

https://doi.org/10.26637/MJM0701/0016

Nano semi *c* [∗] **generalized continuous functions in nano topological spaces**

A. Pushpalatha¹ and S. Sridevi²

Abstract

The aim of this paper is to introduce and study the concept of new class of function called nano semi *c* ∗ generalized continuous function. Some of its basic properties are analyzed.

Keywords

Nsc∗g-closed set, *Nsc*∗*g*-continuous function.

AMS Subject Classification 54B05,54C05

¹*Department of Mathematics, Government Arts College, Udumalpet, Tamil Nadu, India.* ²*Department of Mathematics, Vidyasagar College of Arts and Science, Udumalpet, Tamil Nadu, India.* ***Corresponding author**: ¹Velu pushpa@yahoo.co.in; ²sriyukana22@gmail.com

Article History: Received **21** July **2018**; Accepted **26** December **2018** c 2018 MJM.

Contents

1. Introduction

Continuity of functions is one of the core concept of topology. In general, a continuous function is one, for which small changes in the input result is in small changes in the output. The concept of nano topology was introduced by Lellis Thivagar[2,3], which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. He has also defined nano closed sets, nano interior, nano closure and nano continuity. In this paper, we have introduced a new class of function on nano topological spaces called nano semi *c* [∗] generalized continuous function and also discuss some of its properties. Throughout this paper $(U, \tau_R(X))$ is a nano topological space with respect to X where $X \subseteq U$, *R* is an equivalence relation on *U*, *U* /*R* denotes the family of equivalence relation of *U* by *R* and $(V, \tau_{R'}(Y))$ is a nano topological space with respect to *Y* where $Y \subseteq V$, R' is an equivalence relation on *V*, V/R' denotes the family of equivalence relation of *V* by R' and $(W, \tau_{R''}(Z))$ is a nano topological space with respect to *W* where $Z \subseteq W$, R'' is an equivalence relation on *W*, $\overline{W/R}$ denotes the family of

equivalence relation of *W* by R'' .

2. Preliminaries

This section is to recall some definitions and properties which are useful in this study.

Definition 2.1. *[\[2\]](#page-3-1) Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as indiscernibility relation. Then U is divided into disjoint equivalence classes. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U*,*R) is said to be the approximation space. Let* $X \subseteq U$ *. Then,*

(i)The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and is denoted by LR(*X*)*.*

 $L_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \subseteq X \}$ *where* $R(x)$ *denotes the equivalence class determined by* $x \in U$.

(ii)The upper approximation of X with respect to R is the set of all objects which can be possibly classified as X with respect to R and *is denoted by* $U_R(X)$ *.*

 $U_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \cap X \neq \emptyset \}$

(iii)The boundary region of X with respect to R is the set of all objects which can be classified neither as X nor as not-X with respect to R and it is denoted by $B_R(X)$ *.* $B_R(X) = U_R(X) - L_R(X)$.

Proposition 2.2. *[\[2\]](#page-3-1)If* (*U*,*R*) *is an approximation space and* $X, Y \subseteq U$ *, then*

1. $L_R(X) ⊆ X ⊆ U_R(X)$

$$
2. L_R(\phi) = U_R(\phi) = \phi
$$

$$
3. L_R(U) = U_R(U) = U
$$

- *4.* $U_R(X \cup Y) = U_R(X) \cup U_R(Y)$
- *5.* $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$
- *6. LR*(*X* ∪*Y*) ⊇ *LR*(*X*) ∪ *LR*(*Y*)

$$
7. \ L_R(X \cap Y) = L_R(X) \cap L_R(Y)
$$

8. $L_R(X) ⊆ L_R(Y)$ *and* $U_R(X) ⊆ U_R(Y)$ *whenever* $X ⊆ Y$

9.
$$
U_R(X^c) = [L_R(X)]^c
$$
 and $L_R(X^c) = [U_R(X)]^c$

10.
$$
U_R[U_R(X)] = L_R[U_R(X)] = U_R(X)
$$

11. $L_R[L_R(X)] = U_R[L_R(X)] = L_R(X)$

Definition 2.3. *[\[2\]](#page-3-1) Let U be the universe, R be an equivalence relation on U and* $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ *where* $X \subseteq U$. Then $\tau_R(X)$ *satisfies the following axioms (i) U* and $\phi \in \tau_R(X)$.

