

https://doi.org/10.26637/MJM0701/0013

Nano semi *c*(*s*) **generalized continuous functions in nano topological spaces**

A. Pushpalatha^{1*} and S. Visalakshi²

Abstract

The purpose of this paper is to introduce and study a new class of functions called nano semi c(s) generalized continuous functions in nano topological spaces. Some of the properties of nano semi c(s) - generalized continuous function are analyzed.

Keywords

Nsc(*s*)*g*-closed set, *Nsc*(*s*)*g*-continuous function.

AMS Subject Classification

54B05, 54C05.

¹*Department of Mathematics, Government Arts College, Udumalpet, Tamil Nadu, India.*

²*Department of Mathematics, Vidyasagar College of Arts and Science, Udumalpet, Tamil Nadu, India.*

***Corresponding author**: ¹velu pushpa@yahoo.co.in, ²visal.s1982@gmail.com

Article History: Received **12** August **2018**; Accepted **19** December **2018** c 2019 MJM.

Contents

1. Introduction

The concept of continuity plays major role in general topology. Many authors have studied different types of continuity. M.Lellis Thivagar and Carmel Richard [\[4\]](#page-4-1) introduced nano topological space with respect to a subset *X* of a universe which is defined in terms of lower and upper approximations of *X*. The elements of nano topological space are called nano open sets. He has defined nano closed sets, nano interior and nano closure of a set in nano topological space. He has also introduced a nano continuous function, nano open mappings, nano closed mappings and nano homeomorphisms in nano topological space.

In this paper we have introduced a new class of continuous functions called nano semi *c*(*s*) generalized continuous functions and obtain some characterizations in terms of nano interior and nano closure in nano topological spaces.

Throughout this paper $(U, \tau_R(X))$, $(V, \tau_{R'}(Y))$ and $(W, \tau_{R''}(Z))$ and are nano topological spaces with respect to *X*, where $X \subseteq U, Y \subseteq V, Z \subseteq W$. *R*, R^1 and R^{11} are an equivalence relations on *U*, *V* and *W*. *U*/*R*, *V*/*R*¹, *W*/*R*¹¹ denotes the the family of equivalence classes by the equivalence relations R , R^1 and R^{11} respectively on U , V and W .

2. Preliminaries

Definition 2.1. *[\[4\]](#page-4-1) Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as indiscernibility relation. Then U is divided into disjoint equivalence classes. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U*,*R) is said to be the approximation space. Let* $X \subseteq U$ *. Then,*

(i)The lower approximation of x with respect to R is the set of all objects, which can be for certain classified as X with respect to R and is denoted by LR(*X*)*.*

 $L_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \subseteq X \}$ *where* $R(x)$ *denotes the equivalence class determined by* $x \in U$ *.*

(ii)The upper approximation of x with respect to R is the set of all objects which can be possibly classified as X with respect to R and is denoted by $U_R(X)$ *.*

 $U_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \cap X \neq \emptyset \}$

(iii)The boundary region of x with respect to R is the set of all objects which can be classified neither as X nor as not-X with respect to R and it is denoted by $B_R(X)$ *.*

$$
B_R(X) = U_R(X) - L_R(X).
$$

Proposition 2.2. *[\[4\]](#page-4-1) If* (*U*,*R*) *is an approximation space and* $X, Y \subseteq U$ *, then*

1. $L_R(X) ⊆ X ⊆ U_R(X)$

$$
2. L_R(\phi) = U_R(\phi) = \phi
$$

$$
3. L_R(U) = U_R(U) = U
$$

- *4.* $U_R(X \cup Y) = U_R(X) \cup U_R(Y)$
- *5.* $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$
- *6. LR*(*X* ∪*Y*) ⊇ *LR*(*X*) ∪ *LR*(*Y*)
- *7.* $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$
- *8.* $L_R(X) ⊆ L_R(Y)$ *and* $U_R(X) ⊆ U_R(Y)$ *whenever* $X ⊆ Y$

9.
$$
U_R(X^c) = [L_R(X)]^c
$$
 and $L_R(X^c) = [U_R(X)]^c$

10.
$$
U_R[U_R(X)] = L_R[U_R(X)] = U_R(X)
$$

11. $L_R[L_R(X)] = U_R[L_R(X)] = L_R(X)$

Definition 2.3. *[\[4\]](#page-4-1) Let U be the universe, R be an equivalence relation on U and* $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ *where* $X \subseteq U$. Then $\tau_R(X)$ *satisfies the following axioms (i) U* and $\phi \in \tau_R(X)$.

