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Abstract
This paper addresses the issue of existence and uniqueness of solutions to the fractional delay integro-differential
equations with multi-point boundary conditions. The existence results are proved by applying Krasnoselskii’s fixed
point theorem and Leray-Schauder nonlinear alternative whereas uniqueness result is proved by the contraction
mapping principle. Examples are provided to illustrate the main results.
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1. Introduction
The increasing interest of fractional differential equations

is motivated by their applications in various fields of science
such as physics, fluid mechanics, chemistry, biology, control
theory, signal processing, heat conduction in materials with
memory [6],[15],[22] and the references therein. The main
advantage of using fractional differential equations is related
to the fact that we can describe the dynamics of complex
non-local systems with memory. Fixed-point theory has wide
applications in several areas such as economics, dynamic
systems, the theory of differential and integral equations and
so on. There have been some papers dealing with the existence
of solutions of nonlinear fractional differential equations by
using fixed point technique [13],[17],[19].

In [4], the authors discussed the existence of solution

for a Riemann-Liouville fractional differential equation with
multi-point boundary conditions whereas the existence of so-
lution for multi-point BVPs of Caputo fractional differential
equation is discussed in [23]. Area of fractional differential
equations with multi-point boundary conditions have attracted
many researchers [7],[8],[12],[20] and the references therein.
Shri Akiladevi and Balachandran [16] discussed the existence
and uniqueness of solution to the fractional delay integrodiffer-
ential equations with four-point multiterm fractional integral
boundary conditions. The fractional differential equations
with delay has drawn the attention of researchers in the recent
years, for detail we refer [1],[2],[3],[9],[18],[21].

Motivated by this consideration, in this paper, we shall
discuss the existence and uniqueness of solutions for the frac-
tional delay integrodifferential equations with multi-point
boundary conditions of the form by using appropriate fixed
point theorems:

Dξ u(t) = g(t,u(t),u(µ(t)),
∫ t

0
h(t,s,u(s),u(θ(s)))ds),

2 < ξ ≤ 3, t ∈ J = [0,1],
u(0) = 0, u(ζ ) = 0, u(1) = 0, 0 < ζ < 1,

(1.1)

where g : J×X3→ X ,h : Ω×X2→ X ,µ,θ : J→ J are con-
tinuous functions with 0 ≤ µ(t),θ(t) ≤ t, t ∈ J. Here Ω =
{(t,s) : 0≤ s≤ t ≤ 1}.
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Here we use the notation Hu(t) =
∫ t

0
h(t,s,u(s),u(θ(s)))ds.

With this context in the mind, the outline of this paper is as
follows. In Section 2, we give some definitions and lemmas
which are required to our main results. In Section 3, we use
Krasnoselskii’s fixed point theorem and Leray-Schauder non-
linear alternative to prove the existence results whereas the
uniqueness result by using the contraction mapping princi-
ple. Finally, in section 4, we shall some numerical examples,
which shall explicate the applicability of our results.

2. Preliminaries
Let us recall some basic definitions and Lemmas which

will be used in our main results [5],[10],[11],[14].

Definition 2.1: The Riemann-Liouville fractional integral
of a function g ∈ L1(R+) of order ξ > 0 is defined by

Iξ g(t) =
∫ t

0

(t− s)ξ−1

Γ(ξ )
g(s)ds

provided the integral exists.

Definition 2.2: The Riemann-Liouville fractional derivative
of order ξ > 0,n−1 < ξ ≤ n,n ∈ N is defined as

Dξ

0+g(t) =
1

Γ(n−ξ )

(
d
dt

)n ∫ t

0
(t− s)n−ξ−1g(s)ds,

where the function f (t) has absolutely continuous derivative
up to order (n−1).

Lemma 2.3 The equality Dξ Iξ g(t) = g(t),ξ > 0 holds for
g ∈ L(0,1).

Lemma 2.4 Let ξ > 0. Then the differential equation Dξ u= 0
has a unique solution u(t)= c1tξ−1+c2tξ−2+...+cntξ−n,ci ∈
R, i = 1,2, ...,n, where n−1 < ξ ≤ n.

Lemma 2.5 Let ξ > 0. Then the following equality holds
for u ∈ L(0,1);
Iξ Dξ u(t) = u(t)+ c1tξ−1 + c2tξ−2 + ...+ cntξ−n,ci ∈ R,
i = 1,2, ...,n, there n−1 < ξ ≤ n.

