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1. Introduction

It’s seen now that technology is a very important matter basis for peoples life, governments systems, specially
with the COVID-19 global pandemic happening. As the technology grow faster the need of mathematical
modeling grow bigger.

Nowadays, the fractional calculus theory has proven it important use as a tool in modeling many real life
problems as energy-saving, national economics growth, Image processing, engineering, biology, physics and
fluid dynamics and many other researches area see [9, 12, 20, 26]. The fractional calculus theory is based on
the study of partial and ordinary differential equations, where the derivation or the integration operator is of non-
integer order α or complex with Re(α) > 0. The most three known approaches of operators of fractional calculus
theory were given by Grünwald-Letnikov in 1867; 1868, Riemann-Liouville in 1832; 1847 and Caputo 1967 [15].
The treatment of a fractional differential equation mostly involve the study of the exitance and uniqueness of the
solution or only the existence of the solutions also the stability of this solutions is implicated, many scholars has
given a widely amount of interesting results in such researches see [2, 4, 6, 8, 11, 16, 22, 28].
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In 1971 Ockendon and Taylor [21] did the research on the way in which the electric current is collected by
the pantograph of an electric locomotive using a delay equation{

w′(t) = aw(t) + bw(ϵt) 0 ≤ t ≤ T, 0 < ϵ < 1,

w(0) = w0,

which is now called the Pantograph equation. Since that time many researchers studied and used it in different
mathematical and scientific areas as number theory, probability, electrodynamics, medicine, see [21, 25, 27] and
the bibliography therein.

A lot of researches have been done on the fractional pantograph equations due to their importance to many
areas of research, such as [24] in which K. Balachandran and S. Kiruthika treated the existence of solutions for
the following nonlinear fractional pantograph equation:

Dαu(t) = f(t, u(t), u(λt)), t ∈ [0, T ]

u(0) = u0.

Also in [23] Y. Jalilian and M. Ghasemi considered the following fractional integro-differential equation of
Pantograph type connected with appropriate initial condition

cD
αu(t) = f(t, u(t), u(pt)) +

∫ qt

0

g1(t, s, u(s))ds

+

∫ t

0

g2(t, s, u(s))ds, t ∈ [0, T ]

u(0) = u0.

where cD
α is the derivative in the sense of Caputo of order α ∈ (0, 1].

In this paper, we shall study the following nonlinear fractional pantograph problem
cD

α,ρy(t) = f(t, y(t), y(pt)) + g(t, y(t), y((1− p)t))

y(0)− Iβy(ξ) = 0, 0 < ξ < T, α ∈ (0, 1] t ∈ [0, T ]
(1.1)

where cD
α,ρ is the Katugampola-type fractional derivative in Caputo sense of order α, 0 < p < 1, ρ > 0, and

Iβ is the integral of order β > 0, and f, g : [0, T ]× R2 −→ R are two given functions.
To the best of our knowledge, this is the first time where such problem is studied.

2. Preliminaries

We recall some definitions and lemmas that will be used later. For more details we refer to [17 −−19].

Definition 2.1. Let α > 0, and f : [a, b] 7−→ R be a continuous function. The Riemann-Liouville integral of
order α of f is defined by:

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ,

where Γ(α) :=

∫ ∞

0

e−uuα−1du.

In particular when a = 0 we denote simply

Iαf(t) = Iα0 f(t)
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Definition 2.2. For a function f ∈ Cn([a, b],R) and n − 1 < α ≤ n, the Caputo fractional derivative of f is
defined by:

cD
αf(t) = In−α

a f (n)(t)

=
1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds.

Definition 2.3. Let f : [a, b] 7−→ R be an integrable function, α ∈ (0, 1] and γ > 0. The Katugampola integral
of order α of f is given by

γIαa f(t) =
γ1−α

Γ(α)

∫ t

a

(tγ − sγ)−(1−α)sγ−1f(s)ds. (2.1)

When a = 0 we denote simply
γIαf(t) = γIα0 f(t)

Lemma 2.4. Let α > 0, β > 0 such that α+ β ≤ 1. Then,

γIαa
γIβa = γIα+β

a (2.2)

Proof. Let f : [a, b] → R be a continues function then for all α > 0, β > 0 we have

Iαa
[
Iβa [f(t)]

]
=

1

Γ(α)

∫ t

a

(t− s)α−1Iβa [f(s)]ds

=
1

Γ(α)Γ(β)

∫ t

a

[
(t− s)α−1

∫ s

a

(s− x)β−1f(x)dx
]
ds

=
1

Γ(α)Γ(β)

∫ t

a

(t− s)α−1ds

∫ s

a

(s− x)β−1f(x)dx

=
1

Γ(α)Γ(β)

∫ t

a

f(x)dx

∫ t

x

(t− s)α−1(s− x)β−1ds.

