

https://doi.org/10.26637/MJM0701/0017

A study on intuitionistic $(\lambda,\mu)\text{-}$ fuzzy subrings of a ring

V.Saravanan¹*

Abstract

In this paper, we made an attempt to study the algebraic nature of intuitionistic (λ, μ) -fuzzy subring of a rings.

Keywords

Fuzzy set, (λ, μ) -fuzzy subring, (λ, μ) -anti-fuzzy subring, intuitionistic fuzzy set, intuitionistic (λ, μ) -fuzzy subring.

AMS Subject Classification 03F55, 06D72, 08A72.

¹Mathematics Section, FEAT, Annamalai University, Annamalai Nagar, Tamil Nadu, India. *Corresponding author: ¹ saravanan_aumaths@yahoo.com Article History: Received 11 November 2018; Accepted 09 January 2019

©2019 MJM.

Contents

1	Introduction83
2	Preliminaries
3	Properties of intuitionistic (λ, μ) -fuzzy subrings of a ring
	References

1. Introduction

After the introduction of fuzzy sets by L.A.Zadeh [18], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov [3, 4], as a generalization of the notion of fuzzy set. The concepts of (λ, μ) -fuzzy subrings and (λ, μ) -fuzzy ideals was introduced by Bingxue Yao [17]. In this paper, we introduce the concept of intuitionistic (λ, μ) -fuzzy subrings of a ring and established some results. Throughout this article, we will always assume that $0 \le \lambda < \mu \le 1$.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \rightarrow [0, 1]$.

Definition 2.2. The union of two fuzzy subsets A and B of a set X, denoted by $(A \cup B)(x) = \max\{A(x), B(x)\}$, for all $x \in X$.

Definition 2.3. The intersection of two fuzzy subsets A and B of a set X, denoted by $(A \cap B)(x) = \min\{A(x), B(x)\}$, for all $x \in X$.

Definition 2.4. Let *R* be a subring. A fuzzy subset *A* of *R* is said to be a (λ, μ) -fuzzy subring of *R* if it satisfies the following conditions:

- (i) $A(x+y) \lor \lambda \ge \min\{A(x), A(y)\} \land \mu$,
- (*ii*) $A(-x) \lor \lambda \ge A(x) \land \mu$,
- (*iii*) $A(xy) \lor \lambda \ge \min\{A(x), A(y)\} \land \mu$, for all x and y in R

Definition 2.5. Let *R* be a subring. A fuzzy subset *A* of *R* is said to be an (λ, μ) anti-fuzzy subring of *R* if it satisfies the following conditions:

- (i) $A(x+y) \wedge \mu \leq \max\{A(x), A(y)\} \vee \lambda$,
- (*ii*) $A(-x) \wedge \mu \leq A(x) \vee \lambda$,
- (iii) $A(xy) \wedge \mu \leq \max\{A(x), A(y)\} \vee \lambda$, for all x and y in R.

Definition 2.6. [3, 4] An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$, where $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Example 2.7. Let $X = \{a,b,c\}$ be a set. Then $A = \{\langle a, 0.62, 0.24 \rangle, \langle b, 0.34, 0.61 \rangle, \langle c, 0.28, 0.44 \rangle\}$ is an intuitionistic fuzzy subset of X.

Definition 2.8. If A is a intuitionistic fuzzy subset of X, then the complement of A, denoted A^c is the intuitionistic fuzzy set of X, given by $A^c(x) = \{ < x, v_A(x), \mu_A(x) > / x \in X \}$, for all $x \in X$.

Example 2.9. Let $A = \{ \langle a, 0.8, 0.1 \rangle, \langle b, 0.7, 0.2 \rangle, \langle c, 0.5, 0.3 \rangle \}$ is a fuzzy subset of $X = \{a, b, c\}$. The complement of A is $A^c = \{ \langle a, 0.1, 0.8 \rangle, \langle b, 0.2, 0.7 \rangle, \langle c, 0.3, 0.5 \rangle \}.$

Definition 2.10. Let A and B be any two intuitionistic (λ, μ) -fuzzy subsets of a set X. We define the following operations:

(i) $A \cap B$

 $= \{ \langle x, \min\{\mu_A(x), \mu_B(x)\} \land \mu, \max\{\nu_A(x), \nu_B(x)\} \lor \lambda \rangle \},$ for all $x \in X$.

(ii) $A \cup B$

 $=\{\langle x, \max\{\mu_A(x), \mu_B(x)\} \lor \lambda, \min\{\nu_A(x), \nu_B(x)\} \land \mu \rangle\},\$

for all $x \in X$.

- (*iii*) $\Box A = \{ \langle x, \mu_A(x) \lor \lambda, (1 \mu_A(x)) \land \mu \rangle / x \in X \}, \text{ for all } x \text{ in } X.$
- (*iv*) $\diamond A = \{ \langle x, (1 v_A(x)) \lor \lambda, v_A(x) \land \mu \rangle / x \in X \}$, for all *x* in *X*.

Definition 2.11. Let *R* be a subring. An intuitionistic fuzzy subset *A* of *R* is said to be an intuitionistic (λ, μ) -fuzzy subring of *R* if it satisfies the following conditions:

- (i) $\mu_A(x-y) \lor \lambda \ge \min\{\mu_A(x), \mu_A(y)\} \land \mu$,
- (*ii*) $\mu_A(xy) \lor \lambda \ge \min\{\mu_A(x), \mu_A(y)\} \land \mu$,
- (*iii*) $v_A(x-y) \wedge \mu \leq \max\{v_A(x), v_A(y)\} \lor \lambda$,
- (*iv*) $v_A(xy) \wedge \mu \leq \max\{v_A(x), v_A(y)\} \lor \lambda$, for all x and y in *R*.

Definition 2.12. Let A and B be intuitionistic (λ, μ) -fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B$

$$=\left\{\left\langle (x,y), \mu_{A\times B}(x,y)\vee\lambda, \nu_{A\times B}(x,y)\wedge\mu\right\rangle\right.$$

for all x in G and y in H}, where

$$\mu_{A\times B}(x,y)\vee\lambda=\min\{\mu_A(x),\mu_B(y)\}\wedge\mu$$

and $v_{A \times B}(x, y) \wedge \mu = \max\{v_A(x), v_B(y)\} \vee \lambda$.

Definition 2.13. Let A be an intuitionistic (λ, μ) -fuzzy subset in a set S, the strongest intuitionistic fuzzy relation on S, that is a intuitionistic fuzzy relation on A is V given by $\mu_V(x,y) \lor \lambda =$ $\min{\{\mu_A(x), \mu_A(y)\} \land \mu}$ and $v_V(x, y) \land \mu = \max{\{v_A(x), v_A(y)\} \lor \lambda}$, for all x and y in S.

