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Abstract. In this paper we shall use the upper and lower solutions method to prove the existence of at least one solution for
the second order equation defined on unbounded intervals with integral conditions on the boundary:

u′′ (t)−m2u (t) + f(t, e−mtu (t) , e−mt u′ (t)) = 0, for all t ∈ [0,+∞) ,

u (0)− 1

m
u′ (0) =

+∞∫
0

e−2msu (s) ds, lim
t→+∞

{
e−mtu (t)

}
= B,

where m > 0,m 6= 1
6
, B ∈ R and f : [0,+∞)× R2 → R is a continuous function satisfying a suitable locally L1 bounded

condition and a kind of Nagumo’s condition with respect to the first derivative.

AMS Subject Classifications: 34B40, 34B15, 74H20.

Keywords: Boundary value problems, Integral boundary conditions, Upper and lower solutions method, Existence of
solution.
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1. Introduction

Integral boundary conditions have been considered in many papers on the literature. They represent a nonlocal
dependence of the solution at some points of the interval. For instance, Jankowski uses the method of lower and
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upper solutions in [15] to ensure the existence of the first order differential equation on a bounded interval with
integral boundary condition

x′(t) = f(t, x(t)), t ∈ [0, T ], x(0) = λ

∫ T

0

x(s) ds+ d.

This method have been used in second order differential equations on bounded intervals by A. Boucherif on
[2], where the following problem is considered

x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1],

coupled to the integral boundary conditions

x(0)− ax′(0) =

∫ 1

0

g0(s)x(s) ds x(1) + bx′(1) =

∫ 1

0

g1(s)x(s) ds.

Many authors have deduced existence, uniqueness and multiplicity of solutions for different kind of
differential equations defined on bounded intervals and coupled to suitable integral boundary conditions, see
[10, 11, 13, 19–21, 26] and references therein. The used tools are related to continuation methods.

Equations defined on unbounded intervals have had a great attention in the literature.This is mainly due to
the search of heteroclinic or homoclinic solutions of many evolution equations. It is important to note that there
are many types of solutions defined on unbounded domains, see for instance, the monograph of Agarwal and
O’Regan [1] or the paper of Rohleder, Burkotová, López-Somoza and Stryja [23]. Many results on this direction
have been obtained for instance in [6, 7, 9, 12, 16–18, 22, 24].

We point out that in [14] it is considered the following equation

(q(t)u(n−1)(t))′ = f(t, u(t), u′(t), . . . , u(n−1)(t)), a.e. t ∈ (0,+∞),

subject to the integral boundary conditions

u(i)(0) = 0, i = 1, 2, . . . , n− 3,

and

u(n−2)(0) =

m∑
i=1

αi

ξi∫
0

u(t)dt, lim
t→+∞

{q(t)u(n−1)(t)} = 0.

The existence of solutions follows from degree theory.
The method of lower and upper solutions is a very well known tool that has been used in many different

problems. We refer to the monograph [5] and the survey [4] and references therein.
In [25], Yan, Agarwal and O’Regan use the upper and lower solution method for the boundary value problem

y′′(t) + φ(t), f(t, y(t), y′(t) = 0; t ∈ [0,+∞)

coupled to the boundary conditions

a, y(0)− b, y′(0) = y0 ≥ 0, lim
t→+∞

{y′(t)} = k > 0

In [17] this method has been applied to the same second order equation but with the following boundary
conditions

y′(0)− a, y′′(0) = B, lim
t→+∞

{y′′(t)} = C

Following the ideas developed in previous mentioned works, in this paper we are interested in to deduce
existence of solutions via this method for a particular problem defined in an unbounded interval. The boundary
conditions have functional dependence at the starting point and it is assumed an asymptotic behavior at +∞.
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Solutions of a second order equation defined on unbounded intervals

More concisely, the considered problem is the following one:

u′′ (t)−m2u (t) + f
(
t, e−mtu (t) , e−mt u′ (t)

)
= 0, for all t ∈ [0,+∞) , (1.1)

u (0)− 1

m
u′ (0) =

+∞∫
0

e−2msu (s) ds, lim
t→+∞

{
e−mtu (t)

}
= B, (1.2)

where m > 0,m 6= 1
6 , B ∈ R and f : [0,+∞) × R2 → R is a continuous function satisfying the following

locally bounded condition

(F ) For each ρ > 0, there exists a positive function ϕρ, such that ϕρ ∈ L1 [0,+∞) such that, for all x, y ∈
(−ρ, ρ) , it is satisfied that

|f (t, x, y)| ≤ ϕρ(t), for all t ∈ [0,+∞) .