Lemma 2.6 For k(t) ∈C(J), the following BVP

Dξ u(t) = k(t), t ∈ J, 2 < ξ ≤ 3, (2.1)

u(0) = 0,u(ζ ) = 0,u(1) = 0,0 < ζ < 1

has a unique solution given by

u(t) =
∫ t

0

(t− s)ξ−1

Γ(ξ )
k(s)ds

+
tξ−1

ζ ξ−1−ζ ξ−2

{
ζ

ξ−2
∫ 1

0

(1− s)ξ−1

Γ(ξ )
k(s)ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
k(s)ds

}
+

tξ−2

ζ ξ−2−ζ ξ−1

{
ζ

ξ−1
∫ 1

0

(1− s)ξ−1

Γ(ξ )
k(s)ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
k(s)ds

}
Proof:
For some vector constants c1,c2,c3 ∈ X the general solution
of (2.1) can be written as

u(t) = Iξ k(t)+ c1tξ−1 + c2tξ−2 + c3tξ−3 (2.2)

Using the boundary condition u(0) = 0, we get c3 = 0.
By the boundary conditions u(ζ ) = 0 and u(1) = 0, we get

Iξ k(ζ )+ c1ζ
ξ−1 + c2ζ

ξ−2 = 0 (2.3)

and

Iξ k(1)+ c1 + c2 = 0 (2.4)

Solving equations (2.3) and (2.4), we get

c1 =
1

ζ ξ−1−ζ ξ−2
(ζ ξ−2Iξ k(1)− Iξ k(ζ ))

c2 =
1

ζ ξ−2−ζ ξ−1
(ζ ξ−1Iξ k(1)− Iξ k(ζ ))

Substituting the values of c1,c2 & c3 in (2.2), we get

u(t) =
∫ t

0

(t− s)ξ−1

Γ(ξ )
k(s)ds

+
tξ−1

ζ ξ−1−ζ ξ−2

{
ζ

ξ−2
∫ 1

0

(1− s)ξ−1

Γ(ξ )
k(s)ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
k(s)ds

}
+

tξ−2

ζ ξ−2−ζ ξ−1

{
ζ

ξ−1
∫ 1

0

(1− s)ξ−1

Γ(ξ )
k(s)ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
k(s)ds

}
This completes the proof.

3. Main Results
Let Z =C(J,X) denote the Banach Space of all continu-

ous functions from J→ R endowed with the norm defined by
||u||= sup{|u(t)|, t ∈ J}.

Define the operator F : Z→ Z by

(Fu)(t) =
∫ t

0

(t− s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),H(u(s)))ds

+
tξ−1

ζ ξ−1−ζ ξ−2

{
ζ

ξ−2
∫ 1

0

(1− s)ξ−1

Γ(ξ )

×g(s,u(s),u(µ(s)),H(u(s)))ds
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−
∫

ζ

0

(n− s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),H(u(s)))ds

}
+

tξ−2

ζ ξ−2−ζ ξ−1

{
ζ

ξ−1
∫ 1

0

(1− s)ξ−1

Γ(ξ )

×g(s,u(s),u(µ(s)),H(u(s)))ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),H(u(s)))ds

}
for t ∈ J. Note that the problem (1.1) has solutions, if the
operator F has fixed points.

For the forthcoming analysis, we need the following as-
sumptions:

(A1) ∃ positive constants Lg and Lh 3
(i) ‖g(t,u1,v1,w1)−g(t,u2,v2,w2)‖ ≤ Lg(‖u1−u2‖
+‖v1− v2‖+‖w1−w2‖),
. t ∈ J,u1,u2,v1,v2,w1,w2 ∈ X .
(ii) ‖h(t,s,u1,v1)−h(t,s,u2,v2)‖ ≤ Lh(‖u1−u2‖
+‖v1− v2‖), t,s ∈ J,u1,u2,v1,v2 ∈ X .

(A2) ‖g(t,u,v,w)‖≤ l(t)φ(‖u‖), (t,u,v,w)∈ J×X3, where
l ∈ L1(J,R+) and
φ : [0,∞)→ (0,∞) is a continuous nondecreasing func-
tion.

(A3) Let

Λ1 =
1

Γ(ξ +1)

{
1+

1
|ζ ξ−1−ζ ξ−2|

[|ζ ξ−1|+ |ζ ξ−2|+2ζ
ξ ]

}

(A4) ∃ a continuous nondecreasing function χ : [0,∞) →
(0,∞) and the functions ϑ1,ϑ2 ∈ L1(J,R+) 3 for each
(t,u,v,w) ∈ J×X3,

‖g(t,u,v,w)‖ ≤ ϑ1(t)χ(‖u‖)+ϑ2(t).