Definition 2.14. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two subrings. Let $f : R \to R'$ be any function and A be an intuitionistic fuzzy subring in R, V be an intuitionistic fuzzy subring in f(R) = R', defined by $\mu_V(y) = \sup_{x \in f^{-1}(y)} \mu_A(x)$ and

 $v_V(y) = \inf_{x \in f^{-1}(y)} v_A(x)$, for all x in R and y in R'. Then A is

called a preimage of V under f and is denoted by $f^{-1}(V)$.

Definition 2.15. Let A be an intuitionistic (λ, μ) -fuzzy subring of a ring $(R, +, \cdot)$ and a in R. Then the pseudo intuitionistic (λ, μ) -fuzzy coset $(aA)^p$ is defined by $((a\mu_A)^p)(x) \lor \lambda =$ $p(a)\mu_A(x) \lor \lambda$ and $((av_A)^p)(x) \land \mu = p(a)v_A(x) \land \mu$, for every x in R and for some p in P.

3. Properties of intuitionistic (λ, μ) -fuzzy subrings of a ring

Theorem 3.1. Intersection of any two intuitionistic (λ, μ) -fuzzy subring of a ring R is a intuitionistic (λ, μ) -fuzzy subring of R.

Proof. Let *A* and *B* be any two intuitionistic (λ, μ) -fuzzy subrings of a ring *R* and *x* and *y* in *R*. Let $A = \{x, \mu_A(x), \nu_A(x))/x \in R\}$ and $B = \{(x, \mu_B(x), \nu_B(x))/x \in R\}$ and also let $C = A \cap B = \{(x, \mu_C(x), \nu_C(x))/x \in R\}$, where min $\{\mu_A(x), \mu_B(x)\} \land \mu = \mu_C(x)$ and max $\{\nu_A(x), \nu_B(x)\} \lor \lambda = \nu_C(x)$. Now,

$$\mu_{C}(x-y) \lor \lambda$$

= min{ $\mu_{A}(x-y), \mu_{B}(x-y)$ } $\lor \lambda$
 \geq min{min{ $\mu_{A}(x), \mu_{A}(y)$ }, min{ $\mu_{B}(x), \mu_{B}(y)$ } $\land \mu$
= min{min{ $\mu_{A}(x), \mu_{B}(x)$ } $\land \mu$, min{ $\mu_{A}(y), \mu_{B}(y)$ } $\land \mu$ }
= min{ $\mu_{C}(x), \nu_{C}(y)$ } $\land \mu$.

Therefore, $\mu_C(x-y) \lor \lambda \ge \min\{\mu_C(x), \nu_C(y)\} \land \mu$, for all x and y in *R*. And,

$$\mu_{C}(xy) \lor \lambda$$

= min{ $\mu_{A}(xy), \mu_{B}(xy)$ } $\lor \lambda$
 \geq min{min{ $\mu_{A}(x), \mu_{A}(y)$ }, min{ $\mu_{B}(x), \mu_{B}(y)$ } $\land \mu$
= min{min{ $\mu_{A}(x), \mu_{B}(x)$ } $\land \mu, \min{\{\mu_{A}(y), \mu_{B}(y)\}} \land \mu$ }
= min{ $\mu_{C}(x), \mu_{C}(y)$ } $\land \mu$.

Therefore, $\mu_C(xy) \lor \lambda \ge \min\{\mu_C(x), \mu_C(y)\} \land \mu$, for all *x* and *y* in *R*. Now,

$$\begin{aligned} \mathbf{v}_{C}(x-y) \wedge \mu \\ &= \max\{\mathbf{v}_{A}(x-y), \mathbf{v}_{B}(x-y)\} \wedge \mu \\ &\leq \max\{\max\{\mathbf{v}_{A}(x), \mathbf{v}_{A}(y)\}, \max\{\mathbf{v}_{B}(x), \mathbf{v}_{B}(y)\}\} \vee \lambda \\ &= \max\{\max\{\mathbf{v}_{A}(x), \mathbf{v}_{B}(x)\} \vee \lambda, \max\{\mathbf{v}_{A}(y), \mathbf{v}_{B}(y)\} \vee \lambda\} \\ &= \max\{\mathbf{v}_{C}(x), \mathbf{v}_{C}(y)\} \vee \lambda. \end{aligned}$$

Therefore, $v_C(x-y) \wedge \mu \leq \max\{v_C(x), v_C(y)\} \lor \lambda$, for all x and y in *R*. And,

$$\begin{aligned} \mathbf{v}_{C}(xy) \wedge \mu \\ &= \max\{\mathbf{v}_{A}(xy), \mathbf{v}_{B}(xy)\} \wedge \mu \\ &\leq \max\{\max\{\mathbf{v}_{A}(x), \mathbf{v}_{A}(y)\}, \max\{\mathbf{v}_{B}(x), \mathbf{v}_{B}(y)\}\} \lor \lambda \\ &= \max\{\max\{\mathbf{v}_{A}(x), \mathbf{v}_{B}(x)\} \lor \lambda, \max\{\mathbf{v}_{A}(y), \mathbf{v}_{B}(y)\} \lor \lambda\} \\ &= \max\{\mathbf{v}_{C}(x), \mathbf{v}_{C}(y)\} \lor \lambda. \end{aligned}$$

Therefore, $v_C(xy) \wedge \mu \leq \max\{v_C(x), v_C(y)\} \vee \lambda$, for all *x* and *y* in *R*. Therefore *C* is an intuitionistic (λ, μ) -fuzzy subring of *R*. Hence the intersection of any two intuitionistic (λ, μ) -fuzzy subrings of a ring *R* is an intuitionistic (λ, μ) -fuzzy subring of *R*.

Theorem 3.2. The intersection of a family of intuitionistic (λ, μ) -fuzzy subrings of ring R is an intuitionistic (λ, μ) -fuzzy subring of R.

Proof. Let $\{V_i : i \in I\}$ be a family of intuitionistic (λ, μ) -fuzzy subrings of a ring *R* and let $A = \bigcap_{i \in I} V_i$. Let *x* and *y* in *R*. Then,

$$\mu(x-y) \lor \lambda$$

= $\inf_{i \in I} \mu_{v_i}(x-y) \lor \lambda$
\geq $\inf_{i \in I} \min\{\mu_{V_i}(x), \mu_{V_i}(y)\} \land \mu$
= $\min\{\inf_{i \in I} \mu_{V_i}(x), \inf_{i \in I} \mu_{V_i}(y)\} \land \mu$
= $\min\{\mu_A(x), \mu_A(y)\} \land \mu$.

