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1. Introduction and Preliminaries

The spectrum theory of discrete Schrödinger operators constitutes a fundamental framework in the field of
mathematical physics and quantum mechanics. These operators play a crucial role in understanding the behavior
of quantum systems on discrete spaces, such as lattices or graphs.

In the spectrum theory of discrete Schrödinger operators, the focus lies on the investigation of the eigenvalues
and eigenfunctions associated with these operators. One key aspect of this theory is the analysis of different types
of potentials that can influence the behavior of the discrete Schrödinger operators. These potentials can vary
in nature, including bounded potentials, unbounded potentials, periodic potentials, and even complex potentials.
Understanding the impact of these diverse potential profiles on the spectrum is very important for unraveling the
intricacies of quantum systems in discrete settings.

The spectrum theory encompasses the study of various spectral properties, such as the existence of band
gaps, spectral gaps, and the presence of absolutely continuous, singular continuous, or discrete spectra. These
properties shed light on the system’s spectral structure, revealing essential information about its stability,
resonances, and localization properties.

In addition to the spectral analysis, the estimation of Green’s functions associated with discrete Schrödinger
operators is a crucial topic within this theory. Green’s functions provide insights into the propagator behavior,
which describes the evolution of quantum states in time.

Numerous research works have contributed to the development and advancement of the spectrum theory
of discrete Schrödinger operators. Seminal works by Kirsch and Simon [2], and Remling [3] have provided
significant insights into the spectral analysis of discrete Schrödinger operators. Additionally, the monographs by
Teschl [4] and Simon [5] offer comprehensive treatments of the subject, covering various aspects of the spectrum
theory and its applications.

The spectrum theory of the discrete Schrödinger operators has been extensively applied in research on
nonlinear discrete Schrödinger equations, including the investigation into the existence of standing waves(see
[26–30]). This paper is organized as follows:

• In section 1 we introduce some basic results on the spaces of sequences;

• In section 2 we study the basic spectrum theorem of the discrete Schrödinger operators with bounded,
unbounded or complex potentials;

• In section 3 we provide exponential estimates of Green’s function and eigenfunctions of the discrete
Schrödinger operators;

• In section 4 we investigate the spectrum structure of discrete Schrödinger operators with periodic potentials;

• In section 5 we review some results on standing wave solutions of discrete Schrödinger equations as an
application of the spectrum theory.

1.1. Spaces of Sequences

In this paper, we focus solely on real or complex-valued sequences that are involved in our research on discrete
Schrödinger equations. For a more comprehensive understanding of Banach sequences, we recommend referring
to classical functional analysis books such as [6, 7, 11, 13], as well as [16].

Let K be the real (R) or complex field (C), Z be the set of integers and d be a positive integer. Let n =

(n1, · · · , nd) ∈ Zd and

|n| =
∑

1≤i≤d

|ni| .
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Any function from Zd to K is called a sequence. We denote the set of all sequence by l(Zd) and the set of finitely
supported sequence bon discrete Schrödinger equation. For more details on Banach sequences we refer readers
to classical functional analysis books such as [6, 7, 11, 13] as well as to [16].

Let K be the real (R) or complex field (C), Z be the set of integers and d be a positive integer. Let n =

(n1, · · · , nd) ∈ Zd and

|n| =
∑

1≤i≤d

|ni| .

Any function from Zd to K is called a sequence. We denote the set of all sequence by l(Zd) and the set of finitely
supported sequence by

l0(Zd) = {u|u : Zd → K, u = {u(n)}, u(n) = 0, for all but finitely many n},

Obviously, these are vector spaces with respect to standard operations.
We define some Banach sequence spaces as follows:

• c0(Zd) = {u|u : Zd → K, u = {u(n)}, lim|n|→∞ |u(n)| = 0},

• lp(Zd) = {u|u : Zd → K, u = {u(n)},
∑

n∈Zd |u(n)|p <∞}, 1 ≤ p <∞,

• l∞(Zd) = {u|u : Zd → K, u = {u(n)}, supn∈Zd |u(n)| <∞}.

It is well known that these sequence spaces are Banach spaces when equipped with the following norms:

• ∥u∥∞ = supn∈Zd |u(n)|, for u ∈ c0(Zd),

• ∥u∥p = (
∑

n∈Zd |u(n)|p)1/p, for u ∈ lp(Zd) and 1 ≤ p <∞,

• ∥u∥∞ = supn∈Zd |u(n)|, for u ∈ l∞(Zd).

Furthermore, l2(Z) is a Hilbert space with the inner product

(u, v) =
∑
n∈Zd

u(n)v(n) ,

where as usual ā stands for the complex conjugate of a ∈ C.
The following embeddings hold:
If 1 ≤ p1 < p2 ≤ ∞, then ∥u∥p2

≤ ∥u∥p1
, for all u ∈ lp1(Zd); therefore, we have

lp1(Zd) ⊂ lp2(Zd).

These embeddings are dense if p2 <∞.
It is easy to see for all 1 ≤ p <∞ we have

lp(Zd) ⊂ c0(Zd) ⊂ l∞(Zd)

The representation of the dual spaces is entirely analogous to the classical result that is listed as follows:

• c0(Zd)∗ = l1(Zd),

• lp(Zd)∗ = lq(Zd), where 1 < p <∞ and 1
p + 1

q = 1,

• l1(Zd)∗ = l∞(Zd).
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A Banach space is said to be reflexive if the dual space of its dual space is isomorphic to itself under the canonical
embedding. From the representation of dual space of lp(Zd) we know that lp(Zd) is reflexive if 1 < p < ∞ and
c0(Zd), l1(Zd) and l∞(Zd) are nonreflexive.

Assume that vk is a sequence of elements of lp(Zd) and v ∈ lp(Zd), 1 ≤ p ≤ ∞. Let lq(Zd) be the dual
space of lp(Zd), then we have 1

p +
1
q = 1 and q = ∞ if p = 1. Therefore we can define the sequence convergence

as follows:
(i) vk is norm (or strongly) convergent to v in lp(Zd), denoted by vk → v, if limk→∞ ∥vk − v∥p = 0, for

1 ≤ p ≤ ∞;
(ii) for 1 ≤ p <∞, vk is weakly convergent to v in lp(Zd), denoted by vk ⇀ v, if for all u ∈ lq(Zd)

lim
k→∞

∑
n∈Zd

(vk(n)− v(n))u(n) = 0.

(iii) for 1 < p ≤ ∞, vk is weakly* convergent to v in lp(Zd) = lq(Zd)∗, denoted by vk →w∗
v, if for all

u ∈ lq(Zd)

lim
k→∞

∑
n∈Zd

(vk(n)− v(n))u(n) = 0.

Some important theorems are introduced here without proof([16]).

Theorem 1.1. If 1 ≤ p < ∞ and vk is a sequence of elements of lp(Zd) and v ∈ lp(Zd), then vk → v if and
only if:

(i) limk→∞ |vk(n)− v(n)| = 0 for all n ∈ Zd;
(ii) limk→∞ ∥vk∥p = ∥v∥p.