(ii) The union of the elements of any sub-collection of $\tau_R(X)$ *is in* $\tau_R(X)$.

(iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ *is in* $\tau_R(X)$ *.*

Then τ*R*(*X*) *is a topology on U called the nano topology on U* with respect to *X*. We call $(U, \tau_R(X))$ as nano topological *space. The elements of* $\tau_R(X)$ *are called as nano-open sets. The complement of the nano-open sets are called nano-closed sets.*

Remark 2.4. [\[4\]](#page-4-1) If $\tau_R(X)$ is the nano topology on *U* with *respect to X, then the set* $B = \{U, L_R(X), B_R(X)\}$ *is the basis for* $\tau_R(X)$ *.*

Definition 2.5. *[\[4\]](#page-4-1) If* $(U, \tau_R(X))$ *is a nano topological space with respect to X where X* \subseteq *U and if A* \subseteq *U, then*

(i)The nano interior of A is defined as the union of all nanoopen subsets of A is contained in A and is denoted by Nint(*A*)*. That is, Nint*(*A*) *is the largest nano-open subset of A.*

(ii)The nano closure of A is defined as the intersection of all nano-closed sets containing A and is denoted by Ncl(*A*))*. That is, Ncl*(*A*)) *is the smallest nano-closed set containing A.*

Definition 2.6. A subset of a nano topolgical space $(U, \tau_R(X))$ *is called*

a) *Ng-closed* [\[1\]](#page-4-3) *if* $Ncl(A) \subseteq G$ *, whenever* $H \subseteq G$ *and* G *is nano open set in* $(U, \tau_R(X))$.

b) *Nsg-closed* [\[2\]](#page-4-4) *if* $Nscl(A) \subseteq G$ *, whenever* $H \subseteq G$ *and G is nano semi - open set in* $(U, \tau_R(X))$.

c) *Nt-set* [\[3\]](#page-4-5) *if Nint*(*A*) = *Nint*(*Ncl*(*A*)).

d) $Nc(s)$ -set [\[7\]](#page-4-6) if $A = G \cap F$, where G is Ng-open and F is *Nt-set.*

e) $Nsc(s)$ *g-closed* [\[7\]](#page-4-6) *if* $Nsc(A) ⊆ U$ *, whenever* $A ⊆ U$ *and U* is $Nc(s)$ -set in $(U, \tau_R(X))$.

f) *N* p-open [\[5\]](#page-4-7) if $A \subseteq Nint(Ncl(A))$ *g*) *Ns-open* [\[5\]](#page-4-7) *if* $A \subseteq Ncl(Nint(A))$ *h*) $N\alpha$ -open [\[5\]](#page-4-7) if $A \subseteq Nint(Ncl(Nint(A)))$ *i*) Nr -open [\[5\]](#page-4-7) if $A = Nint(Ncl(A))$

Example 2.7. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\}, \{b, d\}\}\$ *and let* $X = \{a,b\}$ *. Then* $\tau_R(X) = \{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}\$ *is a nano topology on U with respect to X and* $\tau_{R}c(X) =$ $\{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}\$. A subset *H* of a nano topologi*cal space* $(U, \tau_R(X))$ *is called:* (1) nano semi-closed: $\{\phi, U, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}\$ *in* $(U, \tau_R(X))$ *(2) nano* α*-closed :* {φ,*U*,{*c*},{*a*, *c*},{*b*, *c*,*d*}} *in* (*U*, τ*R*(*X*)) (3) nano g-closed : $\{\phi, U, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\},\$ ${a, c, d}$, ${b, c, d}$ *in* $(U, \tau_R(X))$ *(4) nano sg-closed:*{φ,*U*,{*a*},{*b*},{*c*},{*d*},{*a*, *c*},{*b*, *c*},{*b*,*d*}, ${c,d}, {a,b,c}, {a,c,d}, {b,c,d}$ *in* $(U, \tau_R(X))$ (5) nano g α -closed : { ϕ , U , { c }, { a , c }, { b , c }, { c , d }, { a , b , c }, ${a, c, d}, {b, c, d}$ *in* $(U, \tau_R(X))$ *(6) nano g* ∗ *- closed:* {φ,*U*,{*c*},{*a*, *c*},{*b*, *c*},{*c*,*d*},{*a*,*b*, *c*}, ${a, c, d}, {b, c, d}$ *in* $(U, \tau_R(X))$ *(7)* nano *rgp-closed:* $\{\phi, U, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\},$ {*a*,*d*},{*b*, *c*},{*c*,*d*},{*a*,*b*, *c*},{*a*,*b*,*d*},{*a*, *c*,*d*},{*b*, *c*,*d*}} *in* $(U, \tau_R(X))$ *(8) nano regular-closed:* $\{\phi, U, \{a, c\}, \{b, c, d\}\}\$ *in* $(U, \tau_R(X))$ (9) nano $sc(s)$ *g-closed* :: { ϕ , U , { a }, { c }, { a , c }, { b , c }, { b , d }, ${c,d}, {a,b,c}, {a,c,d}, {b,c,d}$ *in* $(U, \tau_R(X))$