Therefore, $\mu_A(x-y) \lor \lambda \ge \min\{\mu_A(x), \mu_A(y)\} \land \mu$, for all *x* and *y* in *R*. And,

$$\mu_{A}(xy) \lor \lambda$$

$$= \inf_{i \in I} \mu_{V_{i}}(xy) \lor \lambda$$

$$\geq \inf_{i \in I} \min\{\mu_{V_{i}}(x), \mu_{V_{i}}(y)\} \land \mu$$

$$= \min\{\inf_{i \in I} \mu_{V_{i}}(x), \inf_{i \in I} \mu_{V_{i}}(y)\} \land \mu$$

$$= \min\{\mu_{A}(x), \mu_{A}(y)\} \land \mu.$$

Therefore, $\mu_A(xy) \lor \lambda \ge \min\{\mu_A(x), \mu_A(y)\} \land \mu$, for all *x* and *y* in *R*. Now,

$$\begin{aligned} & \mathbf{v}_A(x-y) \wedge \mu \\ &= \sup_{i \in I} \mathbf{v}_{V_i}(x-y) \wedge \mu \\ &\leq \sup_{i \in I} \max\{\mathbf{v}_{V_i}(x), \mathbf{v}_{V_i}(y)\} \lor \lambda \\ &= \max\{\sup_{i \in I} \mathbf{v}_{V_i}(x), \sup_{i \in I} \mathbf{v}_{V_i}(y)\} \lor \lambda \\ &= \max\{\mathbf{v}_A(x), \mathbf{v}_A(y)\} \lor \lambda. \end{aligned}$$

Therefore, $v_A(x-y) \wedge v \leq \max\{v_A(x), v_A(y)\} \vee \lambda$, for all x and y in R. And,

$$\begin{aligned} \mathbf{v}_{A}(xy) \wedge \mu \\ &= \sup_{i \in I} \mathbf{v}_{V_{i}}(xy) \wedge \mu \\ &\leq \sup_{i \in I} \max\{\mathbf{v}_{V_{i}}(x), \mathbf{v}_{V_{i}}(y)\} \lor \lambda \\ &= \max\{\sup_{i \in I} \mathbf{v}_{V_{i}}(x), \sup_{i \in I} \mathbf{v}_{V_{i}}(y)\} \lor \lambda \\ &= \max\{\mathbf{v}_{A}(x), \mathbf{v}_{A}(y)\} \lor \lambda. \end{aligned}$$

Therefore, $v_A(xy \land \mu \le \max\{v_A(x), v_A(y)\} \lor \lambda$, for all x and y in R. That is, A is an intuitionistic (λ, μ) -fuzzy subring of

a ring *R*. Hence, the intersection of a family of intuitionistic (λ, μ) -fuzzy subrings of *R* is an intuitionistic (λ, μ) -fuzzy subring of *R*.

Theorem 3.3. If A and B are any two intuitionistic (λ, μ) -fuzzy subrings of the rings R_1 and R_2 respectively, then $A \times B$ is an intuitionistic (λ, μ) -fuzzy subring of $R_1 \times R_2$.

Proof. Let *A* and *B* be two intuitionistic (λ, μ) -fuzzy subrings of the rings R_1 and R_2 respectively. Let x_1 and x_2 be in R_1, y_1 and y_2 be in R_2 . Then (x_1, y_1) and (x_2, y_2) are in $R_1 \times R_2$. Now,

$$\begin{split} & \mu_{A \times B}[(x_1, y_1) - (x_2, y_2)] \lor \lambda \\ &= \mu_{A \times B}(x_1 - x_2, y_1 - y_2) \lor \lambda \\ &= \min\{\mu_A(x_1 - x_2), \mu_B(y_1 - y_2)\} \lor \lambda, \\ &\geq \min\{\min\{\mu_A(x_1), \mu_A(x_2)\} \\ &\land \mu, \min\{\mu_B(y_1), \mu_B(y_2)\} \land \mu\} \\ &= \min\{\min\{\mu_A(x_1), \mu_B(y_1)\} \\ &\land \mu, \min\{\mu_A(x_2), \mu_B(y_2)\} \land \mu\} \\ &= \min\{\mu_{A \times B}(x_1, y_1), \mu_{A \times B}(x_2, y_2)\} \land \mu. \end{split}$$

Therefore,

$$\mu_{A\times B}[(x_1,y_1)-(x_2,y_2)]\vee\lambda$$

$$\geq \min\{\mu_{A\times B}(x_1,y_1),\mu_{A\times B}(x_2,y_2)\}\wedge\mu.$$

Also,

 $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] \lor \lambda$ = $\mu_{A\times B}(x_1x_2, y_1y_2) \lor \lambda$ = min{ $\mu_A(x_1x_2), \mu_B(y_1y_2)$ } $\lor \lambda$ \ge min{min{ $\mu_A(x_1), \mu_A(x_2)$ } $\land \mu, \min\{\mu_B(y_1), \mu_B(y_2)\} \land \mu$ } = min{min{ $\mu_A(x_1), \mu_B(y_1)$ } $\land \mu, \min\{\mu_A(x_2), \mu_B(y_2)\} \land \mu$ } = min{ $\mu_{A\times B}(x_1, y_1), \mu_{A\times B}(x_2, y_2)$ } $\land \mu$.

Therefore,

 $\mu_{A\times B}[(x_1,y_1)(x_2,y_2)] \lor \lambda$ $\geq \min\{\mu_{A\times B}(x_1,y_1), \mu_{A\times B}(x_2,y_2)\} \land \mu.$

Now,

$$\begin{aligned} \mathbf{v}_{A \times B}[(x_1, y_1) - (x_2, y_2)] \wedge \mu \\ &= \mathbf{v}_{A \times B}(x_1 - x_2, y_1 - y_2) \wedge \mu \\ &= \max\{\mathbf{v}_A(x_1 - x_2), \mathbf{v}_B(y_1 - y_2)\} \wedge \mu \\ &\leq \max\{\max\{\mathbf{v}_A(x_1), \mathbf{v}_A(x_2)\} \lor \lambda, \\ \max\{\mathbf{v}_B(y_1), \mathbf{v}_B(y_2)\} \lor \lambda \\ &= \max\{\max\{\mathbf{v}_A(x_1), \mathbf{v}_B(y_1)\} \lor \lambda, \\ \max\{\mathbf{v}_A(x_2), \mathbf{v}_B(y_2)\} \lor \lambda \\ &= \max\{\mathbf{v}_A(x_2), \mathbf{v}_B(y_2)\} \lor \lambda \end{aligned}$$