(A5) ∃ a constant M > 0 3MΩ−1 > 1,
where Ω = (χ(M)‖ϑ1‖L1 +‖ϑ2‖L1)Λ1.

3.1 Existence Result via Krasnoselskii’s Fixed Point
Theorem

Theorem 3.1: Suppose that the assumptions (A1)-(A3) hold
with

Λ =
2Lg

|ζ ξ−1−ζ ξ−2|
1

Γ(ξ +1)

{
[|ζ ξ−2|+ |ζ ξ−1|

+2|ζ ξ |]+ Lh

ξ +1
[|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|]

}
< 1.

Then the BVP (1.1) has at least one solution on J.

Proof:

We can fix r ≥ ‖l‖L1φ(r)Λ1 and consider Br = {u ∈ Z :
‖u‖ ≤ r}. We define the operators P and Q on Br as

(Pu)(t) =
∫ t

0

(t− s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

(Qu)(t) =
tξ−1

ζ ξ−1−ζ ξ−2

{
ζ

ξ−2
∫ 1

0

(1− s)ξ−1

Γ(ξ )

×g(s,u(s),u(µ(s)),Hu(s))ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

}
+

tξ−2

ζ ξ−2−ζ ξ−1

{
ζ

ξ−1
∫ 1

0

(1− s)ξ−1

Γ(ξ )

×g(s,u(s),u(µ(s)),Hu(s))ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

}
For u,v ∈ Br, we find that

‖Pu+Qv‖ ≤ ‖l‖L1φ(r)
1

Γ(ξ +1)

{
1+

1
|ζ ξ−1−ζ ξ−2|

×
[
|ζ ξ−1|+ |ζ ξ−2|+2ζ

ξ

]}
= ‖l‖L1φ(r)Λ1 ≤ r

Thus Pu+Qv ∈ Br. Now, we prove that Q is a contraction.

‖(Qu)(t)− (Qv)(t)‖

≤ 1
|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,v(s),v(µ(s)),Hv(s))‖ds

+|ζ ξ−1|
∫ 1

0

(1− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,v(s),v(µ(s)),Hv(s))‖ds

+2
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,v(s),v(µ(s)),Hv(s))‖ds
}

≤ 1
|ζ ξ−1−ζ ξ−2|

{
(|ζ ξ−2|+ |ζ ξ−1|)

×
∫ 1

0

(1− s)ξ−1

Γ(ξ )
L f (2‖u− v‖

+‖
∫ s

0
h(s,τ,u(τ),u(τ))dτ

−
∫ s

0
h(s,τ,v(τ),v(τ))dτ‖)ds

+2
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
L f (2‖u− v‖

+‖
∫ s

0
h(s,τ,u(τ),u(τ))dτ
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−
∫ s

0
h(s,τ,v(τ),v(τ))dτ‖)ds

}
≤ 2Lg

1
|ζ ξ−1−ζ ξ−2|

[
1

Γ(ξ +1)
{|ζ ξ−2|+|ζ ξ−1|+2|ζ ξ |}

+
Lh

Γ(ξ +2)
{|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|}

]
‖u− v‖

= Λ‖u− v‖

Since Λ < 1, we say that Q is a contraction mapping. Conti-
nuity of g and h implies that the operator P is continuous.
Also

‖(Pu)(t)‖ ≤
∫ t

0

(t− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

≤ ‖l‖L1φ(r)
Γ(ξ +1)

.

Therefore P is uniformly bounded on Br.
Next to prove that the compactness of the operator P, it

is enough to show that P is equicontinuous. Now, for any
t1, t2 ∈ J with t1 < t2 and u ∈ Br, we have

|(Pu)(t2)− (Pu)(t1)|

=

∣∣∣∣∣
∫ t2

0

(t2− s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

−
∫ t1

0

(t1− s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

∣∣∣∣∣
≤

∫ t1

0

[(t2− s)ξ−1− (t1− s)ξ−1]

Γ(ξ )
l(s)φ(‖x‖)ds

+
∫ t2

t1

(t2− s)ξ−1

Γ(ξ )
l(s)φ(‖x‖)ds

≤ φ(r)

[∫ t1

0

[(t2− s)ξ−1− (t1− s)ξ−1]

Γ(ξ )
l(s)ds

+
∫ t2

t1

(t2− s)ξ−1

Γ(ξ )
l(s)ds

]
which is independent of u and tends to zero as t2→ t1. Thus,
P is relatively compact on Br. Hence, by Arzela-Ascoli Theo-
rem, we have P is compact on Br. Therefore by the Krasnosel-
skii’s Fixed Point Theorem, the problem (1.1) has at least one
solution on J.

