delta u \in D(\Omega)$. Obviously $u = \mathcal{R}_1 f$ and therefore $D(\Omega) \subseteq D(A)$. Hence $D(A)$ is dense in $L^P(\Omega)$ which complete the proof.

Theorem 3.4

Let Ω be a nonempty and open subset in \mathbb{R}^n with C^1 boundary Γ , let $X = [H^{-1}(\Omega)]^*$ then: (i.) operator $A: D(A) \subseteq X \rightarrow X$, defined by

$$
\begin{cases}\nD(A) = H^1(\Omega) \\
\langle Au, v \rangle_{H^1(\Omega), [H^1(\Omega)]^*} = \langle \nabla u, \nabla v \rangle_{L^2(\Omega)}\n\end{cases}
$$

Results of ω -order reversing partial contraction mapping generating a differential operator

for each $u, v \in H^1(\Omega)$ and $A \in \omega - ORCP_n$ is the generator of a C_0 -semigroup of contraction on X; and (ii.) the operator ${B, D(B)}$, defined by

$$
\begin{cases}\nD(B) = \{u \in H^2(\Omega); u_v = 0 \text{ on } \Gamma \\
Bu = \Delta, \text{ for } u \in D(B)\n\end{cases}
$$

is the generator of a C_0 -semigroup of contraction on X. Proof:

Since $H^1(\Omega)$ is densely imbedded in $[H^1(\Omega)]^*$, in view of Theorem 2.6, we have merely to show that for each $\lambda > 0$, the operator $\lambda I - A : D(A) \subseteq X \to X$, where A is defined as above is one to one onto and

$$
\|(\lambda I - A)^{-1}\|_{L(X)} \le \frac{1}{\lambda}.\tag{3.9}
$$

But this simply follows from the obvious identity

$$
<\lambda u - Au, u>_{[H^1(\Omega)]^*, H^1(\Omega)} = \lambda \|u\|_{L^2(\Omega)}^2 + \|\nabla u\|_{L^2(\Omega)}^2
$$

and this achieves the proof of (i). To prove (ii), let $u \in D(B)$. Then, for each $v \in H^1(\Omega)$, we have

$$
\langle Au, v \rangle_{H^1(\Omega), [H^1(\Omega)]^*} = \langle \nabla u, \nabla v \rangle_{L^2(\Omega)} = \langle \Delta u, v \rangle_{L^2(\Omega)}
$$

and thus, $Au = Bu$ for each $u \in D(B)$ and $A, B \in \omega - ORCP_n$. In addition

$$
\langle Bu, v \rangle_{L^2(\Omega)} = -\langle \nabla u, \nabla v \rangle_{L^2(\Omega)}
$$

for each $u, v \in D(B)$ and $B \in \omega - ORCP_n$. Thus B is symmetric and for each $\lambda > 0$, $\lambda I - B$ is bijective from $D(B)$ to $L^2(\Omega)$ and

$$
\|(\lambda I - B)^{-1}\|_{L(X)} \le \frac{1}{\lambda}
$$

.

If $D(B)$ is dense in $X = L^2(\Omega)$, then we are in the hypothesis of the Theorem 2.6 and this complete the proof.

4. Conclusion

This paper have established that $\omega - ORCP_n$ generates a C_0 -semigroup of contractions which was obtained by a Laplace operator with Dirichlet boundary condition.

References

- [1] A. Y. AKINYELE, O. Y. SAKA-BALOGUN AND O. A. ADEYEMO, Perturbation of infinitesimal generator in semigroup of linear operator, *South East Asian J. of Mathematics and Mathematical Sciences,* 15(3)(2019), 53–64.
- [2] A. Y. AKINYELE, M. O. AJISOPE AND A. U. OHIGWEREN, Infinitesimal generator of mean Ergodic theorem in semigroup of linear operator, *Asian Journal of Mathematics and Applications*, 0550(2020), 1–9.
- [3] H. AMANN, Linear and quasilinear parabolic problems, Volume I Abstract theory, Birchäuser Verlag, Basel Boston Berlin, (1995).
- [4] H. AMANN, Linear parabolic problems involving measures, RA CSAM, *Rev. R. Acad. Cien. Serie A. Mat.,* 95(2001), 85–119.

- [5] W. ARENDT, Vector-valued Laplace transforms and Cauchy Problems, *Israel J. Math.,* 59(1987), 327–351.
- [6] A. V. BALAKRISHNAN, An Operator calculus for infinitesimal generators of Semigroup, *Trans Amer. Math. Soc.,* 91(1959), 330–353.
- [7] S. BANACH, Surles operation dam les eusembles abstracts et lear application aus equation integrals *Fund. Math.,* 3(1922), 133–181 .
- [8] V. BARBU, Boundary value problems for partial differential equations, Editura Academiei Romane Bucuresti, (Romanian), (1993).
- [9] O. CARJA AND I. I. VRABIE, Some new viability results for semilinear differential inclusions, NoDEA, *Nonlinear Differential Equations Appl.,*4 (1997), 401-424.
- [10] K. RAUF AND A. Y. AKINYELE,, Properties of ω -order preserving partial contraction mapping and its relation to C0-semigroup, *International Journal of Mathematics and Computer Science,*, 14(1) (2019), 61–68.
- [11] K. RAUF, A. Y. AKINYELE, M. O. ETUK, R. O. ZUBAIR AND M. A. AASA, Some result of stability and spectra properties on semigroup of linear operator, *Advances in Pure Mathematics,* 9(2019), 43–51.
- [12] I. I. VRABIE,, C_0 -semigroup And Application, Mathematics Studies, 191, Elsevier, North-Holland, (2003).
- [13] K. YOSIDA, On the differentiability and representation of one-parameter semigroups of linear operators, *J. Math. Soc.,* 1(1948), 15–21.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