Theorem 1.2. If 1 ≤ p < ∞ and vk is a sequence of elements of lp(Zd) and v ∈ lp(Zd), then vk ⇀ v if and
only if:

(i) limk→∞ |vk(n)− v(n)| = 0 for all n ∈ Zd;
(ii) there exists an M > 0 such that (

∑
n∈Zd |uk(n)|p)1/p ≤M for all k ≥ 1.

Theorem 1.3. If 1 < p ≤ ∞ and vk is a sequence of elements of lp(Zd) and v ∈ lp(Zd), then vk →w∗
v if and

only if:
(i) limk→∞ |vk(n)− v(n)| = 0 for all n ∈ Zd;
(ii) there exists an M > 0 such that (

∑
n∈Zd |uk(n)|p)1/p ≤M for all k ≥ 1.

Recall that a Banach space E has the Radon-Riesz property if and only if the following statement is true: if
vk is a sequence in E and v ∈ E such that vk ⇀ v and ∥vk∥ → ∥v∥, then ∥vk − v∥ → 0.

Theorem 1.4. If 1 ≤ p <∞, then lp(Zd) has the Radon-Riesz property, that is, vk → v if and only if:
(i) vk ⇀ v,
(ii) ∥vk∥p → ∥v∥p.

The next result gives a criterion for compactness of a subset K ⊂ lp(Zd), 1 ≤ p < ∞, and is completely
similar to the classical theorem ([17]).

Theorem 1.5. If 1 ≤ p <∞, then K ⊂ lp(Zd) is compact if and only if
(i) K is closed and bounded,
(ii)given any ε > 0, there exist a positive integer N = N(ε) (depending only on ε) such that

(
∑

|n|>N |u(n)|p)1/p < ε for all u ∈ K.

A subset K of a Banach space E is said to be weakly sequentially compact if and only if every sequence in
K contains a subsequence that converges weakly to a point in E.

Theorem 1.6. (i) If 1 < p <∞, then K ⊂ lp(Zd) is weakly sequentially compact if and only if K is bounded;
(ii)K ⊂ l1(Zd) is weakly sequentially compact if and only if K is strongly conditionally compact.
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1.2. Some Operators in Spaces of Sequences

We introduce the canonical basis {ei : i = 1, · · · , d} of the free Abelian group Zd as follows:

e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , ed = (0, 0, 0, · · · , 1).

For m ∈ Zd we define the translation operator on l(Zd), denoted by Tm, as follows (Tmu)(n) = u(n−m).
In particular, we obtain the frequently used right shift operator Si = Tei

and left shift operator Ti = T−ei
on

l(Zd) as follows
(Siu)(n) = u(n− ei), (Tiu)(n) = u(n+ ei), ∀i = 1, · · · , d.

Obviously, translations are linear operators.
We define the forward partial difference (∇+

i = Ti − I) and backward partial difference (∇−
i = I − Si) as

follows
(∇+

i u)(n) = u(n+ ei)− u(n), (∇−
i u)(n) = u(n)− u(n− ei).

TiSi = SiTi = I implies
∇+

i ∇
−
i = ∇−

i ∇
+
i = Si + Ti − 2I.

Operators Ti and Si act as isometric operators in lp(Zd), 1 ≤ p ≤ ∞. As consequence, difference operators ∇+
i

and ∇−
i are bounded linear operators in all lp(Zd), 1 ≤ p ≤ ∞.

The following proposition is the analogue (or discrete version) of the product rule of derivative and its proof
is straightforward.

Proposition 1.7. For any u, v ∈ l(Zd)

∇+
i (uv) = u∇+

i v + Tiv∇+
i u

and
∇−

i (uv) = u∇−
i v + Siv∇−

i u .

Making use of elementary identities
Si∇+

i = ∇+
i Si = ∇−

i

and
Ti∇−

i = ∇−
i Ti = ∇+

i ,

we obtain the following statement.

Corollary 1.8. If u ∈ l(Zd) and v ∈ l(Zd), then

∇−
i ∇

+
i (uv) = u∇−

i ∇
+
i v + (∇−

i u)(∇
−
i v +∇+

i v)

+ (∇−
i ∇

+
i u)(Tiv)

and

∇+
i ∇

−
i (uv) = u∇+

i ∇
−
i v + (∇+

i u)(∇
−
i v +∇+

i v)

+ (∇+
i ∇

−
i u)(Siv) .

If d = 1, then the classical Abel’s summation by parts formula reads

m∑
n=k

u(n)(∇+v)(n) = u(m)v(m+ 1)− u(k − 1)v(k)−
m∑

n=k

(∇−u)(n)v(n)

(here we skip the index in the notation of difference operators). The formula can be extended to the case d > 1

but we do not use such an extension in the following. We only need the following particular case.
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Proposition 1.9. Assume that either u ∈ l(Zd) and v ∈ l0(Zd), or u ∈ l0(Zd) and v ∈ l(Zd). Then∑
n∈Zd

u(n)(∇+
i v)(n) = −

∑
n∈Zd

(∇−
i u)(n)v(n)

for all i = 1, . . . , d.

Corollary 1.10. In the space l2(Zd) operators ∇+
i and ∇−

i are mutually skew-adjoint, i.e.,

(∇+
i )

∗ = −∇−
i

for all i = 1, . . . , d.

2. Discrete Schrödinger operators

From now on all sequence spaces are supposed to be complex valued, and we drop C in the notation of spaces.
The norm and inner product in l2(Zd) are denoted by ∥ · ∥ and (·, ·), respectively. We use the standard notation
σ(A) and ρ(A) = C \ σ(A) for the spectrum and resolvent set of a linear operator A, respectively.

2.1. Discrete Laplacian

The discrete Laplacian −∆ on Zd is defined by

−∆ = −∇− ·∇+

= −∇+ ·∇−

= −
d∑

i=1

∇−
i ∇

+
i .

Here the second equality follows from the fact that operators ∇+
j and ∇−

j , j = 1, . . . , d, commutes. In more
details, for any u ∈ l(Zd)

(−∆u)(n) =
∑

|m−n|=1

u(m)− du(n) .

This is a linear operator in the space l(Zd). It is easily seen that −∆ leaves the space l0(Zd) invariant, and acts a
bounded linear operator in all spaces lp(Zd), p ∈ [1,∞].

The following proposition follows immediately from the summation by parts formula.

Proposition 2.1. The operator −∆ is a bounded, self-adjoint operator in l2(Zd). Furthermore, −∆ is a
nonnegative operator, i.e.,

(−∆u, u) ≥ 0 , u ∈ l2(Zd) .

Proposition 2.2. The spectrum σ(−∆) is purely continuous and coincides with [0, 4d].

Proof For any u ∈ l2(Zd) we consider its Fourier transform

û(ξ) =
1

(2π)d/2

∑
n∈Zd

u(n) exp(2πξ · n) .

Then û ∈ L2([−π, π]). By Parseval’s theorem, ∥û∥L2 = ∥u∥, and the map u 7→ û is an isometric isomorphism
between l2(Zd) and L2([−π, π]). A straightforward calculation shows that

ˆ−∆u(ξ) = a(ξ)û(ξ) ,
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where

a(ξ) = 2

d∑
i=1

(cos ξi − 1) ,

i.e., −∆ is unitary equivalent to the multiplication operator by a(ξ) in L2([−π, π]) and, therefore, the spectra of
these two operators coincide. It is easily seen that the spectrum of multiplication operator by a(ξ) is precisely the
range of a(ξ) which is equal to [0, 4d]. The proof is complete.