(2.3)

By changing the variables = x+ (t− x)ϱ and using Beta function we get

Iαa
[
Iβa [f(t)]

]
=

1

Γ(α)Γ(β)

∫ t

a

f(x)dx

∫ 1

0

(t− x− (t− x)ϱ)α−1

∗ (x+ (t− x)ϱ− x)β−1(t− x)dϱ.

=
1

Γ(α)Γ(β)

∫ t

a

f(x)(t− x)α+β−1dx

∫ 1

0

(1− ϱα−1)ϱβ−1dϱ

=
B(α, β)

Γ(α)Γ(β)

∫ t

a

f(x)(t− x)α+β−1dx

=
1

Γ(α) + β)

∫ t

a

f(x)(t− x)α+β−1dx.

= Iα+β
a [f(t)].

(2.4)

■

Definition 2.5. Let f : [a, b] 7−→ R be an integrable function, α ∈ (0, 1) and γ > 0. The Katugampola fractional
derivatives of order α of f(t) is defined by

Dα,γ
a f(t) = t1−γ d

dt

(
γI1−α

a f
)
(t)

=
γα

Γ(1− α)
t1−γ d

dt

∫ t

a

(tγ − sγ)−αsγ−1f(s)ds.

(2.5)
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In particular when a = 0 we denote simply

Dα,γf(t) = Dα,γ
0 f(t)

Definition 2.6. The Caputo-Katugampola fractional derivatives of order α is defined by

cD
α,γ
a f(t) = Dα,γ

a

[
f(t)− f(a)

]
=

γα

Γ(1− α)
t1−γ d

dt

∫ t

a

(tγ − sγ)−αsγ−1
[
f(s)− f(a)

]
ds.

(2.6)

In particular when a = 0 we denote simply

cD
α,γf(t) = cD

α,γ
0 f(t)

To study (1.1) we need the following lemma

Lemma 2.7. Let f ∈ C1([a, b]). Then,

cD
α,γ
a f(t) =

γα

Γ(1− α)

∫ t

a

(tγ − sγ)−αf ′(s)ds. (2.7)

Proof. If we set for a fixed t,
ut(s) = − 1

γ(1−α) (t
γ − sγ)1−α and v(s) = f(s) − f(a), then we have u′

t(s) = sγ−1(tγ − sγ)−α and v′(s) =

f ′(s).
Thus, we can write:

cD
α,γ
a f(t) =

γα

Γ(1− α)
t1−γ d

dt

∫ t

a

u′
t(s)v(s)ds,

and, by an integration by parts, we have

cD
α,γ
a f(t) = − γα

Γ(1− α)
t1−γ d

dt

∫ t

a

ut(s)f
′(s)ds,

and since ut(t) = 0, we get

cD
α,γ
a f(t) = − γα

Γ(1− α)
t1−γ

∫ t

a

∂

∂t
(ut(s))f

′(s)ds,

that corresponds exactly to (2.7). ■

Remark 2.8. Note that we can rewrite (2.7) in the form

cD
α,γ
a f(t) = γI1−α

a

(
t1−γf ′(t)

)
. (2.8)

Now we have

Lemma 2.9. Given f ∈ C1([a, b]), then

γIαa cD
α,γ
a f(t) = f(t)− f(a).

Proof. Indeed, using the formula (2.8), we can write

γIαa cD
α,γ
a f(t) = γIαa

γI1−α
a

(
t1−γf ′(t)

)
. (2.9)
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But, thanks to Lemma 2.4, γIαa
γI1−α

a = γI1a . Thus,

γIαa cD
α,γ
a f(t) = γI1a

(
t1−γf ′(t)

)
=

∫ t

a

sγ−1s1−γf ′(s)ds

= f(t)− f(a).

(2.10)

■

Let us introduce now the following Lemma:

Lemma 2.10. Let F ∈ C([0, 1]). Then, the problem
cD

α,ρy(t) = F (t) α ∈ (0, 1] t ∈ [0, T ]

y(0)− Iβy(ξ) = 0, 0 < ξ < T,
(2.11)

admits as a solution the function:

y(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1F (s)ds+
Γ(β + 1)ρ1−α

Γ(α)Γ(β)(Γ(β + 1)− ξβ)

×
∫ ξ

0

(ξ − u)β−1

(∫ u

0

(uρ − sρ)α−1sρ−1F (s)ds

)
du,

(2.12)

provided that T β < Γ(β + 1).