Therefore,

$$\begin{aligned} \mathbf{v}_{A\times B}[(x_1,y_1)-(x_2,y_2)]\wedge\mu\\ &\leq \max\{\mathbf{v}_{A\times B}(x_1,y_1),\mathbf{v}_{A\times B}(x_2,y_2)\}\vee\lambda. \end{aligned}$$

Also,

$$\begin{split} v_{A \times B}[(x_{1}, y_{1})(x_{2}, y_{2})] \wedge \mu \\ &= v_{A \times B}(x_{1}x_{2}, y_{1}y_{2}) \wedge \mu \\ &= \max\{v_{A}(x_{1}x_{2}), v_{B}(y_{1}y_{2})\} \wedge \mu \\ &\leq \max\{\max\{v_{A}(x_{1}), v_{A}(x_{2})\} \vee \lambda, \\ \max\{v_{B}(y_{1}), v_{B}(y_{2})\} \vee \lambda \} \\ &= \max\{\max\{\mu_{A}(x_{1}), v_{B}(y_{1})\} \vee \lambda, \\ \max\{v_{A}(x_{2}), v_{B}(y_{2})\} \vee \lambda \\ &= \max\{v_{A \times B}(x_{1}, y_{1}), v_{A \times B}(x_{2}, y_{2})\} \vee \lambda. \end{split}$$

Therefore,

$$v_{A\times B}[(x_1, y_1)(x_2, y_2)] \wedge \mu$$

$$\leq \max\{v_{A\times B}(x_1, y_1), v_{A\times B}(x_2, y_2)\} \vee \lambda.$$

Hence $A \times B$ is an intuitionistic (λ, μ) -fuzzy subring of ring of $R_1 \times R_2$.

Theorem 3.4. Let A be an intuitionistic (λ, μ) -fuzzy subset of a subring R and V be the strongest intuitionistic (λ, μ) -fuzzy relation of R. Then A is an intuitionistic (λ, μ) -fuzzy subring of R if and only if V is an intuitionistic (λ, μ) -fuzzy subring of $R \times R$.

Proof. Suppose that *A* is an intuitionistic (λ, μ) -fuzzy subring of a ring *R*. Then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in $R \times R$. We have,

$$\mu_{V}(x-y) \lor \lambda$$

= $\mu_{V}[(x_{1},x_{2}) - (y_{1},y_{2})] \lor \lambda$
= $\mu_{V}(x_{1} - y_{1},x_{2} - y_{2}) \lor \lambda$
= $\min\{\mu_{A}(x_{1} - y_{1}), \mu_{A}(x_{2} - y_{2})\} \lor \lambda$
 $\ge \min\{\min\{\mu_{A}(x_{1}), \mu_{A}(y_{2})\} \land \mu$
= $\min\{\min\{\mu_{A}(x_{1}), \mu_{A}(y_{2}) \land \mu\}$
= $\min\{\min\{\mu_{A}(x_{1}), \mu_{A}(x_{2}) \land \mu, \min\{\mu_{A}(y_{1}), \mu_{A}(y_{2})\} \land \mu\}$
= $\min\{\mu_{V}(x_{1},x_{2}), \mu_{V}(y_{1},y_{2})\} \land \mu$
= $\min\{\mu_{V}(x), \mu_{V}(y)\} \land \mu.$

Therefore,

$$\mu_V(x-y) \lor \lambda$$

$$\geq \min\{\mu_V(x), \mu_V(y)\} \land \mu,$$

for all x and y in $R \times R$. And, $\mu_V(xy) \lor \lambda$ $= \mu_V[(x_1, x_2)(y_1, y_2)] \lor \lambda$ $= \mu_V(x_1y_1, x_2y_2) \lor \lambda$ $= \min\{\mu_A(x_1y_1), \mu_A(x_2y_2)\} \lor \lambda$ $\ge \min\{\min\{\mu_A(x_1), \mu_A(y_1)\}, \min\{\mu_A(x_2), \mu_A(y_2)\}\} \land \mu$ $= \min\{\min\{\mu_A(x_1), \mu_A(x_2)\} \land \mu, \min\{\mu_A(y_1), \mu_A(y_2)\} \land \mu\}$ $= \min\{\mu_V(x_1, x_2), \mu_V(y_1, y_2)\} \land \mu$ $= \min\{\mu_V(x), \mu_V(y)\} \land \mu.$

Therefore,

$$\mu_V(xy) \lor \lambda \ge \min\{\mu_V(x), \mu_V(y)\} \land \mu,$$

for all x and y in $R \times R$. We have,

$$\begin{aligned} v_{V}(x-y) \wedge \mu \\ &= v_{V}[(x_{1},x_{2}) - (y_{1},y_{2})] \wedge \mu \\ &= v_{V}(x_{1} - y_{1},x_{2} - y_{2}) \wedge \mu \\ &= \max\{v_{A}(x_{1} - y_{1}), v_{A}(x_{2} - y_{2})\} \wedge \mu \\ &\leq \max\{\max\{v_{A}(x_{1}), v_{A}(y_{1})\}, \max\{v_{A}(x_{2}), v_{A}(y_{2})\}\} \vee \lambda \\ &= \max\{\max\{v_{A}(x_{1}), v_{A}(x_{2})\} \vee \lambda, \max\{v_{A}(y_{1}), v_{A}(y_{2})\} \vee \lambda\} \\ &= \max\{v_{V}(x_{1},x_{2}), v_{V}(y_{1},y_{2})\} \vee \lambda \\ &= \max\{v_{V}(x), v_{V}(y)\} \vee \lambda. \end{aligned}$$

Therefore,

$$v_V(x-y) \wedge \mu \leq \max\{v_V(x), v_V(y)\} \vee \lambda,$$

for all *x* and *y* in $R \times R$. And,

$$\begin{split} v_{V}(xy) \wedge \mu \\ &= v_{V}[(x_{1}, x_{2})(y_{1}, y_{2})] \wedge \mu \\ &= v_{V}(x_{1}y_{1}, x_{2}y_{2}) \wedge \mu \\ &= \max\{v_{A}(x_{1}y_{1}), v_{A}(x_{2}y_{2})\} \\ &\leq \max\{\max\{v_{A}(x_{1}), v_{A}(y_{1})\}, \max\{v_{A}(x_{2}), v_{A}(y_{2})\}\} \vee \lambda \\ &= \max\{\max\{v_{A}(x_{1}), v_{A}(y_{2})\} \vee \lambda, \max\{v_{A}(y_{1}), v_{A}(y_{2})\} \vee \lambda\} \\ &= \max\{v_{V}(x_{1}, x_{2}), v_{V}(y_{1}, y_{2})\} \vee \lambda \\ &= \max\{v_{V}(x), v_{V}(y)\} \vee \lambda. \end{split}$$

Therefore,

$$v_V(xy) \wedge \mu \leq \max\{v_V(x), v_V(y)\} \vee \lambda,$$

for all x and y in $R \times R$. This proves that V is an intuitionistic (λ, μ) -fuzzy subring of $R \times R$.