(ii) The union of the elements of any sub-collection of $\tau_R(X)$ *is in* $\tau_R(X)$ *.*

(iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ *is in* $\tau_R(X)$ *.*

Then τ*R*(*X*) *is a topology on U called the nano topology on U* with respect to *X*. We call $(U, \tau_R(X))$ as nano topological *space. The elements of* $\tau_R(X)$ *are called as nano-open sets. The complement of the nano-open sets are called nano-closed sets.*

Remark 2.4. [\[2\]](#page-3-1)*If* $\tau_R(X)$ *is the nano topology on U with respect to X, then the set* $B = \{U, L_R(X), B_R(X)\}$ *is the basis for* $\tau_R(X)$ *.*

Definition 2.5. *[\[2\]](#page-3-1) If* $(U, \tau_R(X))$ *is a nano topological space with respect to X where X* \subseteq *U and if A* \subseteq *U, then*

(i)The nano interior of A is defined as the union of all nanoopen subsets of A is contained in A and is denoted by Nint(*A*)*. That is, Nint*(*A*) *is the largest nano-open subset of A.*

(ii)The nano closure of A is defined as the intersection of all nano-closed sets containing A and is denoted by Ncl(*A*)*. That is, Ncl*(*A*) *is the smallest nano-closed set containing A.*

Definition 2.6. *If* $(U, \tau_R(X))$ *be a nano topological space and A then A is said to be*

i) nano pre open set [\[2\]](#page-3-1) if $A \subseteq Nint(Ncl(A))$

ii) nano semi open set [\[2\]](#page-3-1) if $A \subseteq Ncl(Nint(A))$

iii) nano α -open set [\[2\]](#page-3-1) if $A \subseteq Nint(Ncl(Nint(A)))$

iv) nano regular open set [\[2\]](#page-3-1) if $A = Nint(Ncl(A))$

v) nano sg-closed set [\[1\]](#page-3-3) if $Nscl(A) ⊆ G$, whenever $A ⊆ G$ *and G* is nano semi open set in $(U, \tau_R(X))$. *vi)* nano g^*s -closed set [\[5\]](#page-3-4) if $Nscl(A) \subseteq G$, whenever $A \subseteq G$ *and G* is nano g-open set in $(U, \tau_R(X))$.

vii) nano α^* -set [\[7\]](#page-3-5) if $Nint(A) = Nint(Ncl(Nint(A)))$

viii) nano c^* -set [\[7\]](#page-3-5) if $A = G \cap F$ where G is Ng-open and F *is a* $N\alpha^*$ -set in $(U, \tau_R(X))$. *ix*) nano sc [∗]g *closed set* [\[7\]](#page-3-5) *if* $Nscl(A) ⊆ G$, whenever $A ⊆ G$, *and G* is Nc^* -set in $(U, \tau_R(X))$.

 $\textbf{Definition 2.7.}$ *[\[3\]](#page-3-6)The map* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *from a nano topological space* (*U*, τ*R*(*X*)) *to a nano topological space* $(V, \tau_{R'}(Y))$ *is nano continuous function if* $f^{-1}(A)$ *is nano closed in U for every nano closed set A in V .*

Definition 2.8. *[\[6\]](#page-3-7) A function* f : $(U, \tau_R(X)) \rightarrow (V, \tau_{R'}(Y))$ *is said to be nano semi continuous if f* −1 *(B) is nano semi-open on U for every nano-open set B in V .*

Definition 2.9. *[\[6\]](#page-3-7) A function* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is said to be nano pre continuous if f* −1 *(B) is nano pre-open in U for every nano-open set B in V .*

Definition 2.10. *[\[8\]](#page-3-8) A subset* $M_x \subset U$ *is called a nano semi pre-neighbourhood (N* β *-nhd) of a point* $x \in U$ *iff there exists* $aA \in N\beta O(U,X)$ *such that* $x \in A \subset M_x$ *and a point x is called N*β*-nhd point of the set A.*

3. Nano *sc*∗*g***-continuous functions**

In this section, we define the function called *Nsc*∗*g*-continuous function and study their some of its properties.