The paper is divided in four sections. After this introduction, it is given a section with preliminary results,
where the expression of the Green’s function is obtained. On next section, it is obtained an a priori bound by
means of a Nagumo kind condition. Moreover, the method of lower and upper solutions is developed to deduce
the existence of at least one solution of the considered problem. The last section is devoted to show an example
of the applicability of the obtained results.

2. Preliminaries

First recall some notation, definitions and theorems which will be used later.
We will denote R+ := [0,+∞), R+

0 := (0,+∞) and define the space

X =

{
x ∈ C1 [0,+∞) : lim

t→+∞
e−mtx (t) ∈ R

}
endowed with the norm ‖x‖1 = max {‖x‖ , ‖x′‖}, where

‖y‖ = sup
t∈[0,+∞)

{∣∣e−mty (t)
∣∣} .

Remark 2.1. Notice that if x ∈ X is such that

lim
t→+∞

e−mtx (t) = l ∈ R

then
lim

t→+∞
e−mtx′ (t) = ml ∈ R.

As a consequence, ‖·‖1 is well defined on X .

It is not difficult to verify that (X, ‖·‖1) is a Banach space.
Next we introduce the concept of lower and upper solutions

Definition 2.2. A function α ∈ C2 [0,+∞) ∩ X is a lower solution of the functional boundary value problem
(1.1)-(1.2) if the following inequalities hold for some B1 ∈ R:

(a) α (0)− 1
mα
′ (0) ≤

+∞∫
0

e−2msα (s) ds, lim
t→+∞

{e−mtα (t)} = B1 < B,

(b) α′′ (t)−m2α (t) + f (t, e−mtα (t) , e−mtα′ (t)) ≥ 0, for all t ∈ (0,+∞) .
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A function β ∈ C2 [0,+∞) ∩X is an upper solution if it satisfies the reversed inequalities.
Next lemma gives the exact solution for the associated linear problem by using the Green’s function technique.

Lemma 2.3. Assume that y : [0,+∞) → R is such that y ∈ L1 [0,+∞), m > 0, m 6= 1
6 and B ∈ R. Then the

linear functional boundary value problem
u′′ (t)−m2u (t) + y (t) = 0, t ∈ (0,+∞)

u (0)− 1
mu
′ (0) =

+∞∫
0

e−2msu (s) ds, lim
t→+∞

{
e−mtu (t)

}
= B

(2.1)

has a unique solution u ∈ X , given by

u (t) =

∫ +∞

0

G (t, s) y (s) ds+
3B

6m− 1
e−mt +Bemt (2.2)

where

G (t, s) =
e−mt

2m2 (6m− 1)

(
3e−ms − 2e−2ms

)
+

1

2m

{
em(s−t), s ≤ t
em(t−s), s > t

. (2.3)

Proof. Firstly we solve the following boundary value problem{
u′′ (t)−m2u (t) + y (t) = 0, t ∈ (0,+∞)

u (0)− 1
mu
′ (0) = A, lim

t→+∞
{e−mtu (t)} = B, (2.4)

where A ∈ R.
The general solution of the homogeneous equation

u′′ (t)−m2u (t) = 0, t ∈ (0,+∞) ,

follows the expression
u (t) = d1e

−mt + d2e
mt,

with d1, d2 ∈ R.
First, it is obvious that the unique solution on X of the homogeneous problem{

v′′ (t)−m2 v (t) = 0, t ∈ (0,+∞)

v (0)− 1
mv
′ (0) = A, lim

t→+∞
{e−mtv (t)} = B.

is given by

v(t) =
A

2
e−mt +Bemt.