Definition 2.8. *[\[5\]](#page-4-7) Let* $(U, \tau_R(X))$ *and* $(V, \tau_{R'}(Y))$ *be a nano topological spaces. Then the function* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is said to be nano continuous on U if the inverse image of every nano open set in V is nano open in U.*

Definition 2.9. *[\[6\]](#page-4-8) A subset* $M_x \subset U$ *is called a nano semi pre-neighbourhood (Nβ-nhd) of a point* $x \in U$ *iff there exists* $aA \in N\beta O(U,X)$ *such that* $x \in A \subset M_x$ *and a point x is called N*β*-nhd point of the set A.*

3. Nano semi *c*(*s*) **generalised continuous function**

In this section we define and study the new class of function, namely nano semi $c(s)$ generalized continuous functions in nano topological spaces.

Definition 3.1. Let $(U, \tau_R(X))$ and $(V, \tau_{R'}(Y))$ be a nano *topological spaces. Then the function* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is said to be nano semi c*(*s*) *generalized continuous (briefly Nsc*(*s*)*g-continuous) on U if the inverse image of every nano open set in V is nano semi c*(*s*)*g-open set in U.*

Example 3.2. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}\$ *and* $X = \{a, b\}$ *. Then the nano topology is* $\tau_R(X) = \{\phi, U, \{a\}, \{a, b, d\}\}\{b, d\}\}\$. Let $V = \{x, y, z, w\}$ with $V/R^1 = \{\{x,z\},\{y\},\{w\}\}\$ and $Y = \{x,w\}$ *. Then* $\tau_{R'}(Y) =$ $\{\phi, V, \{w\}, \{x, z, w\}\{x, z\}\}\$. $\tau_R^c(X) = \{\phi, U, \{c\}, \{b, c, d\}\{a, c\}\}\$ τ_{p}^{c} $R^{c}(Y) = \{\phi, V, \{y\}, \{x, y, z\} \{y, w\}\}\$ are the complements of

by $f(a) = w$, $f(b) = x$, $f(c) = y$ and $f(d) = z$. Then $f^{-1}(\{w\}) = Ncl(f(A)) = Ncl(\{w\}) = V$. Thus $f(Ncl(A)) \neq Ncl(f(A))$, ${a}$, $f^{-1}({x, z, w}) = {a, b, d}$, $f^{-1}({x, z}) = {b, d}$ *and* $f^{-1}(V) = U$. That is the inverse image of every in nano open *set in V is Nsc*(*s*)*g-open set in U. Therefore f is Nsc*(*s*)*gcontinuous.*

Theorem 3.3. A function $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is said *to be Nsc*(*s*)*g-continuous iff the inverse image of every nano closed set in V is Nsc*(*s*)*g-closed set in U.*

