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Abstract
In this paper, we have introduced a new class of closed set namely nano generalized c∗-closed sets in nano
topological space.
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1. Introduction
Lellis Thivagar et al [5] introduced a nano topological

space with respect to a subset X of an universe which is
defined in terms of lower approximation and upper approxi-
mation and boundary region. Veerakumar introduced and in-
vestigated between closed sets and g∗-closed sets. Levine [4]
introduced and investigated properties of generalized closed
sets in topological spaces. The aim of this paper is to introduce
and study properties of nano generalized c∗-closed sets in a
nano topological spaces. Throughout this paper (U,τR(X))
represent non-empty nano topological spaces on which no sep-
aration axioms are assumed, unless otherwise mentioned. For
a subset A of a space (U,τR(X)), Ncl(A) and Nint(A) denote
the nano closure of A and nano interior of A respectively.

2. Preliminaries
We recall the following definitions:

Definition 2.1. [6] Let U be a non-empty finite set of objects
called the universe and R be an equivalence relation on U

named as indiscernibility relation. Then U is divided into
disjoint equivalence classes. Elements belonging to the same
equivalence class are said to be indiscernible with one an-
other. The pair (U,R) is said to be the approximation space.
Let X ⊆U. Then,
(i)The lower approximation of x with respect to R is the set
of all objects, which can be for certain classified as X with
respect to R and is denoted by LR(X).
LR(X) =

⋃
x∈U{R(x) : R(x) ⊆ X} where R(x) denotes the

equivalence class determined by x ∈U.
(ii)The upper approximation of x with respect to R is the set of
all objects which can be possibly classified as X with respect
to R and is denoted by UR(X).
UR(X) =

⋃
x∈U{R(x) : R(x)∩X 6= φ}

(iii)The boundary region of x with respect to R is the set of all
objects which can be classified neither as X nor as not-X with
respect to R and it is denoted by BR(X).
BR(X) = UR(X) - LR(X).

Proposition 2.2. [5] If (U,R) is an approximation space and
X ,Y ⊆U, then

1. LR(X) ⊆ X ⊆UR(X)

2. LR(φ) =UR(φ) = φ

3. LR(U) = UR(U) = U

4. UR(X ∪Y ) = UR(X)∪UR(Y )

5. UR(X ∩Y ) ⊆UR(X) ∩UR(Y )
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6. LR(X ∪Y ) ⊇ LR(X) ∪ LR(Y )

7. LR(X ∩Y ) = LR(X)∩LR(Y )

8. LR(X) ⊆ LR(Y ) and UR(X)⊆UR(Y ) whenever X ⊆ Y

9. UR(Xc) = [LR(X)]c and LR(Xc) = [UR(X)]c

10. UR[UR(X)] = LR[UR(X)] = UR(X)

11. LR[LR(X)] = UR[LR(X)] = LR(X)

Definition 2.3. [6] Let U be the universe, R be an equivalence
relation on U and τR(X) = {U,φ ,LR(X),UR(X),BR(X)}where
X ⊆U. Then τR(X) satisfies the following axioms
(i) U and φ ∈ τR(X).
(ii) The union of the elements of any sub-collection of τR(X)
is in τR(X).
(iii) The intersection of the elements of any finite sub collec-
tion of τR(X) is in τR(X).
Then τR(X) is a topology on U called the nano topology on
U with respect to X. We call (U,τR(X)) as nano topologi-
cal space. The elements of τR(X) are called as nano -open
sets. The complement of the nano -open sets are called nano
-closed sets.

Remark 2.4. [6] If τR(X) is the nano topology on U with
respect to X , then the set B = {U,LR(X),BR(X)} is the basis
for τR(X).

Definition 2.5. [5] If (U,τR(X)) is a nano topological space
with respect to X where X ⊆U and if A⊆U, then
(i)The nano interior of A is defined as the union of all nano
-open subsets of A is contained in A and is denoted by Nint(A).
That is, Nint(A) is the largest nano -open subset of A.
(ii)The nano closure of A is defined as the intersection of all
nano -closed sets containing A and is denoted by Ncl(A)).
That is, Ncl(A)) is the smallest nano -closed set containing A.

Definition 2.6. [5] (U,τR(X)) be a nano topological space
and A then A is said to be
i) nano pre open set if A⊆ Nint(Ncl(A))
ii) nano semi open set if A⊆ Ncl(Nint(A))
iii) nano-open set if A⊆ Nint(Ncl(Nint(A)))
iv) nano regular open set if A = Nint(Ncl(A))
The complements of the above mentioned sets are called their
respective closed sets.