Then the solution of the boundary value problem (2.4) has the form

u (t) =

∫ +∞

0

g (t, s) y (s) ds+
A

2
e−mt +Bemt, (2.5)

where

g (t, s) =

{
C1 (s) e−mt + C2 (s) emt, t < s

C3 (s) e−mt + C4 (s) emt, t ≥ s .

Using the fact that g is continuous and ∂g
∂t has a jump (which equals 1) at t = s (see [3] for details), we get

g (t, s) =
1

2m

{
em(t−s), t < s

em(s−t), t ≥ s . (2.6)
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Solutions of a second order equation defined on unbounded intervals

Now, in (2.5), putting A =
+∞∫
0

e−2msu (s) ds, it yields

∫ +∞

0

e−2msu (s) ds =

∫ +∞

0

(
e−2ms

∫ +∞

0

g (s, r) y (r) dr

)
ds

+
A

2

∫ +∞

0

e−3msds+B

∫ +∞

0

e−msds.

So, by interchanging the order of integration we obtain

A =
6m

6m− 1

∫ +∞

0

(∫ +∞

0

e−2msg (s, r) ds

)
y (r) dr +

6B

6m− 1

=
3

m2 (6m− 1)

∫ +∞

0

(
e−mr − 2

3
e−2mr

)
y(r)dr +

6B

6m− 1
. (2.7)

Finally, replacing (2.7) in (2.5), we have

u (t) =

∫ +∞

0

g (t, s) y (s) ds+
e−mt

2m2 (6m− 1)

∫ +∞

0

(
3e−ms − 2e−2ms

)
y(s)ds

+
3Be−mt

6m− 1
+Bemt,

which gives the result of the lemma. �

In order to deduce the existence results, the following compactness criteria will be useful.

Lemma 2.4. [8]
A set M ⊂ X is relatively compact if the following conditions hold:
(i) M is bounded in X.
(ii) The functions from M are equicontinuous on any compact sub-interval of [0,+∞).
(iii) The functions from M are equiconvergent at +, that is, for any ε > 0, there exists a T = T (ε) > 0 such

that,
∣∣e−mtx(i) (t)− limt→+∞ e−mtx(i) (t)

∣∣ < ε for all t ≥ T , i = 0, 1 and x ∈M .

3. Main Result.

In this section we prove the existence and location of at least one solution for Problem (1.1)- (1.2).
In a first moment we introduce a kind of Nagumo’s condition, that impose a growth restriction on the

dependence with respect to the last variable of the nonlinear part of the equation.

Definition 3.1. Consider α and β ∈ X be such that α ≤ β on [0,+∞). Define

D =
{

(t, x, y) ∈ [0,+∞)× R2 : e−mtα (t) ≤ x ≤ e−mtβ (t)
}
,

and suppose that f : D → R is a continuous function that satisfies:

|f(t, u, v)| ≤ h(|v|) ∀(t, u, v) ∈ D, (3.1)

where h : [0,+∞)→ [0,+∞) is a continuous and nondecreasing function such that

lim
s→+∞

s

h(s)
>

(
2

m2|6m− 1|
+

1

m

)
. (3.2)
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To guarantee the existence of solutions of (1.1)-(1.2) we have to find a priori bounds for the derivative of all
the posible solutions of the considered problem. Hence, we need the following lemma.

Lemma 3.2. Let α, β be a pair of lower and upper solutions for Problem (1.1)–(1.2) such that α ≤ β on [0,+∞),
and let f : [0,+∞) × R2 → R be a continuous function satisfying the conditions on Definition 3.1. Then there
exists b > 0, such that for every solution u of (1.1)-(1.2) with α (t) ≤ u (t) ≤ β (t) ,∀t ∈ [0,+∞), we have

‖u′‖ ≤ b.