Proof. Let f be $Nsc(s)g$ -continuous and F be nano closed set in *V*. That is *V* −*F* is nano open set in *V*. Since *f* is *Nsc*(*s*)*g*continuous, $f^{-1}(V - f)$ is $Nsc(s)g$ -open set in *U*. That is $f^{-1}(V) - f^{-1}(F) = U - f^{-1}(F)$ is *Nsc*(*s*)*g*-open set in *U*. Hence $f^{-1}(F)$ is $Nsc(s)g$ -closed set in *U*, if *f* is $Nsc(s)g$ continuous on *U*. Conversely, let us assume that the inverse image of every nano closed set in *V* is *Nsc*(*s*)*g*-closed set in *U*. Let *G* be nano open set in *V*. Then $V - G$ is nano closed set in *V*. By our assumption $f^{-1}(V - G)$ is $Nsc(s)g$ -closed set in *U*. That is $f^{-1}(V) - f^{-1}(G) = U - f^{-1}(G)$ is $Nsc(s)g$ -closed set in *U*. Hence $f^{-1}(G)$ is $Nsc(s)g$ -open set in *U*. That is the inverse image of every nano open set in *V* is $Nsc(s)$ *g*-open set in *U*. That is *f* is *Nsc*(*s*)*g*-continuous on *U*. \Box

Theorem 3.4. *A function f* : $(U, \tau_R(X)) \rightarrow (V, \tau_{R'}(Y))$ *is* $Nsc(s)$ *g-continuous iff* $f(Ncl(A)) \subseteq Ncl(f(A))$ *for every subset A of U.*

Proof. Let *f* be $Nsc(s)g$ -continuous and $A \subseteq U$. Then $f(A) \subseteq$ *V*. Also $Ncl(f(A))$ is nano closed in *V*. Since *f* is $Nsc(s)g$ continuous, $f^{-1}(Ncl(f(A))$ is $Nsc(s)g$ -closed set containing *A*. But every nano closed set is *Nsc*(*s*)*g*-closed set in *U* and is the smallest nano closed set containing *A*. Therefore $Ncl(A) ⊆ f^{-1}(Ncl(f(A))).$ (ie) $f(Ncl(A)) ⊆ Ncl(f(A)).$

Conversely, let $f(Ncl(A)) \subseteq Ncl(f(A))$ for every closed subset *A* of *U*. If *F* is nano closed set in *V* and since $f^{-1}(F) \subseteq U$ we have $f(Ncl(f^{-1}(F)) \subseteq Ncl(f(f^{-1}(F)) = Ncl(F)$. That is $Ncl(f^{-1}(F)) ⊆ f^{-1}(Ncl(F)) = f^{-1}(F)$, since *F* is nano closed set in *V*. Thus $Ncl(f^{-1}(F)) \subseteq f^{-1}(F)$. But $f^{-1}(F) \subseteq$ $Ncl(f^{-1}(F))$. That is $Ncl(f^{-1}(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is nano closed in *U*. But every nano closed set is $Nsc(s)g$ -closed set in *U* we have, $f^{-1}(F)$ is $Nsc(s)g$ -closed set in *V*. Hence f is $Nsc(s)g$ -continuous on U. \Box

Remark 3.5. *If f* : $(U, \tau_R(X)) \rightarrow (V, \tau_{R'}(Y))$ *is Nsc*(*s*)*g-continuous, then f*(*Ncl*(*A*)) *is not necessarily equal to where* $A \subseteq U$.

For example, let $U = \{a, b, c, d\}$, $U/R = \{\{a\}, \{d\}, \{b, c\}\}\$ and $X = \{a, c\}$. Then $\tau_R(X) = \{U, \phi, \{a\}, \{a, b, c\}, \{b, c\}\}.$ Let $V = \{x, y, z, w\}$; $V/R' = \{\{x\}, \{z\}, \{y, w\}\}\$ and $Y = \{y, w\}$ then $\tau_{R'}(Y) = \{V, \phi, \{y, w\}\}\.$ Define

 $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ by $f(a) = x, f(b) = y, f(c) = w$ and $f(d) = z$. Then $\tau_R^c(X) = \{U, \phi, \{d\}, \{a, d\}, \{b, c, d\}\}\$ and τ_p^c $R_R^c(Y) = \{V, \phi, \{x, z\}\}\.$ Now $f^{-1}(\{x, z\}) = \{a, d\}.$ Therefore the inverse image of every nano closed in *V* is *Nsc*(*s*)*g*closed set on *U*. Hence is *Nsc*(*s*)*g*-continuous on *U*. Let

 $\tau_R(X)$ and $\tau_{R'}(Y)$ respectively. Define $f:(U,\tau_R(X))\to (V,\tau_{R'}(Y))$ $A = \{c\} \subseteq U$. Then $f(Ncl(A)) = f(\{b,c,d\}) = \{y,w,z\}$. But even though *f* is $Nsc(s)g$ -continuous. That is $f(Ncl(A))$ is not necessarily equal to $Ncl(A)$) where $A \subseteq U$ if f is $Nsc(s)g$ continuous on *U*.