Definition 3.1. *Let* $(U, \tau_R(X))$ *and* $(V, \tau_{R'}(Y))$ *be nano topological spaces. Then a mapping* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is called nano semi c* [∗] *generalized continuous function (briefly Nsc*∗*g -continuous) on U if the inverse image of every nano open set in V is nano semi c*[∗] *generalized open set in U.*

Example 3.2. *Let* $U = \{a, b, c, d\}$ *with* $U/R = \{\{a\}, \{c\}, \{b, d\}\}\$ *and* $X = \{a,b\}$ *. Then* $\tau_R(X) = \{U, \phi, \{a\}, \{b,d\}, \{a,b,d\}\}$ *which are nano open sets.*

1. nano closed set: $\tau_R^c(X) = \{U, \phi, \{c\}, \{a, c\}, \{b, c, d\}\}$ *2. nano sc*^{*}g-closed set: $\{U, \phi, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}$ *Let* $V = \{x, y, z, w\}$ *and* $V/R' = \{\{x\}, \{w\}, \{y, z\}\}$ *and* $Y =$ ${x,z}$ *. Then* $\tau_{R'}(Y) = {V, \phi, \{x\}, \{y,z\}, \{x, y, z\}}$ *which are nano open sets.*

1. nano closed set : τ_p^c $R^{c}(Y) = \{V, \phi, \{w\}, \{x, w\}, \{y, z, w\}\}$ *2. nano sc*^{*}*g-closed set:* $\{V, \phi, \{x\}, \{w\}, \{x, w\}, \{y, z\},\}$ $\{x, y, z\}, \{y, z, w\}\}\$ *Then define as* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *as*

 $f(a) = x, f(b) = z, f(c) = w, f(d) = y$ $f^{-1}(x) = a, f^{-1}(z) = b, f^{-1}(w) = c, f^{-1}(y) = d$ *Thus the inverse image of every nano open set in V is nano* \int sc^{*}g-open in U. Hence $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is nano sc*∗*g-continuous on U.*

Theorem 3.3. *A function* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is Nsc*∗*g-continuous if and only if the inverse image of every nano closed in V is Nsc*∗*g-closed set in U.*

Proof. Let $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is Nsc^*g -continuous and *B* be a nano-closed set in *V*. (i.e.,) $V - B$ is nano open in

V. Since *f* is $Nsc*g$ -continuous, $f^{-1}(V - B)$ is $Nsc*g$ -open in *U*. (i.e.,) $f^{-1}(V) - f^{-1}(B)$ is *Nsc*[∗]*g*-open in *U*. $U - f^{-1}(B)$ is *Nsc*^{*}*g*-open in *U*. Hence *f* is *Nsc*^{*}*g*-closed in *U*, if *f* is *Nsc*∗*g*-continuous on U.

Conversely, let the inverse image of every nano-closed set in *V* is *Nsc*∗*g*-closed set in *U*. Let *G* be a nano-open set in *V*. Then *V* − *G* is nano-closed set in *V*, $f^{-1}(V - B)$ is *Nsc*[∗]*g*-closed set in *U*. (i.e.,) $f^{-1}(V) - f^{-1}(B) = U - f^{-1}(B)$ is *Nsc*[∗]*g*-closed set in *U*. Therefore $f^{-1}(B)$ is Nsc^*g -open set in *U*. Hence *f* is *Nsc*∗*g*-continuous in *U*. \Box

Theorem 3.4. *A function f* : $(U, \tau_R(X)) \rightarrow (V, \tau_{R'}(Y))$ *is* $Nsc*$ *g*-continuous if and only if $f(Ncl(A)) ⊆ Ncl(f(A))$ for *every subset A of U.*