2.2. Self-adjoint Discrete Schrödinger Operator

Let V ∈ l(Zd) be a real sequence. We associate with V the multiplication operator by V . In what follows
we do not distinguish notationally between the sequence V and the associated multiplication operator. Such
operators can be considered as, generally, unbounded operators in various sequence spaces. The most important
case for us is the l2 case. More precisely, the multiplication operator by V in l2(Zd) is defined on the domain

D(V ) = {u ∈ l2(Zd) : V u ∈ l2(Zd)} .

Obviously, D(V ) is dense in l2(Zd). As a diagonal operator, the operator V is self-adjoint. It is easily seen that
V is a bounded operator and D(V ) = l2(Zd) if and only if V ∈ l∞(Zd).

The discrete Schrödinger operator with potential V ∈ l(Zd) is defined by

L = −∆+ V ,

where V is regarded as the operator of multiplication by V . Mainly we consider L as an operator in the basic
Hilbert space l2(Zd) though time by time we shall need to study its action in other spaces. Note that both −∆

and V are self-adjoint operators in l2(Zd), and the first one is bounded. Therefore, the classical result on the sum
of self-adjoint operators in its simplest form immediately yields the following statement.

Proposition 2.3. The Schrödinger operator L is a self-adjoint operator in l2(Zd) with the domain D(L) =

D(V ). In particular, L is bounded if and only if the sequence V is bounded.

If L (equivalently, V ) is unbounded, we equip D(L) = D(V ) with the graph norm. It is convenient to use
the graph norm associated with V

∥u∥L = (∥u∥2 + ∥V u∥2)1/2 , u ∈ D(L) , (2.1)

Then the domain becomes a Hilbert space with inner product

(u, v)L = (u, v) + (V u, V v) , u ∈ D(L) , v ∈ D(L) . (2.2)

Notice that the embedding D(L) ∈ l2(Zd) is continuous and dense. Furthermore, for every λ ∈ ρ(L) the
operator (L− λI)−1 maps l2(Zd) onto D(L) isomorphically. We say that the operator L has compact resolvent
if for some (hence, for all) λ ∈ ρ(L) the operator (L − λI)−1 is compact. Equivalently, this means that the
embedding D(L) ⊂ l2(Zd) is compact. Also the compactness of resolvent is equivalent to the property that the
spectrum σ(L) is purely discrete, i.e., consists of countably many eigenvalues of finite multiplicity with the only
accumulation point at infinity. These results have been applied in our research on standing waves of nonlinear
discrete Schrödinger equations with unbounded potential (see [26–30]).

Theorem 2.4. The spectrum of L is purely discrete if and only if |V (n)| → ∞ as |n| → ∞.

Proof Due to the second resolvent identity,

(L− iI)−1 − (V − iI)−1 = (L− iI)−1∆(V − iI)−1 .
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This implies immediately that L has compact resolvent if and only if so does V .
Assume that |V (n)| → ∞ as |n| → ∞ and prove that the embedding D(V ) ⊂ l2(Zd) is compact. With this

aim it is enough to show that the set

B = {u ∈ l2(Zd) : ∥u∥2 + ∥V u∥2 ≤ 1}

= {u ∈ l2(Zd) :
∑
n∈Zd

(1 + |V (n)|2)|u(n)|2 ≤ 1}

is precompact in l2(Zd). For any ε > 0 there exists N > 0 such that

1 + |V (n)|2 ≥ ε−1

whenever |n| ≥ N . Then ∑
|n|≥N

|u(n)|2 ≤ ε
∑

|n|≥N

(1 + |V (n)|2)|u(n)|2 ≤ ε .

Since B is obviously bounded in l2(Zd), Theorem 1.5 implies that B is precompact in l2(Zd).
Now we prove that the compactness of embedding D(L) ⊂ l2(Zd) implies that |V (n)| → ∞ as |n| → ∞.

Assuming the contrary, we see that there exists an infinite set S ⊂ Zd such that V is bounded on S. Then on the
subspace

{u ∈ l2(Zd) : u(n) = 0 ∀n ̸∈ S} ⊂ D(L)

the l2-norm and the graph norm are equivalent, and, therefore, the embedding D(L) ⊂ l2(Zd) is not compact.
The proof is complete.

Remark 2.5. If d = 1, then all isolated eigenvalues of L are simple.

Assume now that the potential V is bounded below, say,

V (n) ≥ α , n ∈ Zd ,

for some α ∈ R. Then the operator L is semi-bounded below, i.e.,

(Lu, u) ≥ α∥u∥2 , u ∈ D(L) .

In this case the associated sesquilinear and quadratic forms have explicit representations

qL(u, v) = (∇+u,∇+v) + (V u, v)

= (∇−u,∇−v) + (V u, v) .

and

qL(u) = ∥∇+u∥2 + ∥V u∥2

= ∥∇−u∥2 + ∥V u∥2 .

We remind that qL(u) = qL(u, u).
The domain D(qL), i.e. the form domain, or energy space E = EL of L, is a Hilbert space with the inner

product
(u, v)E = qL(u, v) + C(u, v) ,

where C is large enough. Notice that all these inner products are equivalent. If the operator L is positive definite,
i.e. α > 0, the most natural inner product is (·, ·)E = qL(·, ·). Also we note that E consists of all u ∈ l2(Zd)

such that |V |1/2u ∈ l2(Zd).
Making use of the arguments similar to those in the proof of Theorem 2.4, we obtain the following proposition.

Proposition 2.6. Assume that the potential V is bounded below. Then the following statements are equivalent.

(i) The embedding D(qL) ⊂ l2(Zd) is compact.

(ii) V (n) → +∞ as |n| → ∞.
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2.3. Dissipative Discrete Schrödinger Operator

First we remind some general results (see, e.g., [20, 23] and, in the case of operators in real Hilbert spaces,
[8]).

Let A be a linear operator in a Hilbert space H , with domain D(A). The operator A is said to be dissipative
if

Re(Au, u) ≤ 0

for all u ∈ D(A). It is called m-dissipative if, in addition, A is closed and the range R(A − λ0I) is dense in H
for some λ0 ∈ C with Reλ0 > 0.

Proposition 2.7. Let A be a closed, dissipative operator. Then the following statements are equivalent:

(a) A is m-dissipative;

(b) there exists λ0 ∈ C, with Reλ0 > 0, such that λ0 ∈ ρ(A);

(c) {λ ∈ C : Reλ > 0} ⊂ ρ(A);

(d) the domain D(A) is dense in H and A∗ is m-dissipative.

If A is m-dissipative, then
∥(A− λI)−1∥ ≤ (Reλ)−1

whenever Reλ > 0.

Proposition 2.8. A linear operator A in H is m-dissipative if and only if its domain D(A) is dense in H , A is
closed, (0,∞) ⊂ ρ(A), and

∥(A− λI)−1∥ ≤ λ−1

for all λ > 0.

Proposition 2.9. Let A be a densely defined closed linear operator in H . If both A and A∗ are dissipative, then
A is m-dissipative.