3.2 Existence Result via Leray-Schauder Nonlinear
Alternative

Theorem 3.2:
Assume that the hypotheses (A3)-(A5) holds. Then the

BVP (1.1) has at least one solution on J.

Proof:
The operator F : Z→ Z is continuous. Now, we show that

F maps bounded sets into bounded sets in Z. Fix Br = {u ∈
Z : ‖u‖ ≤ r} in Z.

For u ∈ Br, we have

‖(Fu)(t)‖

≤
∫ t

0

(t− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
1

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )

×‖g(s,u(s),u(µ(s)),Hu(s))‖ds
}

+
1

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−1|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )

×‖g(s,u(s),u(µ(s)),Hu(s))‖ds
}

≤ (‖ϑ1‖L1 χ(r)+‖ϑ2‖L1)
1

Γ(ξ +1)

×
{

1+
1

|ζ ξ−1−ζ ξ−2|
(|ζ ξ−1|+ |ζ ξ−2|+2ζ

ξ )

}
= (‖ϑ1‖L1 χ(r)+‖ϑ2‖L1)Λ1.

Next we show that F maps bounded sets into equicontinu-
ous sets in Br. Let t1, t2 ∈ J with t1 < t2 and u ∈ Br. Then

‖(Fu)(t2)− (Fu)(t1)‖

≤
∫ t1

0

[(t2− s)ξ−1− (t1− s)ξ−1]

Γ(ξ )

×‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫ t2

t1

(t2− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
(tξ−1

2 − tξ−1
1 )

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

×‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

}
+

(tξ−2
2 − tξ−2

1 )

|ζ ξ−2−ζ ξ−1|

{
|ζ ξ−1|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

×‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

}
≤ χ(r)

[∫ t1

0

[(t2− s)ξ−1− (t1− s)ξ−1]

Γ(ξ )
ϑ1(s)ds
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+
∫ t2

t1

(t2− s)ξ−1

Γ(ξ )
ϑ1(s)ds

+
(tξ−1

2 − tξ−1
1 )

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )
ϑ1(s)ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
ϑ1(s)ds

}
+

(tξ−2
2 − tξ−2

1 )

|ζ ξ−2−ζ ξ−1|

{
|ζ ξ−1|

∫ 1

0

(1− s)ξ−1

Γ(ξ )
ϑ1(s)ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
ϑ1(s)ds

}]
+

[∫ t1

0

[(t2− s)ξ−1− (t1− s)ξ−1]

Γ(ξ )
ϑ2(s)ds

+
∫ t2

t1

(t2− s)ξ−1

Γ(ξ )
ϑ2(s)ds

+
(tξ−1

2 − tξ−1
1 )

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )
ϑ2(s)ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
ϑ2(s)ds

}
+

(tξ−2
2 − tξ−2

1 )

|ζ ξ−2−ζ ξ−1|

{
|ζ ξ−1|

∫ 1

0

(1− s)ξ−1

Γ(ξ )
ϑ2(s)ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
ϑ2(s)ds

}]
As t2→ t1, the right hand side of the above equation tends

to zero which is independent of u∈ Br. Thus F maps bounded
sets into equicontinuous sets in Br. By Arzela-Ascoli’s theo-
rem, F is completely continuous.

Let u = λ0Fu, where λ0 ∈ (0,1). Then for t ∈ J, we have

u(t) = λ0

∫ t

0

(t− s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

+
λ0

(ζ ξ−1−ζ ξ−2)

{
ζ

ξ−2
∫ 1

0

(1− s)ξ−1

Γ(ξ )

×g(s,u(s),u(µ(s)),Hu(s))ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

}
+

λ0

(ζ ξ−2−ζ ξ−1)

{
ζ

ξ−1
∫ 1

0

(1− s)ξ−1

Γ(ξ )

×g(s,u(s),u(µ(s)),Hu(s))ds

−
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
g(s,u(s),u(µ(s)),Hu(s))ds

}
Then ‖u(t)‖ ≤ (χ(‖u‖)‖ϑ1‖L1 + ‖ϑ2‖L1)Λ1 and which can
be written as

‖u‖
(χ(‖u‖)‖ϑ1‖L1 +‖ϑ2‖L1)Λ1

≤ 1.