Proof. Using Lemma 9, we obtain
y(t) = ρIαF (t) + y(0). (2.13)

Using the boundary condition we get

y(0) = Iβ(ρIαF (ξ) + y(0))

= Iβy(0) + Iβ ρIαF (ξ)

= y(0)
ξβ

βΓ(β)
+ Iβ ρIαF (ξ)

= y(0)
ξβ

Γ(β + 1)
+ Iβ ρIαF (ξ).

(2.14)

Thus,

y(0) =
Γ(β + 1)

(Γ(β + 1)− ξβ)
Iβ ρIαF (ξ)

=
Γ(β + 1)ρ1−α

Γ(α)Γ(β)(Γ(β + 1)− ξβ)

∫ ξ

0

(ξ − u)β−1

∗
(∫ u

0

(uρ − sρ)α−1sρ−1F (s)ds

)
du.

(2.15)

Finally, inducting (2.15) in (2.13) we obtain (2.12). ■

In the following section we will study of the existence as well as the existence and uniqueness of the solution
([1, 5, 13, 14]), and examine the Ulam-Hyers stability ([3, 7, 10]) for the introduced problem (1)
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3. Main Results

We consider the following hypotheses:

(P1) : f, g : [0, T ]× R2 −→ R , are continuous.

(P2) : There are nonnegative constants Lf and Lg , such that for all t ∈ J , xi, x
∗
i ∈ R, i = 1, 2

|f(t, x1, x2)− f(t, x1
∗, x2

∗)| ≤ Lf

2∑
i=1

|xi − xi
∗|,

|g(t, x1, x2)− g(t, x1
∗, x2

∗)| ≤ Lg

2∑
i=1

|xi − xi
∗|.

(P3) : There exist positive constants λ, δ, that satisfy for all t ∈ [0, T ], and for all x, x∗ ∈ R

|f(t, x, x∗)| ≤ λ, and |g(t, x, x∗)| ≤ δ.

Also, we consider the quantities:

A1 =
2Γ(β + 1)

(
Lf + Lg

)
T ρα

ραΓ(α+ 1)|Γ(β + 1)− T β |

A2 =
2
(
Lf + Lg

)
T ρα+β

ραΓ(α+ 1)|Γ(β + 1)− T β |
.

3.1. Existence of a unique solution

The first main result deals with the existence of a unique solution for (1.1). We have:

Theorem 3.1. Assume that (P2) is satisfied. Then, the problem (1.1) has a unique solution, provided that
A1 < 1 and Γ(β + 1) > T β .

Proof. Let us introduce the Banach space

E := C([0, T ],R),with the norm: ∥x∥E = sup
t∈[0,T ]

|x(t)|.

Then, we define the nonlinear operator H : E → E as follows:
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Hy(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds+

β ρ1−α

Γ(α)(Γ(β + 1)− ξβ)

×
∫ ξ

0

(ξ − u)β−1

(∫ u

0

(uρ − sρ)α−1sρ−1

×
(
f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

)
ds

)
du.

(3.1)

We shall prove that H is a contraction mapping in E.
For y, x ∈ E and for each t ∈ [0, T ], we have

∣∣Hy(t)−Hx(t)
∣∣ = ∣∣∣∣ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

f(s, x(s), x(ps)

)
ds+

ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
g(s, x(s), x((1− p)s))

− g(s, y(s), y((1− p)s))

)
ds+

β ρ1−α

Γ(α)|Γ(β + 1)− ξβ |

∫ ξ

0

(ξ − u)β−1

×
[ ∫ u

0

(uρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))− f(s, x(s), x(ps)

+ g(s, y(s), y((1− p)s))− g(s, x(s), x((1− p)s))

)
ds

]
du.

(3.2)

Then,

∣∣Hy(t)−Hx(t)
∣∣ ≤ (Lf + Lg)

ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
|y(s)− x(s)|

+ |y(ps)− x(ps)|
)
ds+

(Lf + Lg)β ρ1−α

Γ(α)|Γ(β + 1)− T β |

∫ ξ

0

(ξ − u)β−1[ ∫ u

0

(uρ − sρ)α−1sρ−1

(
|y(s)− x(s)|+ |y(ps)− x(ps)|

)
ds

]
du.