Conversely assume that *V* is an intuitionistic (λ, μ) -fuzzy subring of $R \times R$, then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in $R \times R$, we have

$$\min\{\mu_{A}(x_{1} - y_{1}), \mu_{A}(x_{2} - y_{2})\} \lor \lambda$$

= $\mu_{V}(x_{1} - y_{1}, x_{2} - y_{2}) \lor \lambda$
= $\mu_{V}[(x_{1}, x_{2}) - (y_{1}, y_{2})] \lor \lambda$
= $\mu_{V}(x - y) \lor \lambda$
 $\ge \min\{\mu_{V}(x), \mu_{V}(y)\} \land \mu$
= $\min\{\mu_{V}(x_{1}, x_{2}), \mu_{V}(y_{1}, y_{2})\} \land \mu$
= $\min\{\min\{\mu_{A}(x_{1}), \mu_{A}(x_{2})\} \land \mu, \min\{\mu_{A}(y_{1}), \mu_{A}(y_{2})\} \land \mu\}.$

If

$$\begin{split} & \mu_A(x_1 - y_1) \lor \lambda \\ & \leq \mu_A(x_2 - y_2) \lor \lambda, \mu_A(x_1) \lor \lambda \\ & \leq \mu_A(x_2) \lor \lambda, \mu_A(y_1) \lor \lambda \\ & \leq \mu_A(y_2) \lor \lambda, \end{split}$$

we get,

$$\mu_A(x_1-y_1) \lor \lambda \ge \min\{\mu_A(x_1), \mu_A(y_1)\} \land \mu,$$

for all x_1 and y_1 in R. And,

$$\min\{\mu_{A}(x_{1}y_{1}), \mu_{A}(x_{2}y_{2})\} \lor \lambda = \mu_{V}(x_{1}y_{1}, x_{2}y_{2}) \lor \lambda = \mu_{V}[(x_{1}, x_{2})(y_{1}, y_{2})] \lor \lambda = \mu_{V}(xy) \lor \lambda \ge \min\{\mu_{V}(x), \mu_{V}(y)\} \land \mu = \min\{\mu_{V}(x_{1}, x_{2}), \mu_{V}(y_{1}, y_{2})\} \land \mu = \min\{\min\{\mu_{A}(x_{1}), \mu_{A}(x_{2})\} \land \mu, \min\{\mu_{A}(y_{1}), \mu_{A}(y_{2})\} \land \mu\}.$$

If

$$\mu_{A}(x_{1}y_{1}) \wedge \mu$$

$$\leq \mu_{A}(x_{2}y_{2}) \wedge \mu, \mu_{A}(x_{1}) \wedge \mu$$

$$\leq \mu_{A}(x_{2}) \wedge \mu, \mu_{A}(y_{1}) \wedge \mu$$

$$\leq \mu_{A}(y_{2}) \wedge \mu,$$

we get

 $\mu_A(x_1y_1) \lor \lambda \ge \min\{\mu_A(x_1), \mu_A(y_1)\} \land \mu,$

for all x_1 and y_1 in R. We have

$$\max\{v_{A}(x_{1}-y_{1}), v_{A}(x_{2}-y_{2})\} \land \mu$$

= $v_{V}(x_{1}-y_{1}, x_{2}-y_{2}) \land \mu$
= $v_{V}[(x_{1}, x_{2}) - (y_{1}, y_{2})] \land \mu$
= $v_{V}(x-y) \land \mu$
 $\leq \max\{v_{V}(x), v_{V}(y)\} \lor \lambda$
= $\max\{v_{V}(x_{1}, x_{2}), v_{V}(y_{1}, y_{2})\} \lor \lambda$
= $\max\{\max\{v_{A}(x_{1}), v_{A}(x_{2})\} \lor \lambda,$
 $\max\{v_{A}(y_{1}), v_{A}(y_{2})\} \lor \lambda\}.$

If

```
\begin{aligned} & \mathbf{v}_A(x_1 - y_1) \wedge \mu \\ & \geq \mathbf{v}_A(x_2 - y_2) \wedge \mu, \mathbf{v}_A(x_1) \wedge \mu \\ & \geq \mathbf{v}_A(x_2) \wedge \mu, \mathbf{v}_A(y_1) \wedge \mu \\ & \geq \mathbf{v}_A(y_2) \wedge \mu, \end{aligned}
```

we get,

$$v_A(x_1-y_1) \wedge \mu \leq \max\{v_A(x_1), v_A(y_1)\} \lor \lambda$$

for all x_1 and y_1 in R. And,

$$\max \{ v_A(x_1y_1), v_A(x_2y_2) \} \land \mu$$

= $v_V(x_1y_1, x_2y_2) \land \mu$
= $v_V[(x_1, x_2)(y_1, y_2)] \land \mu$
= $v_V(xy) \land \mu$
 $\leq \max \{ v_V(x), v_V(y) \} \lor \lambda$
= $\max \{ v_V(x_1, x_2), v_V(y_1, y_2) \} \lor \lambda$
= $\max \{ \max \{ v_A(x_1), v_A(x_2) \} \lor \lambda \}$.

If

$$\begin{aligned} & v_A(x_1y_1) \wedge \mu \\ & \ge v_A(x_2y_2) \wedge \mu, v_A(x_1) \wedge \mu \\ & \ge v_A(x_2) \wedge \mu, v_A(y_1) \wedge \mu \\ & \ge v_A(y_2) \wedge \mu, \end{aligned}$$

we get

 $\mathbf{v}_A(x_1y_1) \wedge \boldsymbol{\mu} \leq \max\{\mathbf{v}_A(x_1), \mathbf{v}_A(y_1)\} \vee \boldsymbol{\lambda},$

for all x_1 and y_1 in R. Therefore A is an intuitionistic (λ, μ) -fuzzy subring of R.

Theorem 3.5. If A is an intuitionistic (λ, μ) -fuzzy subring of a ring $(R, +, \cdot)$, then $\Box A$ is an intuitionistic (λ, μ) -fuzzy subring of R.