By the assumption of (A5), ∃M 3 ‖u‖ 6= M. Set

U = {u ∈ Z : ‖u‖< M}.

The operator F : U → Z is completely continuous. From
the above choice of U , there is no u ∈ ∂U 3 u = λ0Fu, for
λ0 ∈ (0,1). By the Leray-Schauder nonlinear alternative, we
conclude that F has a fixed point u ∈U which is a solution to
the problem (1.1).

3.3 Uniqueness Result via Banach’s Fixed Point Theorem

Theorem 3.3:
Assume that (A1)-(A3) hold with

Λ2 = 2Lg(1+Lh)
1

Γ(ξ +1)

{
1+

1
|ζ ξ−1−ζ ξ−2|

[|ζ ξ−1|+ |ζ ξ−2|+2ζ
ξ ]

}
< 1.

Then the multipoint BVP (1.1) has a unique solution on J.

Proof:
Let M1 = sup

t∈J
‖g(t,0,0,0)‖ and M2 = sup

t∈J
‖h(t,s,0,0)‖.

Consider Br = {u ∈ Z : ‖u‖ ≤ r}, where r ≥ ∆2
1−∆1

with

∆1 = 2Lg

[
1

Γ(ξ +1)
{1+ |ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ |}

+Lh{
1

Γ(ξ +2)
(|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|)}

]
and

∆2 =
LgM2

Γ(ξ +2)
(|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|)

+
M1

Γ(ξ +1)
(1+ |ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ |)

To show that FBr ⊂ Br, where F : Z→ Z.
For u ∈ Br, we have

‖(Fu)(t)‖

≤
∫ t

0

(t− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
1

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

}
+

1
|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−1|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

‖g(s,u(s),u(µ(s)),Hu(s))‖ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))‖ds

}
≤

∫ t

0

(t− s)ξ−1

Γ(ξ )
[‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,0,0,0)‖+‖g(s,0,0,0)‖]ds

100



Existence results for fractional delay integro-differential equations with multi-point boundary conditions — 101/103

+
1

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−2|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

×[‖g(s,u(s),u(µ(s)),Hu(s))−g(s,0,0,0)‖
+‖g(s,0,0,0)‖]ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
[‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,0,0,0)‖+‖g(s,0,0,0)‖]ds
}

+
1

|ζ ξ−1−ζ ξ−2|

{
|ζ ξ−1|

∫ 1

0

(1− s)ξ−1

Γ(ξ )

[‖g(s,u(s),u(µ(s)),Hu(s))−g(s,0,0,0)‖
+‖g(s,0,0,0)‖]ds

+
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
[‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,0,0,0)‖+‖g(s,0,0,0)‖]ds
}

≤
∫ t

0

(t− s)ξ−1

Γ(ξ )
[Lg(‖u(s)‖+‖u(µ(s))‖+‖Hu(s)‖)+M1]ds

+
1

|ζ ξ−1−ζ ξ−2|
{(|ζ ξ−1|+|ζ ξ−2|)

∫ 1

0

(1− s)ξ−1

Γ(ξ )

[Lg(‖u(s)‖+‖u(µ(s))‖+‖Hu(s)‖)+M1]ds

+2
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
[Lg(‖u(s)‖+‖u(µ(s))‖

+‖Hu(s)‖)+M1]ds

≤ 2rLg

[
1

Γ(ξ +1)
{1+ |ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ |}

+Lh{
1

Γ(ξ +2)
(|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|)}

]
+

LgM2

Γ(ξ +2)
(|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|)

+
M1

Γ(ξ +1)
(1+ |ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ |)

= ∆1r+∆2 ≤ r.