> Theorem 3.6. *Every nano continuous function is Nsc*(*s*)*gcontinuous function.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano continuous function and *A* be nano closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is nano closed in $(U, \tau_R(X))$. Since every nano closed is $Nsc(s)g$ -closed set, $f^{-1}(A)$ is $Nsc(s)g$ -closed set in $(U, \tau_R(X))$. Hence *f* is $Nsc(s)g$ -continuous function.

The converse of the above theorem need not be true as seen from the following example. □

Example 3.7. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ and let $X = {a,b}$. Then $\tau_R(X) = {\phi, U, {a}, {a}, {b}, d}$, ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x,z\},\{y\},\{w\}\}\$ and $Y = \{x,w\}$ then $\tau_{R'}(Y) = \{\phi, V, \{w\}, \{x, z, w\}, \{x, z\}\}\$ is a nano topology on *V.* Then $\tau_R^c(X) = \{U, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and τ_R^c $\frac{c}{R'}(Y) =$ $\{V, \phi, \{y\}, \{x, y, z\}, \{y, w\}\}\$ are the complement of $\tau_R(X)$ and $\tau_{R'}(Y)$ *respectively. Define* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by* $f(a) = z$, $f(b) = x$, $f(c) = y$ *and* $f(d) = w$, *then f is* $Nsc(s)g$ *continuous function. But not nano continuous function, since* $f^{-1}(\{y, w\}) = \{c, d\}$ *is not nano closed in* $(U, \tau_R(X))$ *.*

Theorem 3.8. *Every nano semi continuous function is Nsc*(*s*)*gcontinuous function.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano semi continuous function and *A* be nano semi closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is nano semi closed in $(U, \tau_R(X))$. Since every nano semi closed is $Nsc(s)g$ closed set, $f^{-1}(A)$ is $Nsc(s)g$ -closed set in $(U, \tau_R(X))$. Hence *f* is *Nsc*(*s*)*g*-continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.9. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ } *and let* $X = {a,b}$ *. Then* $\tau_R(X) = { \phi, U, {a}, {a}, {b}, d}$, ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x,z\},\{y\},\{w\}\}\$ and $Y = \{x,w\}$ then $\tau_{R'}(Y) = \{\phi, V, \{w\}, \{x, z, w\}, \{x, z\}\}\$ is a nano topology on *V.* Then $\tau_R^c(X) = \{U, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}$ and τ_R^c $\frac{c}{R'}(Y) =$ $\{V, \phi, \{y\}, \{x, y, z\}, \{y, w\}\}\$ are the complement of $\tau_R(X)$ and $\tau_{R'}(Y)$ *respectively. Define* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by* $f(a) = z$, $f(b) = x$, $f(c) = y$ and $f(d) = w$, then f is $Nsc(s)g$ *continuous function. But not nano semi continuous function, since* $f^{-1}(\lbrace y, w \rbrace) = \lbrace c, d \rbrace$ *is not nano semi closed in* $(U, \tau_R(X)).$

Theorem 3.10. *Every nano generalized continuous function is Nsc*(*s*)*g-continuous function.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano generalized continuous function and *A* be *Ng*-closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is *Ng*-closed in $(U, \tau_R(X))$. Since every *Ng*-closed is *Nsc*(*s*)*g*-closed set, $f^{-1}(A)$ is $Nsc(s)g$ -closed set in $(U,\tau_R(X))$. Hence f is $Nsc(s)g$ continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.11. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\},\}$ $\{b,d\}$ *and let* $X = \{a,b\}$ *. Then* $\tau_R(X) = \{\phi, U, \{a\}, \{a,b,d\},\}$ ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x\}, \{z\}, \{y, w\}\}\$ and $Y = \{y, w\}$ then

 $\tau_{R'}(Y) = \{\phi, V, \{y, w\}\}$ *is a nano topology on V. Then* $\tau_R^c(X) =$ $\{\hat{U}, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and τ_p^c $R_R^c(Y) = \{V, \phi, \{x, z\}\}$ are *the complement of* $\tau_R(X)$ *and* $\tau_{R'}(Y)$ *respectively. Define* $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ by $f(a) = y$, $f(b) = x$, $f(c) = w$ *and* $f(d) = z$ *, then f is* $Nsc(s)g$ -continuous function. But *not* Ng -continuous function, since $f^{-1}(\lbrace x, z \rbrace) = \lbrace b, d \rbrace$ is not *Ng-closed in* $(U, \tau_R(X))$ *.*