Proof. Let *f* be a $Nsc*g$ -continuous function and $A \subseteq U$. Then $f(A) \subseteq V$. *Ncl*($f(A)$) is nano-closed set in *V*. Since *f* is *Nsc*[∗]*g*-continuous, $f^{-1}(Ncl(f(A)))$ is *Nsc*[∗]*g*-closed set in *U*. Since $f(A) \subseteq Ncl(f(A)), A \subseteq f^{-1}(Ncl(f(A))).$ Thus $f^{-1}(Ncl(f(A)))$ is nano-closed set containing *A*. But *Ncl* is the smallest nano-closed set containing *A* and every nanoclosed set is *Nsc*[∗]g-closed set. Therefore $Ncl(A) \subseteq f^{-1}(Ncl(f(A)))$ is nano closed set in $(U, \tau_R(X))$. Since every nano closed set is *Nsc*^{*}g-closed set. Therefore $Ncl(A) \subseteq f^{-1}(Ncl(f(A)))$ is also detail. Near a local set $f^{-1}(A)$ i That is, $f(Ncl(f(A))) \subseteq Ncl(f(A)).$

Conversely, let $f(Ncl(f(A))) \subseteq Ncl(f(A))$ for every subset *A* of *U*. Let *F* be a nano-closed in *V*. Since $f^{-1}(F) \subseteq$ *U*, $f(Ncl(f^{-1}(F)))$ ⊆ $Ncl(f(f^{-1}(F)))$ = $Ncl(F)$. That is $Ncl(f^{-1}(F)) \subseteq f^{-1}(Ncl(F)) = f^{-1}(F)$, since *F* is nano-closed. Thus $Ncl(f^{-1}(F)) \subseteq f^{-1}(F)$. Therefore $f^{-1}(F)$ is nanoclosed in *U* for every closed set *F* in *V*. Since every nanoclosed set is *Nsc*[∗]*g*-closed set, $f^{-1}(F)$ is *Nsc*[∗]*g*-closed in *U*. Hence *f* is *Nsc*∗*g*-continuous function. \Box

then $f(Ncl(A))$ *is not necessarily equal to* $Ncl(f(A))$ *where* $A \subseteq U$.

Example 3.6. *Let* $U = \{a,b,c,d\}$ *with* $U/R = \{\{a\}, \{b, d\}, \{c\}\}\$ *. Let* $X = \{a, c, d\}$ *. Then* $\tau_R(X) =$ $\{\phi, U, \{a, c\}, \{b, d\}\}\$ and $\tau_R^c(X) = \{\{\phi, U, \{a, c\}, \{b, d\}\}\}\$. Let $V = \{x, y, z, w\}$ *with* $V/R' = \{\{x, z\}, \{y\}, \{w\}\}\$ *. Let* $Y = \{x, y\}$ *. Then* $\tau_{R'}^c(Y) = {\phi, V, \{y\}, \{x, y, z\} \{x, z\}}$ *and* $\tau_R^c(Y) = {\phi, V, \{w\}, \{y, w\} \{x, z, w\}}.$ Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}^c(Y))$ *be a function defined by* $f(a) = y, f(b) = x, f(c) = y, f(d) = x.$ *Then* $f^{-1}(v) = U$ *,* $f^{-1}(\phi) = \phi$ *,* $f^{-1}(y) = \{a, c\}$ *,* $f^{-1}(\lbrace x,y,z \rbrace) = U, f^{-1}(\lbrace x,z \rbrace) = \lbrace b,d \rbrace.$

That is the inverse image of every nano-open set in V is Nsc∗*g-open set in U. Therefore f is Nsc*∗*g-continuous on U. Let* $A = \{a, c\}$ *.* $f(Ncl(A)) = f(Ncl(\{a, c\}) = f(\{a, c\}) = y$. *But* $Ncl(f(A)) = Ncl(f(\{a, c\})) = Ncl(\{y\}) = \{y, w\}$ *. Thus* $f(Ncl(A) \neq Ncl(f(A))$, where *f* is Nsc^*g -continuous func*tion.*