Proof. From Lemma 2.3, we know that the solutions of Problem (1.1)–(1.2) are characterized as the solutions of
the following integral equation:

u(t) =

∫ +∞

0

G(t, s)f(s, e−msu(s), e−msu′(s))ds. (3.3)

Differentiating in (3.3), we obtain

e−mtu′(t) =

∫ +∞

0

e−mt
∂G

∂t
(t, s)f(s, e−msu(s), e−msu′(s))ds. (3.4)

Now, we have that

e−mt
∂G

∂t
(t, s) = − e−2mt

2m (6m− 1)

(
3e−ms − 2e−2ms

)
+

1

2

{
−em(s−2t) , s ≤ t
e−ms , s > t

. (3.5)

Using (3.1), and the fact that h is nondecreasing, we get

|e−mtu′(t)| ≤
∫ +∞

0

e−mt
∣∣∣∂G
∂t

(t, s)
∣∣∣|f(s, e−msu(s), e−msu′(s))|ds

≤
∫ +∞

0

e−2mt

2m |6m− 1|
(
3e−ms + 2e−2ms

)
h(|e−msu′(s)|)ds

+

∫ t

0

em(s−2t)

2
h(|e−msu′(s)|)ds+

∫ +∞

t

e−ms

2
h(|e−msu′(s)|)ds

≤ h(‖u′‖)
(

2e−2mt

m2|6m− 1|
+
e−2mt (2emt − 1)

2m

)
≤ h(‖u′‖)

(
2

m2|6m− 1|
+

1

m

)
, for all t ∈ [0,+∞),

which implies that
‖u′‖

h(‖u′‖)
≤
(

2

m2|6m− 1|
+

1

m

)
.

Then, from (3.2), we deduce that there exists b > 0 such that ‖u′‖ < b.
This completes the proof. �

Now, we are in a position to prove the main result of this paper.

Theorem 3.3. Let α and β be a pair of lower and upper solutions for the functional boundary value problem
(1.1)-(1.2) such that α (t) ≤ β (t) for every t ∈ [0,+∞) and let f : [0,+∞)×R2 → R be a continuous function
satisfying the conditions on Definition 3.1.. Then the functional boundary value problem (1.1)–(1.2) has at least
one solution u ∈ C2 [0,+∞) ∩X such that

α (t) ≤ u (t) ≤ β (t) , ∀t ∈ [0,+∞) .
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Solutions of a second order equation defined on unbounded intervals

Proof. First, we define the truncated functions

p(t, x) = max {α(t),min {x, β(t)}}

and
q(y) = max {−K,min {y,K}},

where K = max{b, ‖α‖1, ‖β‖1} and b is the constant given in Lemma 3.2.
Consider now the following modified problem

u′′ (t)−m2u (t) + F (t, u(t), e−mtu′(t)) = 0, t ∈ (0,+∞)

u (0)− 1
mu
′ (0) =

+∞∫
0

e−2msp(s, u (s))ds, lim
t→+∞

{
e−mtu (t)

}
= B

(3.6)

with
F (t, x, y) = f(t, e−mtp(t, x), q(y)).

We will show that the solutions of the modified problem (3.6) lie in a region where f is unmodified i.e.
α (t) ≤ u (t) ≤ β (t) , and −b ≤ e−mtu′ (t) ≤ b for all t ∈ [0,+∞) and, hence, they will be solutions of
problem (1.1)–(1.2). The proof will be done in two steps.

Step 1: Existence of solution.

By (2.5) it is clear that the solutions of the truncated problem (3.6) coincide with the fixed points of the
operator T : X → X defined by

T u (t) =

∫ +∞

0

g (t, s)F
(
s, u(s), e−msu′(s)

)
ds+

e−mt

2

+∞∫
0

e−2msp(s, u (s))ds+Bemt.