Theorem 3.12. *Every* $Ng\alpha$ -continuous function is $Nsc(s)g$ *continuous function.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a $Ng\alpha$ -continuous function and *A* be $Ng\alpha$ -closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is $Ng\alpha$ -closed in $(U, \tau_R(X))$. Since every *Ng* α -closed is *Nsc*(*s*)*g*-closed set, $f^{-1}(A)$ is $Nsc(s)$ *g*-closed set in $(U, \tau_R(X))$. Hence *f* is $Nsc(s)$ *g*-continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.13. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ and let $X = {a,b}$. Then $\tau_R(X) = { \phi, U, {a}, {a}, {b}, d}$, ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x\}, \{z\}, \{y, w\}\}\$ and $Y = \{y, w\}$ then

 $\tau_{R'}(Y) = \{\phi, V, \{y, w\}\}$ *is a nano topology on V. Then* $\tau_R^c(X) =$ $\{\hat{U}, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and τ_p^c $R_R^c(Y) = \{V, \phi, \{x, z\}\}$ are *the complement of* $\tau_R(X)$ *and* $\tau_{R'}(Y)$ *respectively. Define* $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ by $f(a) = y$, $f(b) = x$, $f(c) = w$ *and* $f(d) = z$, then f is $Nsc(s)g$ -continuous function. But not $Ng\alpha$ -continuous function, since $f^{-1}(\lbrace x,z \rbrace) = \lbrace b,d \rbrace$ is not *Ng*α*-closed in* $(U, τ_R(X))$ *.*

Theorem 3.14. *Every* Ng^* -continuous function is $Nsc(s)g$ *continuous function.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a Ng^* -continuous function and *A* be Ng^* -closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is Ng^* -closed in $(U, \tau_R(X))$. Since every Ng^* -closed is $Nsc(s)g$ -closed set, $f^{-1}(A)$ is $Nsc(s)g - V/R^{\prime} = \{\{x, z\}, \{y\}, \{w\}\}\$ and $Y = \{x, w\}$ then closed set in $(U, \tau_R(X))$. Hence f is $Nsc(s)g$ -continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box **Example 3.15.** *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ } *and let* $X = {a,b}$ *. Then* $\tau_R(X) = { \phi, U, {a}, {a}, {b}, d}$, ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x\}, \{z\}, \{y, w\}\}\$ and $Y = \{y, w\}$ then

 $\tau_{R'}(Y) = \{\phi, V, \{y, w\}\}\$ is a nano topology on V. Then $\tau_R^c(X) =$ ${\hat{U}, \phi, \{c\}, \{b, c, d\}, \{a, c\}}$ and τ_p^c $R_K^c(Y) = \{V, \phi, \{x, z\}\}$ are *the complement of* $\tau_R(X)$ *and* $\tau_{R'}(Y)$ *respectively. Define* $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ by $f(a) = y$, $f(b) = x$, $f(c) = w$ *and* $f(d) = z$, then f is $Nsc(s)g$ -continuous function. But not Ng^* -continuous function, since $f^{-1}(\lbrace x,z \rbrace) = \lbrace b,d \rbrace$ is not Ng^* -closed in $(U, \tau_R(X))$.

Theorem 3.16. *Every nano regular continuous function is Nsc*(*s*)*g-continuous function.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano regular continuous function and *A* be nano regular closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is nano regular closed in $(U, \tau_R(X))$. Since every nano regular closed is $Nsc(s)g$ -closed set, $f^{-1}(A)$ is $Nsc(s)g$ -closed set in $(U, \tau_R(X))$. Hence *f* is *Nsc*(*s*)*g*-continuous function.