Proof. Let *A* be an intuitionistic (λ, μ) - fuzzy subring of a ring *R*. Consider $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle\}$, for all *x* in *R*, we take $\Box A = B = \{\langle x, \mu_B(x), \nu_B(x) \rangle\}$, where

$$\mu_B(x) = \mu_A(x), \nu_B(x) = 1 - \mu_A(x)$$

Clearly, $\mu_B(x-y) \lor \lambda \ge \min\{\mu_B(x), \mu_B(y)\} \land \mu$, for all *x* and *y* in *R* and $\mu_B(xy) \lor \lambda \ge \min\{\mu_B(x), \mu_B(y)\} \land \mu$, for all *x* and *y* in *R*. Since *A* is an intuitionistic (λ, μ) - fuzzy subring of *R*, we have $\mu_A(x-y) \lor \lambda \ge \min\{\mu_A(x), \mu_A(y)\} \land \mu$, for all *x* and *y* in *R*, which implies that

$$(1-\nu_B(x-y)) \lor \lambda \ge \min\{(1-\nu_B(x)), (1-\nu_B(y))\} \land \mu,$$

which implies that

$$\begin{aligned} \mathbf{v}_B(x-y) \wedge \mu \\ &\leq \{1-\min\{(1-\mathbf{v}_B(x)), (1-\mathbf{v}_B(y))\}\} \lor \lambda \\ &= \max\{\mathbf{v}_B(x), \mathbf{v}_B(y)\} \lor \lambda. \end{aligned}$$

Therefore,

$$\mathbf{v}_{\mathbf{B}}(x-y) \wedge \boldsymbol{\mu} \leq \max\{\mathbf{v}_{\mathbf{B}}(x), \mathbf{v}_{\mathbf{B}}(y)\} \vee \boldsymbol{\lambda},$$

for all x and y in R. And

$$\mu_A(xy) \lor \lambda \geq \min\{\mu_A(x), \mu_A(y)\} \land \mu,$$

for all x and y in R, which implies that

$$(1-\mathbf{v}_B(xy)) \lor \lambda \geq \min\{(1-\mathbf{v}_B(x)), (1-\mathbf{v}_B(y))\} \land \mu$$

which implies that

$$\begin{aligned} \mathbf{v}_B(xy) \wedge \mu \\ &\leq \{1 - \min\{(1 - \mathbf{v}_B(x)), (1 - \mathbf{v}_B(y))\}\} \lor \lambda \\ &= \max\{\mathbf{v}_B(x), \mathbf{v}_B(y)\} \lor \lambda. \end{aligned}$$

Therefore,

$$\mathbf{v}_B(xy) \wedge \boldsymbol{\mu} \leq \max\{\mathbf{v}_B(x), \mathbf{v}_B(y)\} \vee \boldsymbol{\lambda},$$

for all *x* and *y* in *R*. Hence $B = \Box A$ is an intuitionistic (λ, μ) -fuzzy subring of a ring *R*.

Remark 3.6. The converse of the above theorem is not true. It is shown by the following example:

Consider the subring $Z_5 = \{0, 1, 2, 3, 4\}$ with addition modulo 5 and multiplication modulo 5 operations. Then $A = \{\langle 0, 0.8, 0.2 \rangle, \langle 1, 0.6, 0.1 \rangle, \langle 2, 0.6, 0.3 \rangle, \langle 3, 0.5, 0.3 \rangle, \langle 4, 0.5, 0.4 \rangle\}$ is not an intuitionistic (0.3, 0.7)-fuzzy subring of Z_5 , but $\Box A = \{\langle 0, 0.8, 0.2 \rangle, \langle 1, 0.6, 0.4 \rangle, \langle 2, 0.6, 0.4 \rangle, \langle 3, 0.5, 0.5 \rangle$ $\langle 4, 0.5, 0.5 \rangle\}$ is an intuitionistic (0.3, 0.7)-fuzzy subring of Z_5 .

Theorem 3.7. If A is an intuitionistic (λ, μ) -fuzzy subring of a ring $(R, +, \cdot)$, then $\diamond A$ is an intuitionistic (λ, μ) -fuzzy subring of R.

Proof. Let *A* be an intuitionistic (λ, μ) - fuzzy subring of a ring *R*. That is $A = \{\langle x, \mu_A(x), v_A(x) \rangle\}$, for all *x* in *R*. Let $\diamond A = B = \{\langle x, \mu_B(x), v_B(x) \rangle\}$, where $\mu_B(x) = 1 - v_A(x), v_B(x) = v_A(x)$. Clearly, $v_B(x - y) \land \mu \le \max\{v_B(x), v_B(y)\} \lor \lambda$, for all *x* and *y* in *R* and $v_B(xy) \land \mu \le \max\{v_B(x), v_B(y)\} \lor \lambda$, for all *x* and *y* in *R*. Since *A* is an intuitionistic (λ, μ) - fuzzy subring of *R*, we have $v_A(x - y) \land \mu \le \max\{v_A(x), v_A(y)\} \lor \lambda$, for all *x* and *y* in *R*, which implies that

$$\{1-\mu_B(x-y)\} \land \mu \le \max\{(1-\mu_B(x)), (1-\mu_B(y))\} \lor \lambda,\$$

which implies that

$$\mu_B(x-y) \lor \lambda$$

$$\geq \{1-\max\{(1-\mu_B(x)), (1-\mu_B(y))\} \land \mu\}$$

$$= \min\{\mu_B(x), \mu_B(y)\} \land \mu.$$

Therefore,

$$\mu_B(x-y) \lor \lambda \ge \min\{\mu_B(x), \mu_B(y)\} \land \mu,$$

for all x and y in R. And

$$v_A(xy) \wedge \mu \leq \max\{v_A(x), v_A(y)\} \lor \lambda$$

for all x and y in R, which implies that

$$\begin{aligned} &\{1-\mu_B(xy)\} \wedge \mu \\ &\leq \max\{(1-\mu_B(x)), (1-\mu_B(y))\} \lor \lambda, \end{aligned}$$

which implies that

$$\mu_B(xy) \lor \lambda$$

$$\geq \{1 - \max\{(1 - \mu_B(x)), (1 - \mu_B(y))\} \land \mu$$

$$= \min\{\mu_B(x), \mu_B(y)\} \land \mu.$$

Therefore,

$$\mu_B(xy) \lor \lambda \ge \min\{\mu_B(x), \mu_B(y)\} \land \mu,$$

for all x and y in R. Hence $B = \diamond A$ is an intuitionistic (λ, μ) -fuzzy subring of a ring R.