Remark 3.7. *Composition of two Nsc*∗*g-continuous functions need not be a Nsc*∗*g-continuous function.*

Example 3.8. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ **Theorem 3.13.** If $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ is nano regular*and let* $X = \{a,b\}$ *. Then* $\tau_R(X) = \{\phi, U, \{a\}, \{a,b,d\}\{b,d\}\}\$

is a nano topology on U. Let $V = \{a, b, c, d\}$ *with* $V/R' =$ $\{\{a\}, \{b, c\}, \{d\}\}\$ and $Y = \{b, c\}$ then

 $\tau_{R'}(Y) = \{\phi, V, \{a\}, \{a, b, c\}\}\$ is a nano topology on *V.* Let $W = \{a, b, c, d\}$ with $W/R'' = \{\{a, b\}, \{c\}, \{d\}\}\$ and $Z = \{a, c\}$ *then*

 $\tau_{R''}(W) = \{\phi, W, \{d\}, \{c, d\}, \{a, b, d\}\}.$ Let $f : (U, \tau_R(X)) \to$ $(V, \tau_{R'}(Y))$ *defined by* $f(a) = a$, $f(b) = c$, $f(c) = d$, $f(d) = b$ $\text{and } g: (V, \tau_{R'}(X)) \to (W, \tau_{R''}(Y))$ *is identity function defined by* $g(a) = a$, $g(b) = b$, $g(c) = c$, $g(d) = d$. Functions f and *g are Nsc*∗*g-continuous function but their composition*

 $g \circ f = f : (U, \tau_R(X)) \to (W, \tau_{R''}(Z))$ *is not Nsc*^{*}*g*-*continuous function, since the inverse image of* $\{c\}$ *and* $\{b,d\}$ *are not a Nsc*∗*g-closed set.*

Theorem 3.9. *If* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is nano continuous then it is* Nsc^*g -continuous in $(U, \tau_R(X))$ but not con*versely.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano-continuous function. Let *A* be any nano closed set in $(V, \tau_{R'}(Y))$. Then $f_{\wedge}^{-1}(A)$ is nano closed set in $(U, \tau_R(X))$. Since every nano closed set is *Nsc*^{*}g-closed set, $f^{-1}(A)$ is *Nsc*^{*}g-closed in $(U, \tau_R(X))$. Therefore *f* is *Nsc*^{*}*g* -continuous function. \Box

Remark 3.5. If $f:(U,\tau_R(X))\to (V,\tau_{R'}(Y))$ is Nsc^*g -continuous since $f^{-1}(\lbrace b,d\rbrace)=\lbrace b,d\rbrace$ and $f^{-1}(\lbrace a\rbrace)=\lbrace a\rbrace$ are not nano **Example 3.10.** *Let* $U = V = \{a, b, c, d\}$ *with* $U/R = V/R' =$ ${G}$ {{*a*}, {*c*}, {*b, d*}} *and let* $X = Y = {a,b}$ *. Then* $\tau_R(X) =$ $\tau_I^{'}$ $R(R(Y) = \{\phi, U, \{a\}, \{a, b, d\}\{b, d\}\}\)$ *is a nano topology and* $\tau_R^c(X) = \tau_R^{'}$ $R_R(c(Y) = \{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}\)$ are nano closed *sets. Nsc*^{*}*g -closed set* : $\{\phi, U, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}.$ Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *be an identity map. Then f is a Nsc*∗*g-continuous function. But not nano continuous, closed sets in* $(U, \tau_R(X))$ *.*

> **Theorem 3.11.** *If* f : $(U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is nano* α *continuous then it is Nsc*∗*g-continuous but not converse.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano α continuous function. Let *A* be any nano closed set in $(V, \tau_{R'}(Y))$. Then $f^{-1}(A)$ is nano α -closed set in $(U, \tau_R(X))$. Since every nano α-closed set is *Nsc*^{*}g-closed set, $f^{-1}(A)$ is *Nsc*^{*}gclosed in $(U, \tau_R(X))$. Therefore f is Nsc^*g -continuous function. ш