Remark 2.10. A linear, dissipative operator A in H is called maximal dissipative if for any disipative operator
Ã such that D(A) ⊂ D(Ã) and Ã|D(A) = A we have D(Ã) = D(A) and, hence, Ã = A. In other words,
A is maximal dissipative if it has no proper dissipative extensions. In fact, the classes of m-dissipative and
maximal dissipative operators coincide (see, e.g., [8]). Thus the term ‘m-dissipative’ is an abbreviation for the
term ‘maximal dissipative’.

Now we consider the discrete Schrödinger operator with complex potential V ∈ l(Zd). We keep the notation
V for the operator of multiplication by the sequence V acting in l2(Zd), with the domain

D(V ) = {u ∈ l2(Zd) : V u ∈ l2(Zd)} .

As in Subsection 2.2, this is a closed linear operator, and it is bounded if and only if V ∈ l∞(Zd). Since the
operator V is diagonal, for its adjoint operator we have that V ∗ = V̄ , where V̄ is the complex conjugate of V ,
and D(V ∗) = D(V̄ ) = D(V ).

As usual, the Schrödinger operator with complex potential V is defined by

Lu = −∆u+ V u , u ∈ D(L) ,

with the domain
D(L) = D(V ) .

Since ∆ is a bounded operator, the operator L is closed, D(L∗) = D(L), and

L∗u = −∆u+ V̄ u , D(L) .
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Proposition 2.11. Assume that ImV (n) ≥ 0 for all n ∈ Zd. Then the operator iL is m-dissipative.

Proof Let V = V0+iV1. Due to Proposition 2.9, it is enough to show that both iL and −iL∗ are dissipative.
Since |V0(n)| ≤ |V (n)| and |V1(n)| ≤ |V (n)| for all n ∈ Zd, we have D(V ) ⊂ D(V0) and D(V ) ⊂ D(V1).
Then, for all u ∈ D(L),

(iLu, u) = −i(−∆u, u) + i(V0u, u)− (V1u, u) ,

and, by the assumption of proposition, Re(iLu, u) ≤ 0 for all u ∈ D(L). Thus, iL is dissipative. The dissipativity
of −iL∗ follows similarly.

3. Exponential Estimates

In this section we consider Green’s function of discrete Schrödinger operator and eigenfunctions with isolated
eigenvalues of finite multiplicity.

Let {δk}k∈Zd be the standard orthonormal basis in l2(Zd), i.e.,

δk(n) =

{
1 , n = k ,

0 , n ̸= k .

For any λ ∈ ρ(L) we define Green’s function G(n, k;λ) by

G(n, k;λ) = ((L− λI)−1δk, δn) , k, n ∈ Zd .

The following symmetry identities are straightforward:

G(k, n;λ) = G(n, k;λ)

and
G(n, k; λ̄) = G(n, k;λ)

for all n ∈ Zd, k ∈ Zd and λ ∈ ρ(L).
The main result on Green’s function is the following theorem.

Theorem 3.1. Let K be a compact subset of ρ(L). There exist constants C = CK > 0 and α = αK > 0 such
that

|G(k, n;λ)| ≤ C exp(−α|n− k|) (3.1)

for all n ∈ Zd, k ∈ Zd and λ ∈ K.

As consequence, we obtain the following representation of resolvent.

Proposition 3.2. If λ ∈ ρ(L), then for all f ∈ l2(Zd)

((L− λI)−1f)(n) =
∑
k∈Zd

G(n, k;λ)f(k) . (3.2)

Furthermore, the right-hand side of (3.2) converges for f ∈ lp(Zd), and defines a bounded linear operator in
lp(Zd) for all p ∈ [1,∞].

Remark 3.3. By Proposition 3.2, the resolvent (L − λI)−1, λ ∈ ρ(L), extends to a bounded linear operator in
lp(Zd) for all p ∈ [1,∞]. Actually, the operator L can be considered as a closed, in general unbounded, linear
operator in lp(Zd), p ∈ [1,∞]. The resolvent set of such extension contains ρ(L), and the resolvent of extension
is given by the right-hand side of (3.2) for λ ∈ ρ(L). In fact, one can show that the spectrum of L considered as
an operator in lp(Zd), p ∈ [1,∞], is independent of p but we do not use this result.
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As the first step toward the proof of Theorem 3.1 we introduce the action of discrete Schrödinger operators in
certain weighted l2 spaces. Let

φε,k(n) = e−ε|n−k| , n ∈ Zd ,

and let
l2ε,k(Zd) = {u ∈ l(Zd) : φε,ku ∈ l2(Zd)} ,

where ε ∈ R. Endowed with the norm ∥u∥ε,k = ∥φε,ku∥, this is a Banach (actually, Hilbert) space. We denote
by Φε,k the multiplication operator by φε,k

Φε,ku = φε,ku .

Then Φε,k maps l2ε,k(Zd) onto l2(Zd) isometrically, and the inverse operator

Φ−1
ε,k : l2(Zd) → l2ε,k(Zd)

is represented by Φ−ε,k.
Now we introduce the operator Lε,k in l2ε,k(Zd) as follows. Its domain D(Lε,k) is given by

D(Lε,k) = Φ−1
ε,kD(L) = Φ−1

ε,kD(V ) ,

and the action of Lε,k is given by
Lε,ku = −∆u+ V u

for all u ∈ D(Lε,k). It is easily seen that Lε,k is a closed linear operator in the space l2ε,k(Zd). Notice that it is
bounded if and only if the potential V is bounded. The operator Lε,k is isometrically equivalent to the following
operator

Lε,k = Φε,kLε,kΦ−ε,k

in the space l2(Zd). Its domain coincides with D(L).
In the notation just introduced we suppress k whenever k = 0.

Lemma 3.4. Let K be a compact subset of ρ(L). Then there exists a constant ε0 > 0 such that for every λ ∈ K

the operator Lε,k − λI has a bounded inverse operator for all k ∈ Zd and all ε ∈ [−ε0, ε0]. Furthermore, the
norm of (Lε,k − λI)−1 is bounded above by a constant independent of λ ∈ K, k ∈ Zd and ε ∈ [−ε0, ε0].

Proof Since operators Lε,k and Lε,k are isometrically equivalent, it is enough to prove the statement with
Lε,k replaced by Lε,k.

Making use of Corollary 1.8, we have
Lε,k = L+Bε,k ,

where

Bε,ku = −
d∑

i=1

[φε,k(∇−
i φ−ε,k)(∇+

i +∇−
i )u+ φε,k(∇−

i ∇
+
i φ−ε,k)Tiu] .

We claim that Bε,k is a bounded linear operator in l2(Zd) and

∥Bε,k∥ = o(|ε|)

uniformly with respect to k ∈ Zd. Indeed, an elementary calculation shows that

φε,k(n)(∇−
i φ−ε,k)(n) = 1− e±ε ,

depending on whether ni − ki > 0 or not, and therefore is o(|ε|). Similarly,

φε,k(n)(∇−
i ∇

+
i φ−ε,k)(n) = o(ε2)
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uniformly with respect to k ∈ Zd.
Since the resolvent (L− λI)−1 is uniformly bounded as λ ∈ K, there exists ε0 > 0 such that

∥Bε,k∥∥(L− λI)−1∥ ≤ α

for some α ∈ (0, 1). Then the operator

I +Bε,k(L− λI)−1 , λ ∈ K ,

is invertible in l2(Zd), and its inverse is uniformly bounded. Hence, the operator

Lε,k − λI = (I +Bε,k(L− λI)−1)(L− λI)

has the inverse operator which is uniformly bounded if λ ∈ K.
The proof is complete.