Let us see that operator T is well defined in X . Indeed, let u ∈ X , by definition of function p, α and β, we
have that e−2msp(s, u (s)) ∈ L1[0,+∞). Moreover e−msp(s, u (s)) and q(emsu′(s)) are bounded in [0,+∞).
So, we can use condition (F ) to deduce that there is R > 0 such that

|F (t, x, y)| ≤ ϕR(t), for all t ∈ [0,+∞) .

with ϕR ∈ L1 [0,+∞) .
As a direct consequence, we have that ϕR(·) g (t, ·) and ϕR(·) ∂g∂t (t, ·) are in L1[0,+∞). So, we deduce that

Tu(t) ∈ C1[0,+∞). Moreover

lim
t→+∞

{
e−mtTu (t)

}
= B

and, using Remark 2.1, that

lim
t→+∞

{
e−mt (Tu)

′
(t)
}

= mB,

That is: T u ∈ X .
Moreover, as a direct consequence, there is R̄ > 0 such that

‖T u‖1 ≤ R̄, for all u ∈ X.

Consequently, T (B) is uniformly bounded and maps the closed, bounded and convex set

B =
{
u ∈ X : ||u|| ≤ R̄

}
,
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into itself.

Furthermore, for C > 0 and t1, t2 ∈ [0, C] , t1 < t2, we have

∣∣e−mt1Tu(t1)− e−mt2Tu(t2)
∣∣ ≤ ∣∣e−2mt1 − e−2mt2

∣∣
2

+∞∫
0

e−2ms|p(s, u (s))|ds

+

∣∣e−2mt1 − e−2mt2
∣∣

2m

∫ t1

0

ems|F (s, u (s) , e−msu′ (s))|ds

+

∣∣1 + e−2mt2
∣∣

2m

∫ t2

t1

ems|F (s, u (s) , e−msu′ (s))|ds

≤
∣∣e−2mt1 − e−2mt2

∣∣
2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+

∣∣e−2mt1 − e−2mt2
∣∣

2m

∫ t1

0

emsϕR̄(s)ds

+

∣∣1 + e−2mt2
∣∣

2m

∫ t2

t1

emsϕR̄(s)ds,

which converges to 0 as t1 → t2, and it is independent of u ∈ X . (Notice that emsϕR̄(s) ∈ L1
loc[0,+∞))

Analogously, we have

∣∣e−mt1(Tu)′(t1)− e−mt2(Tu)′(t2)
∣∣ ≤ m

∣∣e−2mt1 − e−2mt2
∣∣

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+

∣∣e−2mt1 − e−2mt2
∣∣

2

∫ t1

0

emsϕR̄(s)ds

+

∣∣1 + e−2mt2
∣∣

2

∫ t2

t1

emsϕR̄(s)ds,

and converges to 0 as t1 → t2 with independence of u ∈ X .

This shows that T is equicontinuous on compact subintervals of [0,+∞).

Finally, the fact that T (B) is equiconvergent at infinity follows from the following inequalities:

∣∣∣∣e−mtTu(t)− lim
t→+∞

{
e−mtTu(t)

}∣∣∣∣ =
∣∣e−mtTu(t)−B

∣∣
≤ e−2mt

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+
e−2mt

2m

∫ t

0

emsϕR̄(s)ds

+
1

2m

∫ +∞

t

e−msϕR̄(s)ds
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≤ e−2mt

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+
e−mt

2m
‖ϕR̄‖L1[0,+∞)

+
1

2m

∫ +∞

t

e−msϕR̄(s)ds,

and

∣∣∣∣e−mt(Tu)′(t)− lim
t→+∞

{
e−mt(Tu(t))′

}∣∣∣∣ =
∣∣e−mtTu(t)−mB

∣∣
≤ me−2mt

2

+∞∫
0

e−ms|max {e−msα(s), e−msβ(s)}|ds

+
e−mt

2
‖ϕR̄‖L1[0,+∞)

+
1

2

∫ +∞

t

e−msϕR̄(s)ds,

Consequently, By lemma 2.4, the set T (B) is relatively compact. In addition T is continuous via dominated
convergence theorem. Therefore, the map T is completely continuous. Using Schauder’s Theorem, we conclude
that T has a fixed point in X , then, the BVP (3.6) has at least one solution u ∈ C2 [0,+∞) ∩X .

Step 2: If u is a solution of the truncated problem (3.6), then

α (t) ≤ u (t) ≤ β (t) ,∀t ∈ [0,+∞) .