Definition 2.7. [1] A subset A of a nano topological space
(U,τR(X)) is called,
i) nano generalized closed set if Ncl(A)⊆U whenever A⊆U
and U is nano open.
ii) Strongly nano g∗-closed set if Ncl(Nint(A))⊆U whenever
A⊆U and U is nano g-open.
iii) nano c∗-set if S = G∩F where G is nano g-open and F is
nano α∗-set.
iv) nano α∗-set if Nint(A) = Nint(Ncl(Nint(A))).

Definition 2.8. [8] A subset Mx ⊂ U is called a nano semi
pre-neighbourhood (Nβ -nhd) of a point x ∈U iff there exists
a A ∈ NβO(U,X) such that x ∈ A⊂Mx and a point x is called
Nβ -nhd point of the set A.

3. Nano generalized c∗-closed sets

In this section, we define and study the properties of nano
generalized c∗-closed sets in nano topological spaces.

Definition 3.1. A subset A of a space (U,τR(X)) is called
nano generalized c∗-closed set if Ncl(A)⊆U, whenever A⊆
U and U is nano c∗-set.

Remark 3.2. [1] Every nano closed set is a nano g-closed
set.

Theorem 3.3. Every nano open set is nano c∗-set.

Proof. Every nano open set is nano g-open set. But every
nano c∗-set is the intersection of nano g-open set and nano α∗-
set. So, by definition of nano c∗-set. The proof is immediate.
The converse of the above theorem need not be true as seen
from the following example.

Example 3.4. Let U = {a,b,c,d}with U/R= {{a},{b,c},{d}}
and X = {b,d}. Then the nano topology
τR(X) = {φ ,U,{d},{b,c},{b,c,d}}. Here the set {a,b,c} is
nano c∗-set but not nano open set.

Theorem 3.5. Every nano g-closed set is a nano generalized
c∗-closed set.

Proof. Let A be a nano g-closed set of U and A ⊆ V , V is
nano open in U . Every nano open set is nano c∗-set, V is
nano c∗-set. Hence A is nano generalized c∗-closed set. The
converse of the above theorem need not be true as seen from
the following example.

Example 3.6. Let U = {a,b,c,d}with U/R= {{a},{b,c},{d}}
and X = {b,d}. Then the nano topology
τR(X) = {φ ,U,{d},{b,c},{b,c,d}}. Here the set {a,c,d} is
nano generalized c∗-closed set but not nano g-closed set.

Theorem 3.7. Every nano generalized c∗-closed set is a
Strongly nano g∗-closed set.

Proof. Let A be a nano generalized c∗-closed set of U and
Ncl(A) ⊆ G whenever A ⊆ G and G is nano c∗-set. Then
A⊆ Ncl(Nint(A))⊆ Ncl(A)⊆G whenever G is nano g-open.
Thus A is Strongly nano g∗-closed set. The converse of the
above theorem need not be true as seen from the following
example.

Example 3.8. Let U = {a,b,c,d}with U/R= {{a},{c},{b,d}}
and X = {a,b}. Then the nano topology
τR(X) = {φ ,U,{a},{b,d},{a,b,d}}. Here the set {a,b,c}
is Strongly nano g∗-set but not nano generalized c∗-closed set.

Remark 3.9. • Every nano α-closed set is a nano gen-
eralized c∗-closed set.

• Every nano regular closed set is a nano generalized
c∗-closed set.
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Remark 3.10. The notion of nano generalized c∗-closed set
is independent with nano pre closed set.

Example 3.11. Let U = {a,b,c,d}with U/R= {{a},{b,c},{d}}
and X = {b,d}. Then the nano topology
τR(X) = {φ ,U,{d},{b,c},{b,c,d}}. Here the set {b} is
nano pre closed set but not a nano generalized c∗-closed
set. The set {a,b,d} is nano generalized c∗-closed set but not
a nano pre closed set.

Remark 3.12. The intersection of two nano generalized c∗-
closed sets in (U,τR(X)) is also a nano generalized c∗-closed
set in (U,τR(X)) as seen from the following example.

Example 3.13. In the above Example 3.11. The nano gener-
alized c∗-closed set = {φ ,U,{a},{d},{a,b},{a,c},{a,d},
{a,b,c},{a,b,d},{a,c,d}}. Here {a,b}∩{a,d}= {a}which
is again a nano generalized c∗-closed set.

Remark 3.14. The union of two nano generalized c∗-closed
sets in (U,τR(X)) is also a nano generalized c∗-closed sets in
(U,τR(X)).
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