Remark 3.5. From the proof of Lemma 3.4 it is clear that (Lε,k − λI)−1 depends continuously on (λ, ε) ∈
K × [−ε0, ε0].

Proof of Theorem 3.1: Since

G(·, k;λ) = (L(−ε0,k) − λI)−1δk

and ∥δk∥−ε0,k = 1 we have, by Lemma 3.4,

∥G(·, k;λ)∥2−ε0,k =
∑
n∈Zd

e2ε0|n−k||G(n, k;λ)|2 ≤ ∥(L(−ε0,k) − λI)−1∥2∥δk∥2−ε0,k ≤ C.

The result follows with α = ε0.

Proposition 3.6. Assume that σ(L) = Σ0 ∪ Σ1, where Σ0 and Σ1 are disjoint closed sets, and Σ0 is bounded.
Then the spectral projectors P0 and P1 that correspond to the spectral components Σ0 and Σ1, respectively, are
continuous with respect to lp norm for all p ∈ [1,∞].

Proof Since P1 = I − P0, it suffice to prove lp-continuity only for P0. Let Γ ⊂ C be a smooth, closed,
connected, counterclockwise oriented curve surrounding the set Σ0 and such that Γ∩Σ1 = ∅. Then P0 possesses
the representation

P0 = − 1

2πi

∫
Γ

(L− λI)dλ ,

and the result follows from Proposition 3.2.
Now we turn to discrete eigenvalues.

Theorem 3.7. Let λ0 be an isolated eigenvalue of L with finite multiplicity, and u ∈ l2(Zd) be an associated
eigenfunction. Then there exist constants α > 0 and C > 0 such that

|u(n)| ≤ C exp(−α|n|) , n ∈ Zd .

Proof Let Γ be a circle centered at λ0, counterclockwise oriented, and such that it does not intersect σ(L).
Then the eigenspace E of L that corresponds to the eigenvalue λ0 is the image of the Riesz projector

P = − 1

2πi

∫
Γ

(L− λI)−1dλ ,
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and k = dimE is the multiplicity of λ0. By Remark 3.5, in a small neighborhood of ε = 0 the operator
(Lε − λI)−1 is a continuous function of ε and λ ∈ Γ. Hence, the Riesz projector

P ε = − 1

2πi

∫
Γ

(Lε − λI)−1dλ

as a bounded operator in l2(Zd) depends continuously on ε in that neighborhood, and dimEε = k < ∞ is
independent of ε. Notice that P 0 = P and E0 = E.

As isometrically equivalent to Lε, the operator Lε has the same spectrum. Its Riesz projector Pε that
corresponds to the part of spectrum inside Γ is isometrically equivalent to P ε. Indeed,

ΦεPεΦ−ε = − 1

2πi

∫
Γ

Φε(Lε − λI)−1Φ−εdλ

= − 1

2πi

∫
Γ

(Φε(L− λI)Φ−ε)
−1dλ = P ε .

As consequence, the image Eε of Pε is isomorphic to Eε. Since both spaces are finite dimensional, dimEε = k.
If ε = −α < 0, then

l2ε(Zd) ⊂ l2(Zd) ,

D(Lε) ⊂ D(L)

and the operator Lε is the restriction of L to D(Lε). Therefore, the resolvent (Lε − λI)−1 is the restriction of
(L − λI)−1 to the space l2(Zd). Hence, the projector Pε is the restriction of P , and Eε ⊂ E. Since both these
spaces have the same dimension k, we see that E = Eε ⊂ l2(Zd). Thus, for any eigenfunction u ∈ E, we have

exp(α| · |)u ∈ l2(Zd) ⊂ l∞(Zd) .

This yields immediately the required, and the proof is complete.

Corollary 3.8. If u ∈ l2(Zd) is an eigenfunction of L associated to an isolated eigenvalue of finite multiplicity,
then u ∈ l1(Zd).

4. Periodic Discrete Schrödinger Operators

In this section we consider the Schrödinger operator with periodic potential. We fix N = (N1, . . . , Nd) ∈ Zd

such that Ni > 1 for all i = 1, . . . , d. Assume that the potential V is N -periodic, i.e.,

V (n+N) = V (n) , n ∈ Zd .

Notice that in this case the operator
L = −∆+ V

is a bounded self-adjoint operator in l2(Zd).
The periodicity cell □N is defined by

□N = {n ∈ Zd : 0 ≤ ni ≤ Ni − 1 , i = 1, . . . , d} .

The cardinality of □N is equal to
|□N | = N1N2 · · ·Nd .

The lattice of periods GN is the subgroup of Zd generated by the vectors Niei, i = 1, . . . , d. We denote by G∗
N

the dual lattice to G∗
N which consists of all vectors κ ∈ Rd such that κ · γ ∈ 2πZ for all γ ∈ GN . Here · stands
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for the usual dot product in Rd. More explicitly, G∗
N is the subgroup of Rd generated by the vectors 2πN−1

i ei,
i = 1, . . . , d.

Recall that (unitary) characters of the group GN , i.e., group homomorphisms

GN → S = {z ∈ C : |z| = 1} ,

are of the form
χξ(γ) = eiξ·γ , γ ∈ GN ,

where ξ ∈ Rd. According to physics terminology, vectors ξ are called quasi-momenta. It is easily seen that

χξ+κ = χξ

for all κ ∈ G∗
N . Therefore, we can restrict the values of quasi-momenta to the set

BN = {ξ ∈ Rd : − π

Ni
< ξi ≤

π

Ni
, i = 1, . . . , d} .

In physics the set BN is called Brillouin zone.
For a sequence u ∈ l2(Zd) we define its Floquet transform by

û(n, ξ) =
|□N |1/2

(2π)d/2

∑
γ∈GN

u(n+ γ)e−iξ·γ . (4.1)

For any n ∈ Zd the series in the right-hand side of (4.1) converges in the sense of L2(BN ), and û(n, ξ) is a
G∗

N -periodic function with respect to ξ:

û(n, ξ + κ) = û(n, ξ) , n ∈ Zd ,

for all κ ∈ G∗
N . Also it is easily seen that

û(n+ γ, ξ) = eiξ·γ û(n, ξ) , γ ∈ GN . (4.2)

As consequence, û(·, ξ) is completely determined by its restriction to □N , and we can consider the Floquet
transform of u as a function û(ξ) with values in the space FN of complex functions on □N . We equip FM with
the standard inner product of l2 type. The function u also can be considered as a function on GN with values in
FN . In this context the Floquet transform becomes the Fourier transform for FN -valued functions on the group
GN . Hence, the mapping u 7−→ û is a unitary equivalence between l2(Zd) and L2(BN ;FN ), and we have the
following inversion formula

u(γ + n) =
|□N |1/2

(2π)d/2

∫
BN

û(n, ξ)eiξ·γdξ , γ ∈ GN , n ∈ □N . (4.3)

Now we look for a representation of operator L in terms of the Floquet transform. More precisely, let us
define the operator L̂ by

(L̂û)(ξ) = L̂u(ξ) , ξ ∈ BN .