The converse of the above theorem need not be true as seen from the following example. П

Example 3.17. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ $\{b,d\}$ *and let* $X = \{a,b\}$ *. Then* $\tau_R(X) = \{\phi, U, \{a\}, \{a,b,d\},\}$ ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x,z\},\{y\},\{w\}\}\$ and $Y = \{x,w\}$ then

 $\tau_{R'}(Y) = \{\phi, V, \{w\}, \{x, z, w\}, \{x, z\}\}\$ is a nano topology on *V.* Then $\tau_R^c(X) = \{U, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}$ and τ_R^c $\frac{c}{R'}(Y) =$ $\{V, \phi, \{y\}, \{x, y, z\}, \{y, w\}\}\$ are the complement of $\tau_R(X)$ and $\tau_{R'}(Y)$ *respectively. Define* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by* $f(a) = z$, $f(b) = x$, $f(c) = y$ *and* $f(d) = w$, *then* f *is* $Nsc(s)g$ *continuous function. But not nano regular continuous function, since* $f^{-1}(\lbrace y, w \rbrace) = \lbrace c, d \rbrace$ *is not nano regular closed in* $(U, \tau_R(X)).$

Theorem 3.18. *Every N* α -continuous function is $Nsc(s)g$ *continuous function.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a *N* α -continuous function and *A* be *N* α closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is $N\alpha$ -closed in $(U, \tau_R(X))$. Since every *N* α -closed is *Nsc*(*s*)*g*-closed set, $f^{-1}(A)$ is $Nsc(s)g$ closed set in $(U, \tau_R(X))$. Hence f is $Nsc(s)g$ -continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.19. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ and let $X = {a,b}$. Then $\tau_R(X) = { \phi, U, {a}, {a}, {b}, d}$, ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with*

 $\tau_{R'}(Y) = \{\phi, V, \{w\}, \{x, z, w\}, \{x, z\}\}\$ is a nano topology on *V.* Then $\tau_R^c(X) = \{U, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and τ_R^c $\frac{c}{R'}(Y) =$ $\{V, \phi, \{y\}, \{x, y, z\}, \{y, w\}\}\$ are the complement of $\tau_R(X)$ and $\tau_{R'}(Y)$ *respectively. Define* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by*

 $f(a) = z$, $f(b) = x$, $f(c) = y$ *and* $f(d) = w$, *then f is* $Nsc(s)g$ *continuous function. But not N*α*-continuous function, since* $f^{-1}(\{y, w\}) = \{c, d\}$ *is not* $N\alpha$ -closed in $(U, \tau_R(X))$.

Theorem 3.20. *Every Nsc*(*s*)*g-continuous function is Nsgcontinuous function.*

function and *A* be $Nsc(s)g$ -closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map f is $Nsc(s)g$ -closed in $(U, \tau_R(X))$. Since every *Nsc*(*s*)*g*-closed is *Nsg*-closed set, $f^{-1}(A)$ is *Nsg*-closed set in $(U, \tau_R(X))$. Hence *f* is *Nsg*continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.21. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ and let $X = {a,b}$. Then $\tau_R(X) = { \phi, U, {a}, {a}, {b}, d}$, ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x,z\},\{y\},\{w\}\}\$ and $Y = \{x,w\}\$ *then*

 $\tau_{R'}(Y) = \{\phi, V, \{w\}, \{x, z, w\}, \{x, z\}\}\$ is a nano topology on *V.* Then $\tau_R^c(X) = \{U, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and τ_R^c $\frac{c}{R'}(Y) =$ $\{V, \phi, \{y\}, \{x, y, z\}, \{y, w\}\}\$ are the complement of $\tau_R(X)$ and $\tau_{R'}(Y)$ *respectively. Define* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by* $f(a) = y$, $f(b) = w$, $f(c) = z$ *and* $f(d) = x$, *then f is Nsgcontinuous function. But not Nsc*(*s*)*g-continuous function, since* $f^{-1}(\{w\}) = \{b\}$ *is not Nsc*(*s*)*g-closed in* $(U, \tau_R(X))$ *.*

Theorem 3.22. *Every Nsc*(*s*)*g-continuous function is Nrgbcontinuous function.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a $Nsc(s)g$ -continuous function and *A* be $Nsc(s)g$ -closed set in $(V, \tau_{R'}(Y))$. Then the inverse image of *A* under the map *f* is *Nsc*(*s*)*g*-closed in $(U, \tau_R(X))$. Since every *Nsc*(*s*)*g*-closed is *Nrgb*-closed set, $f^{-1}(A)$ is *Nrgb*-closed set in $(U, \tau_R(X))$. Hence *f* is *Nrgb*continuous function.