Remark 3.8. *The converse of the above theorem is not true. It is shown by the following example:*

Consider the subring $Z_5 = \{0, 1, 2, 3, 4\}$ with addition modulo 5 and multiplication modulo 5 operations. Then $A = \{\langle 0, 0.4, 0.2 \rangle, \langle 1, 0.5, 0.3 \rangle, \langle 2, 0.6, 0.4 \rangle, \langle 3, 0.5, 0.3 \rangle, \langle 4, 0.6, 0.4 \rangle\}$ is not an intuitionistic (0.3, 0.8)-fuzzy subring of Z_5 , but $\diamond A = \{\langle 0, 0.8, 0.2 \rangle, \langle 1, 0.7, 0.3 \rangle, \langle 2, 0.6, 0.4 \rangle, \langle 3, 0.7, 0.3 \rangle, \langle 4, 0.6, 0.4 \rangle\}$ is an intuitionistic (0.3, 0.8)-fuzzy subring of Z_5 .

In the following Theorem \circ is the composition operation of functions:

Theorem 3.9. Let A be an intuitionistic (λ, μ) -fuzzy subring of a ring H and f is an isomorphism from a subring R onto H. Then $A \circ f$ is an intuitionistic (λ, μ) -fuzzy subring of R.

Proof. Let x and y in R and A be an intuitionistic (λ, μ) -fuzzy subring of a ring H. Then we have,

$$\begin{aligned} (\mu_A \circ f)(x-y) &\lor \lambda \\ &= \mu_A(f(x-y)) \lor \lambda \\ &= \mu_A(f(x) - f(y)) \lor \lambda \\ &\ge \min\{\mu_A(f(x)), \mu_A(f(y))\} \land \mu \\ &\ge \min\{(\mu_A \circ f)(x) \land \mu, (\mu_A \circ f)(y) \land \mu\}, \end{aligned}$$

which implies that

$$(\mu_A \circ f)(x - y) \lor \lambda$$

$$\geq \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y) \land \mu\}.$$

And

$$(\mu_A \circ f)(xy) \lor \lambda$$

= $\mu_A(f(xy)) \lor \lambda$
= $\mu_A(f(x)f(y)) \lor \lambda$
 $\ge \min\{\mu_A(f(x)), \mu_A(f(y))\} \land \mu$
 $\ge \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\} \land \mu$,

which implies that

 $(\mu_A \circ f)(xy) \lor \lambda$ $\geq \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\} \land \mu.$

Then we have,

$$(\mathbf{v}_{A} \circ f)(x-y) \wedge \mu$$

= $\mathbf{v}_{A}(f(x-y)) \wedge \mu$
= $\mathbf{v}_{A}(f(x) - f(y)) \wedge \mu$
 $\leq \max\{\mathbf{v}_{A}(f(x)), \mathbf{v}_{A}(f(y))\} \lor \lambda$
 $\leq \max\{(\mathbf{v}_{A} \circ f)(x), (\mathbf{v}_{A} \circ f)(y)\} \lor \lambda,$

which implies that

$$(\mathbf{v}_A \circ f)(\mathbf{x} - \mathbf{y}) \land \boldsymbol{\mu} \\ \leq \max\{(\mathbf{v}_A \circ f)(\mathbf{x}), (\mathbf{v}_A \circ f)(\mathbf{y})\} \lor \boldsymbol{\lambda}$$

And

 $\begin{aligned} (\mathbf{v}_A \circ f)(xy) \wedge \mu \\ &= \mathbf{v}_A(f(xy)) \wedge \mu \\ &= \mathbf{v}_A(f(x)f(y)) \wedge \mu \\ &\leq \max\{\mathbf{v}_A(f(x)), \mathbf{v}_A(f(y))\} \lor \lambda \\ &\leq \max\{(\mathbf{v}_A \circ f)(x), (\mathbf{v}_A \circ f)(y)\} \lor \lambda, \end{aligned}$

which implies that

$$(\mathbf{v}_A \circ f)(xy) \wedge \mu$$

 $\leq \max\{(\mathbf{v}_A \circ f)(x), (\mathbf{v}_A \circ f)(y)\} \lor \lambda.$

Therefore $(A \circ f)$ is an intuitionistic (λ, μ) -fuzzy subring of a ring *R*.

Theorem 3.10. Let A be an intuitionistic (λ, μ) -fuzzy subring of a ring H and f is an anti-isomorphism from a subring R onto H. Then $A \circ f$ is an intuitionistic (λ, μ) -fuzzy subring of R.

Proof. Let x and y in R and A be an intuitionistic (λ, μ) -fuzzy subring of a ring H. Then we have,

$$\begin{aligned} &(\mu_A \circ f)(x-y) \lor \lambda \\ &= \mu_A(f(x-y)) \lor \lambda \\ &= \mu_A(f(y) - f(x)) \lor \lambda \\ &\geq \min\{\mu_A(f(x)), \mu_A(f(y))\} \land \mu \\ &\geq \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\} \land \mu, \end{aligned}$$

which implies that

$$(\mu_A \circ f)(x-y) \lor \lambda$$

$$\geq \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\} \land \mu.$$

And

$$\begin{aligned} &(\mu_A \circ f)(xy) \lor \lambda \\ &= \mu_A(f(xy)) \lor \lambda \\ &= \mu_A(f(y)f(x)) \lor \lambda \\ &\geq \min\{\mu_A(f(x)), \mu_A(f(y))\} \land \mu \\ &\geq \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\} \land \mu, \end{aligned}$$

which implies that

$$(\mu_A \circ f)(xy) \lor \lambda$$

$$\geq \min\{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\} \land \mu_A$$

Then we have,

 $\begin{aligned} (\mathbf{v}_A \circ f)(x - y) \wedge \mu \\ &= \mathbf{v}_A(f(x - y)) \wedge \mu \\ &= \mathbf{v}_A(f(y) - f(x)) \wedge \mu \\ &\leq \max\{\mathbf{v}_A(f(x)), \mathbf{v}_A(f(y))\} \lor \lambda \\ &\leq \max\{(\mathbf{v}_A \circ f)(x), (\mathbf{v}_A \circ f)(y)\} \lor \lambda, \end{aligned}$

which implies that

 $(\mathbf{v}_A \circ f)(x - y) \wedge \mu$ $\leq \max\{(\mathbf{v}_A \circ f)(x), (\mathbf{v}_A \circ f)(y)\} \lor \lambda.$

And

$$\begin{aligned} (\mathbf{v}_A \circ f)(xy) \wedge \mu \\ &= \mathbf{v}_A(f(xy)) \wedge \mu \\ &= \mathbf{v}_A(f(y)f(x)) \wedge \mu \\ &\leq \max\{\mathbf{v}_A(f(x)), \mathbf{v}_A(f(y))\} \lor \lambda \\ &\leq \max\{(\mathbf{v}_A \circ f)(x), (\mathbf{v}_A \circ f)(y)\} \lor \lambda, \end{aligned}$$

which implies that

$$\begin{aligned} & (\mathbf{v}_A \circ f)(xy) \wedge \mu \\ & \leq \max\{(\mathbf{v}_A \circ f)(x), (\mathbf{v}_A \circ f)(y)\} \lor \lambda. \end{aligned}$$

Therefore $A \circ f$ is an intuitionistic (λ, μ) -fuzzy subring of a ring R.