First, notice that, since lim
t→+∞

{e−mt(α− u) (t)} < 0, we have that there is t1 ≥ 0 such that α < u on

(t1,+∞).
Assuming that there exists t0 ∈ (0,+∞) such that

inf
t∈[0,+∞)

(u (t)− α (t)) = u (t0)− α (t0) < 0,

we have two cases to consider such as the following:
Case 1: If t0 ∈ (0,+∞) , we get u′(t0) = α′(t0) and

0 ≤ u′′ (t0)− α′′ (t0) ≤ − f
(
t0, e

−mt0α (t0) , e−mt0α′ (t0)
)

+m2u (t0)

+f
(
t0, e

−mt0α (t0) , e−mt0α′ (t0)
)
−m2α (t0) < 0.

that is a contradiction, thus, the infimum of u− α is not achieved at the point t0.
Case 2: If t0 = 0, we have

min
t∈[0,+∞)

(u (t)− α (t)) = u (0)− α (0) < 0.

and
u′ (0)− α′ (0) ≥ 0,

so, since m > 0 and the fact that α is a lower solution, it yields to the following contradiction

0 > u (0)− α (0)− 1

m
(u′ (0)− α′ (0)) ≥

+∞∫
0

e−2ms

(
p(s, u(s))− α(s)

)
ds ≥ 0.

To complete the proof, we apply Lemma 3.2 to F and we deduce that ‖u′‖ ≤ b. �
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4. Example

Consider the following BVP

u′′ (t)− u (t) = f
(
t, e−tu (t) , e−tu′ (t)

)
, t ∈ [0,+∞)

u (0)− u′ (0) =

∫ +∞

0

e−2su (s) ds, lim
t→+∞

e−tu (t) = B,

where m = 1 and f (t, x, y) = e−t/3

B
3
√
x+ y − e−2t, with B < 0.

Firstly, let B1 < min {B, 4B3 − 1/6} and B2 ≥ 0.
Let us see that functions α (t) = 11+12B1

20 e−t − 1
3e
−2t +B1e

t and β (t) = 11+12B2

20 e−t − 1
3e
−2t +B2e

t are
a pair of lower and upper solutions of this BVP such that α (t) ≤ β (t) , t ∈ [0,+∞) . Indeed,

6

5
B2 +

1

10
= β (0)− β′ (0) =

∫ +∞

0

e−2tβ (t) dt, lim
t→+∞

{
e−tβ (t)

}
= B2 > B

and, using that B2 ≥ 0,

β′′ (t)− β (t) +
1

B
3
√
e−tβ(t) + e−tβ′(t) =

e−t/3 3
√

6B2 + e−3t

3
√

3B
− 2e−2t ≤ 0.

Moreover

6

5
B1 +

1

10
= α (0)− α′ (0) =

∫ +∞

0

e−2tα (t) dt, lim
t→+∞

{
e−tα (t)

}
= B1 < B

and, since B1 ≤ 4B3 − 1/6,

α′′ (t)− α (t) +
1

B
3
√
e−tα(t) + e−tα′(t) + e−2t =

e−t/3 3
√

6B1 + e−3t

3
√

3B
− 2e−2t ≥ 0

Moreover, the function f satisfy the condition (F ).

For each ρ > 0, x, y ∈ (−ρ, ρ), we have

|f (t, x, y)| ≤ e−t/3

|B|
3
√
|x|+ |y|+ e−2t

≤ e−t/3

|B|
3
√

2 ρ+ e−2t =: ϕρ(t), for all t ∈ [0,+∞) ,

with ϕρ ∈ L1 [0,+∞).
Finally, for any t ∈ [0,+∞) and e−tα (t) ≤ x ≤ e−tβ (t), we have that there is a positive constant C such

that

|f (t, x, y)| ≤ 1

|B|
3
√
C + |y|+ 1 =: h(|y|).

Clearly, h : [0,+∞)→ [0,+∞) is a continuous and nondecreasing function such that

lim
s→+∞

s

h(s)
= +∞.

As a consequence, all the assumptions of Theorem 3.3 are fulfilled and this problem admits at least one
solution lying between α and β.
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