Example 3.12. *Let* $U = V = \{a, b, c, d\}$ *with* $U/R = V/R' =$ ${G}$ {{*a*}, {*c*}, {*b*,*d*}} *and let* $X = Y = \{a,b\}$ *. Then* $\tau_R(X) =$ $\tau_R'(Y) = \{\phi, U, \{a\}, \{a, b, d\}\}\$ is a nano topology and $\tau_R^c(X) = \tau_R^c$ $R_{R}^{'}c(Y) = \{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}$ *and* Nsc^*g *closed set :* $\{\phi, U, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}.$ *nano* α -*closed set* : { ϕ *, U*, {*c*}, {*a*, *c*}, {*b*, *c*,*d*}}

Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a identity map. Then f is *Nsc*∗*g-continuous function, but not N*α*-continuous function. Since the inverse image of* {*a*}*,* {*b*,*d*} *are not N*α*-closed sets in* $(U, \tau_R(X))$.

continuous then it is Nsc∗*g-continuous but not conversely.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a nano regularcontinuous function. Let *A* be any nano closed set in $(V, \tau_{R'}(Y))$. Then $f^{-1}(A)$ is nano regular-closed set in $(U, \tau_R(X))$. Since every nano regular-closed set is Nsc^*g -closed set, $f^{-1}(A)$ is a $Nsc*g$ -closed in $(U, \tau_R(X))$. Therefore f is a $Nsc*g$ continuous function. \Box

Example 3.14. *Let* $U = V = \{a, b, c, d\}$ *with* $U/R = V/R' =$ ${G{a}, {c}, {b}, d}$ *and let* $X = Y = {a,b}$ *. Then* $\tau_R(X) =$ $\tau_{R'}^{c}(Y) = \{\phi, U, \{a\}, \{a, b, d\}\{b, d\}\}$ *is a nano topology and* $\tau_R^c(X) = \tau_{R'}^c(Y) = \{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and Nsc^*g *closed set* : $\{\phi, U, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}.$ *nano regular-closed set :* $\{\phi, U, \{a, c\}, \{b, c, d\}\}$

Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a identity map. Then f *is Nsc*∗*g-continuous function, but not Nr-continuous function. Since the inverse image of* {*a*}*,* {*c*}*,* {*b*,*d*} *are not nano regular-closed sets in* $(U, \tau_R(X))$ *.*

Theorem 3.15. *If* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is* Nsc^*g *continuous then it is Nsc*∗*g-continuous. Conversely need not be true.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a Nsc^*g continuous function. Let *A* be any nano closed set in $(V, \tau_{R'}(Y))$. Then $f^{-1}(A)$ is Nsc^*g -closed set in $(U, \tau_R(X))$. Since every *Nsc*[∗]*g*-closed set is *Nsg*-closed set in $(U, \tau_R(X)), f^{-1}(A)$ is a *Nsg*-closed in $(U, \tau_R(X))$. Therefore *f* is a *Nsg*-continuous function. \Box

Example 3.16. *Let* $U = V = \{a, b, c, d\}$ *with* $U/R = V/R' =$ ${G}$ {{*a*}, {*c*}, {*b*,*d*}} *and let* $X = Y = {a,b}$ *. Then* $\tau_R(X) =$ $\tau_{R'}(Y) = \{\phi, U, \{a\}, \{a, b, d\}\{b, d\}\}$ *is a nano topology and* $\tau_R^c(X) = \tau_{R'}^c(Y) = \{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and Nsc[∗]g*closed set :* $\{\phi, U, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}.$ *nano sg-closed set* : $\{\phi, U, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{b, c\},\$ $\{b,d\},\{c,d\},\{a,b,c\},\{a,c,d\},\{b,c,d\}\}\$ Let $f:(U,\tau_R(X))\to$ $(V, \tau_{R'}(Y))$ *be a identity map. Then f is Nsg-continuous function, but not Nsc*∗*g -continuous function. Since the inverse image of* {*d*}*,* {*b*}*,* {*b*, *c*}*,* {*c*,*d*}*,* {*a*,*b*, *c*}*,* {*a*, *c*,*d*} *are not* $Nsc*$ *g-closed sets in* $(U, \tau_R(X))$ *.*