Proposition 4.1. There exists a real analytic functionM(ξ), with values in the set of self-adjoint operators acting
in the spaces FN , such that (L̂û)(ξ) =M(ξ)û(ξ).

Proof We represent the operator L̂ in the form

L̂ = −
d∑

j=1

∇̂−
j ∇̂

+
j + V̂ ,
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where
(∇̂±

j û)(ξ) = (∇̂±
j u)(ξ)

and
(V̂ û) = (V̂ u)(ξ) .

Making use of periodicity of V , we have

(2π)d/2

|□|1/2
(V̂ u)(n, ξ) =

∑
γ∈GN

V (n+ γ)u(n+ γ) = V (n)
∑

γ∈GN

u(n+ γ) ,

i.e., V̂ is the operator of multiplication by V , and does not depend on ξ. Straightforward calculations show that,
for j = 1, . . . , d,

(∇̂+
j )u(n) =

{
u(n+ ej)− u(n) , nj < Nj ,

eiNjξju(n−Njej)− u(n) , nj = Nj ,

and

(∇̂−
j )u(n) =

{
u(n)− u(n− ej) , nj ≥ 0 ,

u(n)− e−iNjξju(n+ (Nj − 1)ej) , nj = 0 .

Since

L̂ = −
d∑

j=1

∇̂−
j ∇̂

+
j + V̂ ,

the result follows.

Remark 4.2. Notice that the matrix M(ξ) is G∗
N -periodic in ξ.

The following theorem provides an information about the spectrum of periodic discrete Schrödinger operator.

Theorem 4.3. The spectrum of discrete Schrödinger operator with N -periodic potential is equal to the union of
|□N | bounded closed intervals Bk, k = 1, . . . , |□N |.

Proof For the sake of simplicity, we set r = |□N |. Let

µ1(ξ) ≤ µ2(ξ) ≤ · · · ≤ µr(ξ) ,

be the eigenvalues of the matrix M(ξ). Due to Remark 4.2, the eigenvalues are G∗
N -periodic functions of ξ. By

Proposition 4.1, λ ∈ σ(L) if and only if λ = µk(ξ) for some k = 1, . . . , r and some ξ ∈ B̄N . Furthermore, the
matrix M(ξ) depends analytically on ξ. Perturbation theory of finite dimensional self-adjoint operators implies
that the functions µk(ξ) are continuous and piece-wise analytic. Hence, the range of µk(ξ) is a bounded closed
interval Bk, k = 1, . . . , r, and the proof is complete.

The intervals Bk are called spectral bands. It may happen that some, or even all, bands are separated by
open intervals free of spectrum. Such open intervals are called spectral gaps. Certainly, there are two infinite
intervals free of spectrum, above and below σ(L). Sometimes these intervals are also called (infinite) gaps. In
physics literature the multi-valued function σ(M(ξ)) is called the dispersion relation.

A detailed discussion of the discrete Floquet theory in dimension d = 1 can be found in [24] (see also [18]).
Notice, that the case d > 1 does not appear in the literature. The presentation in this section follows [10], where
operators on periodic discrete and quantum graphs are considered (see also [14]). For the Floquet theory of
ordinary and partial differential equations we refer to [9, 12, 15, 22].
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5. Standing Wave Solutions

In this section, as an application of the spectrum theory, we review some results (in [30]) on the existence
of nontrivial standing wave solution of the discrete nonlinear Schrödinger equation with the growing potential
at infinity. We combine the variational method with Proposition 2.6 to demonstrate the existence of nontrivial
standing wave solutions.
We consider the one-dimensional discrete nonlinear Schrödinger (DNLS) equation,

iψ̇n +∆ψn − vnψn + σγnf(ψn) = 0, n ∈ Z, (5.1)

where σ = ±1 and
∆ψn = ψn+1 − 2ψn + ψn−1 (5.2)

is the discrete Laplacian operator.

5.1. Assumptions and Main results

(A1) Assume that the nonlinearity f(u) is gauge invariant, that is, f(eiωu) = eiωf(u) for any ω ∈ R.
Thus we can consider the special solutions of the equation (5.1) of the form ψn = e−itωun. These solutions

are called standing waves or breather solutions. Inserting the ansatz of a standing wave solution into the equation
(5.1) we see that any standing wave solution satisfies the infinite nonlinear system of algebraic equations

−(∆u)n + vnun − ωun − σγnf(un) = 0 (5.3)

(A2) Assume that there exist two constants 0 < γ ≤ γ such that for any n ∈ Z,

γ ≤ γn ≤ γ. (5.4)

(A3) Assume that the discrete potential V = {vn}n∈Z is bounded from below and satisfies

lim
|n|→∞

vn = ∞. (5.5)

Without losing the generality we assume that V ≥ 1 and denote H = −∆+ V which is well-defined on l2(Z).
Let

E = {u ∈ l2(Z) : (−∆+ V )1/2u ∈ l2(Z)}, ∥u∥E = ∥(−∆+ V )1/2u∥l2(Z). (5.6)

We denote by λ1 the smallest eigenvalue of H . With the help of Proposition 2.6, under slightly strengthened
assumption (A2) with γ = 0, using Nehari manifold approach we proved (see [29]) the existence of standing
wave solutions for the case ω < λ1 and the power nonlinearity

f(u) = |u|p−2u, 2 < p <∞. (5.7)

Theorem 5.1. Assume that the equation (5.3) satisfies (5.4), (5.5) and (5.7). Then we have
(1) if σ = −1, ω ≤ λ1, there is no nontrivial solution for the equation (5.3);
(2) if σ = 1, ω < λ1, there is at least a pair of nontrivial solution ±u in l2(Z) for the equation (5.3);
(3) The solutions obtained in case (2) exponentially decay at infinity, that means, there exist two positive constants
C and α such that

|un| ≤ Ce−α|n|, n ∈ Z.

We rewrite the equation (5.3) as

Hun − ωun − σγnf(un) = 0. (5.8)
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Now we list some basic assumptions on the nonlinearity f(u) here.
(f1) Assume that f(u) ∈ C1(R). The assumption (A1) implies f(u) is an odd function.
(f2) There exist a positive constants C1 and 2 < p <∞ such that

|f(u)| ≤ C1(1 + |u|p−1). (5.9)

(f3) Assume that f is superlinear near 0, that is,

lim
u→0

f(u)

|u|
= 0. (5.10)

(f4) There is a 2 < q <∞ such that

0 < qF (u) ≤ uf(u), ,∀u ̸= 0, (5.11)

where

F (u) =

∫ u

0

f(s)ds. (5.12)

Combining (5.9) and (5.11) we can conclude that q ≤ p and there is C2 > 0 such that

F (u) ≥ C2|u|q, ∀u ∈ R. (5.13)

From (5.9) and (5.10) it is easy to show that for any given ε > 0, there exists A ≡ A(ε) > 0 such that for any
u ∈ R

f(u)u ≤ ε|u|2 +A|u|p, (5.14)

F (u) ≤ ε

2
|u|2 + A

p
|u|p. (5.15)

A typical example for f is the following power nonlinearity, for some 2 < p <∞, q = p

f(u) = |u|p−1u, f ′(u) = (p− 1)|u|p−2, F (u) =
1

p
|u|p.