Theorem 3.11. Let A be an intuitionistic (λ, μ) -fuzzy subring of a ring $(R, +, \cdot)$, then the pseudo intuitionistic (λ, μ) fuzzy coset $(aA)^p$ is an intuitionistic (λ, μ) -fuzzy subring of a ring R, for every a in R.

Proof. Let A be an intuitionistic (λ, μ) -fuzzy subring of a ring R. For every x and y in R, we have,

$$((a\mu_A)^p)(x-y) \lor \lambda$$

= $p(a)\mu_A(x-y) \lor \lambda$
 $\ge p(a)\min\{(\mu_A(x),\mu_A(y)\} \land \mu$
= $\min\{p(a)\mu_A(x),p(a)\mu_A(y)\} \land \mu$
= $\min\{((a\mu_A)^p)(x),((a\mu_A)^p)(y)\} \land \mu$.

Therefore,

$$((a\mu_A)^p)(x-y) \lor \lambda$$

$$\geq \min\{((a\mu_A)^p)(x), ((a\mu_A)^p)(y)\} \land \mu$$

Now,

$$((a\mu_A)^p)(xy) \lor \lambda$$

= $p(a)\mu_A(xy) \lor \lambda$
\geq $p(a)\min\{\mu_A(x),\mu_A(y)\} \land \mu$
= $\min\{p(a)\mu_A(x),p(a)\mu_A(y)\} \land \mu$
= $\min\{((a\mu_A)^p)(x),((a\mu_A)^p)(y)\} \land \mu.$

Therefore,

$$((a\mu_A)^p)(xy) \lor \lambda$$

$$\geq \min\{((a\mu_A)^p)(x), ((a\mu_A)^p)(y)\} \land \mu$$

For every x and y in R, we have,

$$((av_A)^p)(x-y) \wedge \mu$$

= $p(a)\mu_A(x-y) \wedge \mu$
 $\leq p(a)\max\{(v_A(x), v_A(y)\} \lor \lambda$
= $\max\{p(a)v_A(x), p(a)v_A(y)\} \lor \lambda$
= $\max\{((av_A)^p)(x), ((av_A)^p)(y)\} \lor \lambda.$

Therefore,

$$((a\mathbf{v}_A)^p)(x-\mathbf{y}) \wedge \boldsymbol{\mu}$$

 $\leq \max\{((a\mathbf{v}_A)^p)(x), ((a\mathbf{v}_A)^p)(y)\} \vee \boldsymbol{\lambda}.$

Now,

$$\begin{aligned} &((av_A)p)(xy) \wedge \mu \\ &= p(a)v_A(xy) \wedge \mu \\ &\leq p(a)\max\{v_A(x), v_A(y)\} \lor \lambda \\ &= \max\{p(a)v_A(x), p(a)v_A(y)\} \lor \lambda \\ &= \max\{((av_A)^p)(x), ((av_A)^p)(y)\} \lor \lambda. \end{aligned}$$

Therefore,

$$((a\mathbf{v}_A)^p)(xy) \wedge \mu$$

 $\leq \max\{((a\mathbf{v}_A)^p)(x), ((a\mathbf{v}_A)^p)(y)\} \vee \lambda.$

Hence $(aA)^p$ is an intuitionistic (λ, μ) -fuzzy subring of a ring *R*.

References

- J. M. Anthony and H. Sherwood, Fuzzy groups Redefined, *Journal of Mathematical Analysis and Applications*, 69(1979), 124–130.
- [2] Asok Kumer Ray, On product of fuzzy subgroups, *Fuzzy Sets and Systems*, 105(1999), 181–183.
- [3] K. T. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1)(1986), 87–96.
- [4] K. T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Physica-Verlag, A Springer-Verlag company, April 1999, Bulgaria.

- B. Banerjee and D.K.Basnet, Intuitionistic fuzzy subrings and ideals, *Journal of Fuzzy Mathematics*, 11(1)(2003), 139–155.
- [6] K. Chakrabarty, R. Biswas and Nanda, A note on union and intersection of Intuitionistic fuzzy sets, *Notes on Intuitionistic Fuzzy Sets*, 3(4), (1997).
- [7] K. De, R. Biswas and A. R. Roy, On intuitionistic fuzzy sets, *Notes on Intuitionistic Fuzzy Sets*, 3(4), (1997).
- [8] K. De, R. Biswas and A. R. Roy, On intuitionistic fuzzy sets, *Notes on Intuitionistic Fuzzy Sets*, 4(2), (1998).
- [9] K. Hur, H. W. Kang and H.K.Song, Intuitionistic fuzzy subgroups and subrings, *Honam Mathematics Journal* 25(1)(2003), 19–41.
- ^[10] H. V. Kumbhojkar and M. S. Bapat, Correspondence theorem for fuzzy ideals, *Fuzzy Sets and Systems*, (1991).
- [11] Mustafa Akgul, Some properties of fuzzy groups, *Journal of Mathematical Analysis and Applications*, 133(1988), 93–100.
- [12] Rajesh Kumar, *Fuzzy Algebra*, Volume 1, University of Delhi Publication Division, July -1993.
- ^[13] Rajesh Kumar, Fuzzy irreducible ideals in rings, *Fuzzy Sets and Systems*, 42(1991), 369–379.
- [14] Salah Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, *Fuzzy Sets and Systems*, 235– 241, (1991).
- [15] P. Sivaramakrishna das, Fuzzy groups and level subgroups, *Journal of Mathematical Analysis and Applications*, 84(1981), 264–269.
- [16] W. B. Vasantha kandasamy, Smarandache Fuzzy Algebra, American research press, Rehoboth -2003.
- ^[17] B. Yao, (λ, μ) -fuzzy subrings and (λ, μ) fuzzy ideals, *The Journal of Fuzzy Mathematics*, 15(4)(2007), 981– 987.
- [18] L. A. Zadeh, Fuzzy sets, *Information and control*, 8(1965), 338–353.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******