The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.23. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\},\}$ ${b,d}$ and let $X = {a,b}$ *. Then* $\tau_R(X) = { \phi, U, {a}, {a}, {b}, d}$ ${b,d}$ *is a nano topology on U. Let* $V = {x,y,w,z}$ *with* $V/R' = \{\{x,z\},\{y\},\{w\}\}\$ and $Y = \{x,w\}\$ *then* $\tau_{R'}(Y) = \{\phi, V, \{w\}, \{x, z, w\}, \{x, z\}\}\$ is a nano topology on *V.* Then $\tau_R^c(X) = \{U, \phi, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and τ_R^c $\frac{c}{R'}(Y) =$ $\{V, \phi, \{y\}, \{x, y, z\}, \{y, w\}\}\$ are the complement of $\tau_R(X)$ and $\tau_{R'}(Y)$ *respectively. Define* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by* $f(a) = x$, $f(b) = z$, $f(c) = w$ *and* $f(d) = y$, *then* \ddot{f} *is Nrgbcontinuous function. But not Nsc*(*s*)*g-continuous function, since* $f^{-1}(\{x, y, z\}) = \{a, b, d\}$ *and* $f^{-1}(\{y\}) = \{d\}$ *is not* $Nsc(s)$ *g-closed in* $(U, \tau_R(X))$ *.*

Remark 3.24. *Composition of two Nsc*(*s*)*g-continuous function need not be a Nsc*(*s*)*g-continuous function.*

Example 3.25. *Let* $U = V = W = \{a, b, c, d\}$ *with* $U/R =$ $\{\{a\},\{c\},\{b,d\}\}\$ *and* $X = \{a,b\}$, $V/R^1 = \{\{a,c\},\{b\},\{d\}\}\$

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a $Nsc(s)g$ -continuous $g: (V, \tau_{R'}(Y)) \to (W, \tau_{R''}(Z))$ identity function by $g(a) = a$, *and* $Y = \{a,d\}$ *,* $W/R^{11} = \{\{b\},\{d\},\{a,c\}\}\$ *and* $Z = \{a,b\}$ *. Then the corresponding nano topologies of U, V and W are* $\tau_R(X) = \{\phi, U, \{a\}, \{a, b, d\}\{b, d\}\}, \ \tau_{R'}(Y) = \{\phi, V, \{d\},$ ${a, c, d}, {a, c}$ *and* $\tau_{R''}(Z) = {\phi, W, {b}, {a, b, c}, {a, c}}$ *respectively. Define the function* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *by* $f(a) = d$, $f(b) = a$, $f(c) = b$ *and* $f(d) = c$ *and* $g(b) = b$, $g(c) = c$, $g(d) = d$. Then *f* and *g* are $Nsc(s)g$ *continuous function. But their composition* $g \circ f : (U, \tau_R(X)) \to$ $(W, \tau_{R''}(Z))$ *is not* $Nsc(s)g$ -continuous function, since the in*verse image of the nano closed set is* {*a*, *c*,*d*} *is* {*a*,*b*,*d*}*. But it is not a Nsc*(*s*)*g-closed set.*

References

- [1] Bhuvaneshwari.K and Mythili Gnanapriya.K, nano generalized closed sets, *International Journal of scientific and Research Publications,* 4(5)(2014), 1–3.
- [2] Bhuvaneshwari.K and Ezhilarasi.K, On nano semi generalized and nano generalized semi closed sets, *IJMCAR*, 4(3)(2014), 117–124.
- [3] Jayalakshmi.A and Janaki.C, A new form of nano locally closed sets in nano topological spaces, *Global Journal of Pure and Applied Mathematics*, 19(9)(2017), 5997–6006.
- [4] Lellis Thivagar.M, Carmel Richard, On nano Forms of Weakly open sets, *International Journal of Mathematics and Statistics Invention*, 1(2013), 31–37.
- [5] Lellis Thivagar.M, Carmel Richard, On nano Continuity, *Mathematical Theory and Modeling*, 7(2013), 32–37.
- [6] Sathishmohan.P, Rajendran.V, Vignesh Kumar.C and Dhanasekaran.P.K, On nano semi pre neighbourhoods on nano topological spaces, *Malaya Journal of Matematik*, 6(1)(2018), 294–298.
- [7] Visalakshi.S and Pushpalatha.A, On nano Semi *c*(*s*) generalized Closed Sets in nano Topological Spaces, *Malaya Journal of Matematik*, Submitted.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********