Now we can define the action functional

J(u) =
1

2
((H − ω)u, u)− σΣn∈ZγnF (un), (5.16)

The assumption (5.9) and Proposition 2.6 imply that J(u) ∈ C1(E,R) and

(J ′(u), v) = ((H − ω)u, v)− σΣn∈Zγnf(un)vn. (5.17)

Now we summarize our main results as follows.

Theorem 5.2. Assume that the equation (5.3) satisfies the assumptions (A1)-(A3) and the nonlinearity f satisfies
the assumptions (f1)-(f4). Then
(1) if σ = 1, ω ∈ R, there is at least a pair of nontrivial solution ±u in l2(Z) for the equation (5.3);
(2) the solutions obtained in (1) exponentially decay at infinity, that means, there exist two positive constants C
and α such that

|un| ≤ Ce−α|n|, n ∈ Z;

(3) if σ = 1, ω ∈ R, there exists an unbounded sequence of critical values of the functional J(u). Consequently,
there exist infinitely many pair of exponentially decaying standing wave solutions in l2(Z) for the equation (5.3).
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5.2. The Palais-Smale condition and Linking Geometry

The following lemma, proven in [30], establishes that the functional J satisfies the so-called Palais-Smale
(PS) condition.

Lemma 5.3. For σ = ±1 and ω ∈ R, J(u) satisfies the (PS) condition, that is, any sequence u(k) ∈ E such that
J(u(k)) is bounded and J ′(u(k)) → 0 contains a convergent subsequence.

By Theorem 2.1 and Remark 2.5 the spectrum of the Hamiltonian operator H is discrete and without losing
the generality we can assume that

1 ≤ λ1 < λ2 < · · · < λk < · · · → ∞.

Let ϕk be the associated normalized eigenfunction with λk for each k, that is,

Hϕk = λkϕk, ∥ϕk∥l2 = 1.

Moreover, {ϕk : k = 1, 2, · · · } is an orthonormal basis of l2(Z).
For any ω ≥ λ1, there exists a unique k such that ω ∈ [λk, λk+1). Let

Y = Span{ϕ1, · · · , ϕk}, dimY = k <∞,

for ω < λ1, we take Y = {0}, then the Hilbert space E can be decomposed into the direct sum

E = Y ⊕ Z, Z = Y ⊥ = Span{ϕj |j ≥ k + 1}
∥·∥E

.

Notice that the linking geometry will be reduced to the mountain geometry as Y = {0}. Therefore the Mountain
Pass theorem can be viewed as a special case of the Linking theorem.
Let z ∈ Z, ∥z∥E = 1 and define

N = {u ∈ Z|∥u∥E = r}, M = {u = y + λz|y ∈ Y, ∥u∥E ≤ ρ, λ ≥ 0}

and the boundary of M

∂M = {u = y + λz|y ∈ Y, ∥u∥E = ρ, λ ≥ 0 or ∥u∥E ≤ ρ, λ = 0}
= {u = y + λz|y ∈ Y, ∥u∥E = ρ, λ > 0} ∪ {y ∈ Y |∥y∥E ≤ ρ}.

According to the linking theorem in the Appendix we need the following lemma (linking geometry) to prove our
main result Theorem 5.2.

Lemma 5.4. There exist two positive constants ρ > r > 0 such that

inf
v∈N

J(v) > sup
v∈∂M

J(v).

Proof. Let y =
∑k

i=1 aiϕi ∈ Y and z =
∑∞

i=k+1 biϕi ∈ Z with ∥z∥E = 1, that is,

∥H1/2z∥l2 = 1 ⇔
∞∑

i=k+1

λib
2
i = 1.

By a simple calculation we obtain

∥y∥2E =

k∑
i=1

λia
2
i , ∥y + λz∥2E =

k∑
i=1

λia
2
i + λ2.
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Let u =
∑∞

i=k+1 βiϕi ∈ Z,

J(u) =
1

2
((H − ω)u, u)−

∑
n∈Z

γnF (un).

For any ε > 0, there exists A = A(ε) > 0, such that

0 ≤ F (u) ≤ ε|u|2 +A|u|p.

Since
1

2
((H − ω)u, u) =

1

2

∞∑
i=k+1

(λi − ω)β2
i ,

by virtue of (5.4) we have

J(u) ≥ 1

2

∞∑
i=k+1

(λi − ω)β2
i − γ[ε

∞∑
i=k+1

β2
i +A∥u∥plp ]

≥ 1

2

∞∑
i=k+1

λiβ
2
i − (ω/2 + γε)

∞∑
i=k+1

β2
i − γA(

∞∑
i=k+1

β2
i )

p/2.

Let δ = λk+1 − ω > 0 and 0 < ε < δ
4γ . If u ∈ N , then

∞∑
i=k+1

λiβ
2
i = ∥u∥2E = r2 ≥ λk+1

∞∑
i=k+1

β2
i ,

which implies
∞∑

i=k+1

β2
i ≤ r2/λk+1,

thus
J(u) ≥ δ

4λk+1
r2 − γA

λ
p/2
k+1

rp ≡ f(r).

Notice that f(r) reaches its maximum value at

r = (
δ

2pγA
)

1
p−2λ

1/2
k+1, (5.18)

and

J(u) ≥ (p− 2)δ

4p
(

δ

2pγA
)

2
p−2 > 0. (5.19)

Consider a special z = ϕk+1/λ
1/2
k+1, then z ∈ Z and ∥z∥E = 1. Let y =

∑k
i=1 aiϕi and

u = y + λz ∈ ∂M ⊂ Span{ϕ1, ϕ2, · · · , ϕk+1} = Y ⊕ {sϕk+1 : s ∈ R}.

We distinguish two cases.
(1) λ = 0, ∥y∥E ≤ ρ, then

k∑
i=1

λia
2
i ≤ ρ2,

and

J(u) = J(y) ≤ 1

2
((H − ω)y, y) =

1

2

k∑
i=1

(λi − ω)a2i ≤ 0.
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(2)λ ≥ 0 and ∥y + λz∥E = ρ, that is
k∑

i=1

λia
2
i = ρ2 − λ2,

then

J(u) = J(y + λz) =
1

2
((H − ω)u, u)−

∑
n∈Z

λnF (un)

=
1

2
∥y + λz∥2E − ω

2
∥y + λz∥2l2 −

∑
n∈Z

λnF (un)

=
ρ2

2
− ωλ2

2λk+1
− ω

2

k∑
i=1

a2i −
∑
n∈Z

λnF (un)

≤ ρ2

2
− ωλ2

2λk+1
− ω(ρ2 − r2)

2λk
− γC2∥y + λz∥qlq

=
ρ2

2
(1− ω

λk
) +

ω

2
(
1

λk
− 1

λk+1
)λ2 − γC2∥y + λz∥qlq .