(3.3)

Hence, a straightforward computation gives

∥∥Hy −Hx
∥∥
E
≤

[
2
(
Lf + Lg

)
T ρα

ραΓ(α+ 1)
+

2
(
Lf + Lg

)
T ρα+β

ραΓ(α+ 1)|Γ(β + 1)− T β |

]∥∥y − x
∥∥

≤
2
(
Lf + Lg

)
T ρα

ραΓ(α+ 1)

(
1 +

T β

|Γ(β + 1)− T β |

)∥∥y − x
∥∥

≤
2
(
Lf + Lg

)
Γ(β + 1)T ρα

ραΓ(α+ 1)|Γ(β + 1)− T β |
∥∥y − x

∥∥
(3.4)

Consequently, ∥∥Hy −Hx
∥∥
E
≤ A1

∥∥y − x
∥∥
E
.

■
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3.2. Existence of at least one solution

The second main result deals with the existence of at least one solution.

Theorem 3.2. Assume that hypotheses (P1), (P2) and (P3) are satisfied with A2 < 1.

Then, the problem (1.1) has at least one solution provided that Γ(β + 1) > T β .

Proof. We put

r ≥ (λ+ δ)Γ(β + 1)T ρα

ραΓ(α+ 1)(Γ(β + 1)− T β)

and consider the ball Br := {x ∈ E, ∥x∥E ≤ r}.
Then, we define the operators M and N on Br as:

(My)(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds

(3.5)

and

(Ny)(t) =
β ρ1−α

Γ(α)(Γ(β + 1)− ξβ)

∫ ξ

0

(ξ − u)β−1[ ∫ u

0

(uρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds

]
du.

(3.6)

For y, x ∈ Br, we find that

∥Mx+Ny∥E ≤ (λ+ δ)T ρα

ραΓ(α+ 1)
+

(λ+ δ)T ρα+β

ραΓ(α+ 1)(Γ(β + 1)− T β)

≤ (λ+ δ)Γ(β + 1)T ρα

ραΓ(α+ 1)(Γ(β + 1)− T β)

(3.7)

Then, we can write ∥Mx+Ny∥E ≤ r. Thus, Mx+Ny ∈ Br.

Furthermore, for x, y ∈ Br, we obtain ∥∥Nx−Ny
∥∥
E

≤ A2∥x− y∥. (3.8)

That is to say that N is contractive on Br.
Now we prove that M is a compact operator on Br.
We have ∥∥(Myn)− (My)

∥∥
E
≤ T ρα

ραΓ(α+ 1)
∥f(s, yn(s), yn(ps))

− f(s, y(s), y(ps))∥+ T ρα

ραΓ(α+ 1)

× ∥g(s, yn(s), yn(1− p)(s))− g(s, y(s), y(1− p)(s))∥.

Thanks to (P1), and since s 7→ y(s) is bounded on [0, T ], and ∥yn − y∥E → 0, we reduce the continuity of
f and g to a compact set of [0, T ]× R2, so that we obtain ∥Myn −My∥E → 0.
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Also, for y ∈ Br, we get ∥∥My
∥∥
E
≤

(
λ+ δ

)
T ρα

ραΓ(α+ 1)
< ∞. (3.9)

Consequently, M is uniformly bounded on Br.

Now, we prove that M is equicontinuous. Let t1, t2 ∈ [0, T ],

t1 < t2. Then for y ∈ Br, we have∣∣My(t1)−My(t2)
∣∣ ≤ ∣∣∣∣ρ1−α

Γ(α)

∫ t1

0

(t1
ρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds− ρ1−α

Γ(α)

∫ t2

0

(t2
ρ − sρ)α−1sρ−1

×
(
f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

)
ds

∣∣∣∣.
(3.10)

Hence, ∣∣My(t1)−My(t2)
∣∣ ≤ ∣∣∣∣ρ1−α

Γ(α)

∫ t1

0

(t1
ρ − sρ)α−1sρ−1

(
f(s, y(s), y(ps))

+ g(s, y(s), y((1− p)s))

)
ds− ρ1−α

Γ(α)

∫ t1

0

(t2
ρ − sρ)α−1sρ−1

×
(
f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

)
ds

∣∣∣∣ ∗ ρ1−α

Γ(α)

×
∫ t2

t1

(t2
ρ − sρ)α−1sρ−1

∣∣∣∣f(s, y(s), y(ps)) + g(s, y(s), y((1− p)s))

∣∣∣∣ds.
≤ ρ1−α(λ+ δ)

Γ(α)

∫ t1

0

(
(t2

ρ − sρ)α−1 − (t1
ρ − sρ)α−1

)
sρ−1 ds

+
ρ1−α(λ+ δ)

Γ(α)

∫ t2

t1

(t2
ρ − sρ)α−1 sρ−1ds

(3.11)

Then, we get ∣∣My(t2)−My(t1)
∣∣ ≤ (

λ+ δ
)(
t2

ρα − t1
ρα
)