Theorem 3.17. *If* $f : (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ *is* Nsc^*g *continuous then it is Nsg-continuous function.*

Proof. Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a Nsc^*g continuous function. Let *A* be any nano closed set in $(V, \tau_{R'}(Y))$. Then $f^{-1}(A)$ is Nsc^*g -closed set in $(U, \tau_R(X))$. Since every Nsc^*g -closed set is Ng^*s -closed set in $(U, \tau_R(X)),$ $f^{-1}(A)$ is a *Ng*[∗]s-closed in $(U, \tau_R(X))$. Therefore *f* is a *Ng*[∗]s-continuous function. The converse of the above theorem need not be true as seen from the following example. \Box

Example 3.18. *Let* $U = V = \{a, b, c, d\}$ *with* $U/R = V/R' =$ ${G_A(a)$, ${c}$, ${b,d}$ and let $X = Y = {a,b}$ *. Then* $\tau_R(X) =$ $\tau_{R'}(Y) = \{\phi, U, \{a\}, \{a, b, d\}\{b, d\}\}$ *is a nano topology and* $\tau_R^c(X) = \tau_{R'}^c(Y) = \{\phi, U, \{c\}, \{b, c, d\}, \{a, c\}\}\$ and Nsc^*g *closed set :* $\{\phi, U, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{b, c, d\}\}.$ *Ng*[∗] *s-closed set :* {φ,*U*,{*a*},{*c*},{*a*, *c*},{*b*, *c*},{*b*,*d*},

{*c*,*d*},{*a*,*b*, *c*},{*a*, *c*,*d*},{*b*, *c*,*d*}} Let $f: (U, \tau_R(X)) \to (V, \tau_{R'}(Y))$ be a identity map. Then f *is Ng*[∗] *s-continuous function, but not Nsc*∗*g -continuous function. Since the inverse image of* $\{b, c\}$, $\{c, d\}$, $\{a, b, c\}$ *are not* $Nsc*$ *g-closed sets in* $(U, \tau_R(X))$.

References

- [1] K.Bhuvaneswari and K.Mythili Gnanapriya, On nano Generalized Continuous function in nano Topological spaces, *International journal of Mathematical Archive*, 6(6)(2015), 182–189.
- [2] M.Lellis Thivagar, Carmel Richard, On nano Forms of Weakly open sets, *International Journal of Mathematics and Statistics Invention*, 1(2013), 31–37.
- [3] M.Lellis Thivagar, Carmel Richard, On nano Continuity, *Math. Theory Model*, 7(2013), 32–37.
- [4] D.A Mary, I.Arokiarani, On characterizations of nano rgb-closed sets in nano topological spaces, *Int. J. Mod. Eng. Res.,* 5(1)(2015), 68–76.
- [5] V.Rajendran, B.Anand, S. Sharmilabanu, On nano generalized Star semi closed sets in nano topological space, *International Journal of Applied Research*, 1(9)(2015), 142–144.
- [6] P.Sathishmohan, V.Rajendran, A.Devika and P.Vani, On nano semi -continuity and nano pre-continuity, *International Journal of Applied Research*, 3(2)(2017), 76–79.
- [7] S.Sridevi, A.Pushpalatha, On nano Semi c* generalized closed sets in nano topological spaces, *Malaya Journal of Matematik* (Submitted).
- [8] Sathishmohan.P, Rajendran.V, Vignesh Kumar.C and Dhanasekaran.P.K, On nano semi pre neighbourhoods on nano topological spaces, *Malaya Journal of Matematik*, 6(1)(2018), 294–298.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