Notice that all norms in a finite dimensional space are equivalent and y+λz belongs to a finite dimensional space,
then there exists a positive constant K depending on k and q such that

∥y + λz∥lq ≥ K∥y + λz∥l2 .

Thus for 0 ≤ λ ≤ ρ

J(u) = J(y + λz) ≤ ρ2

2
(1− ω

λk
) +

ω

2
(
1

λk
− 1

λk+1
)λ2 − γC2K

q(

k∑
i=1

a2i + λ2/λk+1)
q/2

≤ ρ2

2
(1− ω

λk
) +

ω

2
(
1

λk
− 1

λk+1
)λ2 − γC2K

q(
ρ2

λk
− (

1

λk
− 1

λk+1
)λ2)q/2 ≡ g̃(λ).

Notice that for 0 ≤ λ ≤ ρ

g̃′(λ) = ωλ(
1

λk
− 1

λk+1
) + γC2K

qqλ(
1

λk
− 1

λk+1
)(
ρ2

λk
− (

1

λk
− 1

λk+1
)λ2)

q−2
2 ≥ 0,

thus

J(u) ≤ max
0≤λ≤ρ

g̃(λ) =
δ

2λk+1
ρ2 −

γC2K
q

λ
q/2
k+1

ρq ≡ g(ρ).

Therefore there exists ρ > r > 0 such that g(ρ) < 0. By the choice of r 5.18 we know that

inf
u∈N

J(u) ≥ f(r) > 0 > g(ρ) ≥ sup
u∈∂M

J(u).

■

5.3. Exponential Decay

The following theorem about exponential decay of standing waves was proved in [30].

Theorem 5.5. Let u ∈ l2(Z) be a solution to the equation (5.3). If u satisfies furthermore

lim
|n|→∞

γnf(un) = 0, (5.20)

then there exists two positive constants C and α such that

|un| ≤ Ce−α|n|, n ∈ Z. (5.21)
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5.4. Proof of Theorem 5.2

Now we prove our main result Theorem 5.2 as follows (also see [30]). Actually, by Lemma 5.3 and Lemma
5.4 we know that the functional J(u) satisfies the Palais-Smale condition and the linking geometry. Thus (1)
becomes a natural consequence of the linking theorem 5.7. (2) is just a corollary of Theorem 5.5. Therefore we
only need to prove (3). To this end we need one more lemma.
By Remark 2.5 we can define the nested sequence of finite dimensional space {Em} in Theorem 5.8 as follows.
For ω < λ1, Em ≡ Span{ϕ1, · · · , ϕm}, and for λk ≤ ω < λk+1, k ≥ 1, Em ≡ Span{ϕ1, · · · , ϕk+m}, for
m = 1, 2, · · · .

Lemma 5.6. There exist two positive constants c1 and c2 depending on k and m such that for any u ∈ Em,

J(u) ≤ c1∥u∥2E − c2∥u∥qE . (5.22)

We can see that the assumption (B2) in Theorem 5.8 is an immediate consequence of Lemma 5.6 since
q > 2. Since the assumption (B1) has been verified in the proof of Lemma 5.4, (3) of Theorem 5.2 becomes a
consequence of Theorem 5.8. Therefore we can complete the proof of Theorem 5.2 now by showing Lemma 5.6.

Proof of Lemma 5.6 For the case m = 1, it has been done essentially in the proof of Lemma 5.4 if we notice
that for any u ∈ E1, there exist unique y ∈ Y and λ ∈ R such that u = y+ λz, where Y and z are defined in the
proof of Lemma 5.4. Therefor by a similar calculation in the proof of Lemma 5.4 we obtain for u ∈ E1

J(u) ≤ λk+1 − ω

2λk+1
∥u∥2E −

γC2K
q

λ
q/2
k+1

∥u∥qE (5.23)

For the case m > 1, let ωm ≡ (λk+m−1 + λk+m)/2. We define a functional

Jm(u) =
1

2
((H − ωm)u, u)−

∑
n∈Z

γnF (un),

which is just the function J(u) with a different frequency ω = ωm. Notice that λk+m−1 ≤ ωm < λk+m, by
(5.23) with k + 1 replaced by k +m we obtain for any u ∈ Em,

J(u) ≤ λk+m − ωm

2λk+m
∥u∥2E −

γC2K
q

λ
q/2
k+m

∥u∥qE . (5.24)

Thus let u =
∑k+m

i=1 aiϕi, from

∥u∥2E =

k+m∑
i=1

λia
2
i ≥ λ1

k+m∑
i=1

a2i ,

we obtain for any u ∈ Em,

J(u) = Jm(u) +
1

2
(ωm − ω)

k+m∑
i=1

a2i

≤ λk+m − ωm

2λk+m
∥u∥2E −

γC2K
q

λ
q/2
k+m

∥u∥qE +
ωm − ω

2λ1
∥u∥2E

≤ λk+m − ω

2λ1
∥u∥2E −

γC2K
q

λ
q/2
k+m

∥u∥qE

which implies (5.22). Therefore Lemma 5.6 holds.
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5.5. Appendix: Linking theorem and Multiple Critical Points

Here we recall the so-called linking theorem (see [19, 21, 25]). LetE = Y ⊕Z be a Banach space decomposed
into the direct sum of two closed subspaces Y and Z, with dimY < ∞. Let ρ > r > 0 and let z ∈ Z be a fixed
vector, ∥z∥ = 1. Define

M = {u = y + λz : y ∈ Y, ∥u∥ ≤ ρ, λ ≥ 0} N = {u ∈ Z : ∥u∥ = r}.

The boundary of M is denoted by ∂M

∂M = {u = y + λz : y ∈ Y, ∥u∥ = ρ and λ ≥ 0, or ∥u∥ ≤ ρ and λ = 0}.

Theorem 5.7. Let J(u) ∈ C1(E,R) and assume that J satisfies the Palais-Smale (PS) condition, i.e. any
sequence u(k) ∈ E such that J(u(k)) is bounded and J ′(u(k)) → 0 contains a convergent subsequence. Assume
also that J possesses the following so-called linking geometry

β ≡ inf
u∈N

J(u) > sup
u∈∂M

J(u) ≡ α. (5.25)

Let Γ = {γ ∈ C(M,E) : γ = id on ∂M}. Then

c = inf
γ∈Γ

sup
u∈M

J(γ(u))

is a critical value of J and
β ≤ c ≤ sup

u∈M
J(u). (5.26)

Multiple Critical Points Here we recall a Z2 version of the Mountain Pass Theorem (see Theorem 9.12 in
[1] or [21]).

Theorem 5.8. Let E be an infinite dimensional Banach space and let J ∈ C1(E,R) be even, satisfy the Palais-
Smale condition, and J(0) = 0. If E = Y ⊕ Z, where Y is finite dimensional and J satisfies
(B1) there are constants r, α > 0 such that J |∂Br∩Z ≥ α, and
(B2) for a nested sequence E1 ⊂ E2 ⊂ · · · of increasing finite dimension, there exist ρi ≡ ρ(Ei) > 0 such that
J ≤ 0 on Bc

ρi
≡ {x ∈ Ei | ∥x∥ > ρi}, for i = 1, 2, · · · ,

then J possesses an unbounded sequence of critical values.
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