ραΓ(α+ 1)
. (3.12)

The right hand side of (3.12) tends to zero independently of y as t1 → t2.
This implies that M is relatively compact, and by the Arzela-Ascoli theorem, we conclude that M is compact on
Br.
Hence, the existence of the solution of the (1.1) holds by Krasnoselskii fixed point theorem. ■

3.3. UH-Stability

Definition 3.3. The equation (1.1) has the UH stability if there exists a real number k > 0, such that for each
ε > 0, for any t ∈ [0, T ], and for each x ∈ E that verify∣∣∣∣cDα,ρx(t)− f(t, x(t), x(pt))− g(t, x(t), x((1− p)t))

∣∣∣∣ ≤ ε (3.13)

there exists a solution y ∈ E of (1.1); that is

cD
α,ρy(t) = f(t, y(t), y(pt)) + g(t, y(t), y((1− p)t)) (3.14)

such that,
∥x− y∥E ≤ k ε.
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Definition 3.4. The problem (1.1) has the UH stability in the generalized sense if there exists ϕ ∈ C(R+,R+),
such that ϕ(0) = 0 : for each ε > 0, and for any x ∈ E satisfying (3.13), there exists a solution y ∈ E of
equation (1.1), such that

∥x− y∥E < ϕ( ε).

Theorem 3.5. Let the assumptions of Theorem (3.1) hold and L′
f + L′

g < 1. If the inequality

∥∥
CD

ρ,αx(t)
∥∥
E
≥

[
2
(
L′
f + L′

g

)
r + λ+ δ

]
T ρα

ραΓ(α+ 1)

+

(
2Γ(β + 1)

(
L′
f + L′

g

)
r + λ+ δ

ραΓ(α+ 1)(Γ(β + 1) + T )

)
× Γ(ρα+ 1)T ρα+β

Γ(ρα+ β + 1)
(3.15)

is valid, then problem (1.1) has the UH stability.

Proof. Let ε > 0 and let x ∈ E be a function which satisfies (3.13) and let y ∈ E be the unique solution of the
equation (1.1). We have:

∥x∥E ≤
[
2
(
L′
f + L′

g

)
r + γ + δ

]
T ρα

ραΓ(α+ 1)

+

(
2Γ(β + 1)

(
L′
f + L′

g

)
r + γ + δ

ραΓ(α+ 1)(Γ(β + 1) + T )

)
× Γ(ρα+ 1)T ρα+β

Γ(ρα+ β + 1)
(3.16)

Combining (3.15) and (3.16), we obtain

∥x∥E ≤ ∥cDρ,αx(t)∥E (3.17)

Therefore, we get

∥x−y∥ ≤ ∥cDρ,α
(
x− y

)
∥

≤ sup
t∈J

∣∣
cD

ρ,αx(t)− cD
ρ,αy(t)− f(t, x(t), x(pt))

+ g(t, x(t), x((1− p)t))− f(t, y(t), y(pt))

+ g(t, y(t), y((1− p)t)) + f(t, x(t), x(pt))

− g(t, x(t), x((1− p)t)) + f(t, y(t), y(pt))

− g(t, y(t), y((1− p)t))
∣∣.

(3.18)

Thanks to (3.13) and (3.14), we get

∥x− y∥ ≤ ε+
(
L′
f + L′

g

)
∥x− y∥ (3.19)

But since,

L′
f + L′

g < 1

then, we can write
∥x− y∥E ≤ ε

1− (L′
f + L′

g)
= εk. (3.20)

Consequently, (1.1) has the UH stability.
Taking ϕ(ε) = εk, we can state that the equation (1.1) has the generalized UH stability. ■
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[1] R. P. AGARWAL, D. O’REGAN AND S. STANĚK, Positive Solutions for Mixed Problems of Singular Fractional
Differential Equations, Mathematische Nachrichten, 285(1)(2012), 27–41.

[2] Z. BAI AND W. SUN, Existence and Multiplicity of Positive Solutions for Singular Fractional Boundary
Value Problems, Computers & Mathematics with Applications, 63(9)(2012), 1369–1381.

[3] Z. BEKKOUCHE, Z. DAHMANI AND G. ZHANG, Solutions and Stabilities for a 2D-Non Homogeneous Lane-
Emden Fractional System, Int. J. Open Problems Compt. Math., 11(2)(2018), 1–10.
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[19] A. TAÏEB AND Z. DAHMANI, The High Order Lane-Emden Fractional Differential System: Existence,
Uniqueness and Ulam Stabilities, Kragujevac Journal of Mathematics, 40(2)(2016), 238–259.
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