Thus FBr ⊂ Br. Now for u,v ∈ Z and t ∈ J, we have

‖(Fu)(t)− (Fv)(t)‖

≤
∫ t

0

(t− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,v(s),v(µ(s)),Hv(s))‖ds

+
1

|ζ ξ−1−ζ ξ−2|

{
(|ζ ξ−1|+ |ζ ξ−2|)

∫ 1

0

(1− s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,v(s),v(µ(s)),Hv(s))‖ds

+2
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
‖g(s,u(s),u(µ(s)),Hu(s))

−g(s,v(s),v(µ(s)),Hv(s))‖ds
}

≤
∫ t

0

(t− s)ξ−1

Γ(ξ )
[Lg(‖u− v‖+‖u− v‖

+‖
∫ s

0
h(s,τ,u(τ),u(µ(τ)))dτ

−
∫ s

0
h(s,τ,v(τ),v(µ(τ)))dτ‖)]ds

+
1

|ζ ξ−1−ζ ξ−2|

{
(|ζ ξ−1|+ |ζ ξ−2|)

∫ 1

0

(1− s)ξ−1

Γ(ξ )
[Lg(‖u− v‖

+‖u− v‖+‖
∫ s

0
h(s,τ,u(τ),u(µ(τ)))dτ

−
∫ s

0
h(s,τ,v(τ),v(µ(τ)))dτ‖)]ds

+2
∫

ζ

0

(ζ − s)ξ−1

Γ(ξ )
[Lg(‖u− v‖+‖u− v‖

+‖
∫ s

0
h(s,τ,u(τ),u(µ(τ)))dτ

−
∫ s

0
h(s,τ,v(τ),v(µ(τ)))dτ‖)]ds

}
≤ 2Lg(1+Lh)

1
Γ(ξ +1)

{
1+

1
|ζ ξ−1−ζ ξ−2|

[|ζ ξ−1|+ |ζ ξ−2|+2ζ
ξ ]

}
‖u− v‖

= Λ2‖u− v‖

Here Λ2 depends only on the parameters involved in the prob-
lem. Since Λ2 < 1, we say that F is a contraction. Hence,
by the Contraction mapping principle, the BVP (1.1) has a
unique solution on J.

4. Example
Example 4.1
Consider the following BVP:

D
5
2 u(t) =

1
(t +15)

|u(t)|
1+ |u(t)|

+
e−2t

14+ et

|u( 2t
3 )|

1+ |u( 2t
3 )|

+
1

15

∫ t

0

es

5
|u(s3)|

1+ |u(s3)|
ds (4.1)

with the boundary conditions:

u(0) = 0,u(
1
3
) = 0,u(1) = 0.

Here ξ = 5
2 , ζ = 1

3 . From (4.1), we have

g(t,u(t),u(µ(t)),Hu(t)) =
1

(t +15)
|u(t)|

1+ |u(t)|

+
e−2t

14+ et

|u( 2t
3 )|

1+ |u( 2t
3 )|
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+
1

15

∫ t

0

es

5
|u(s3)|

1+ |u(s3)|
ds

where Hu(t) =
∫ t

0

es

5
|u(s3)|

1+ |u(s3)|
ds,µ(t) =

2t
3
,θ(t) = t3.

The assumption (A1) is satisfied with Lg = 1
15 and Lh = 1

5 .
Also

Λ =
2Lg

|ζ ξ−1−ζ ξ−2|
1

Γ(ξ +1)

{
[|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ |]

+
Lh

ξ +1
[|ζ ξ−2|+ |ζ ξ−1|+2|ζ ξ+1|]

}
= 0.0984 < 1.

Thus all the assumptions of the Theorem 3.2 are satisfied.
Hence the problem (4.1) has at least one solution on J.

Example 4.2
Consider the BVP:

D
5
2 u(t) =

1
62+2t

u(t)
1+u(t)

+
e−t

61+ et
u(2t3)

1+u(2t3)

+
1

62

∫ t

0

e−s

7
u(coss)

1+u(coss)
ds (4.2)

with the boundary conditions:

u(0) = 0,u(
1
2
) = 0,u(1) = 0.

Here ξ = 5
2 , ζ = 1

2 . From (4.2), we have

g(t,u(t),u(µ(t)),Hu(t)) =
1

62+2t
u(t)

1+u(t)

+
e−t

61+ et
u(2t3)

1+u(2t3)

+
1
62

∫ t

0

e−s

7
u(coss)

1+u(coss)
ds

where Hu(t)=
∫ t

0

e−s

7
u(coss)

1+u(coss)
ds,µ(t)= 2t3,θ(t)= cost.

The assumption (A1) is satisfied with Lg = 1
62 and Lh = 1

7 .
Also

Λ2 = 2Lg(1+Lh)
1

Γ(ξ +1)

{
1+

1
|ζ ξ−1−ζ ξ−2|

[|ζ ξ−1|

+|ζ ξ−2|+2ζ
ξ ]

}
= 0.0556 < 1.

Thus all the assumptions of the Theorem 3.5 are satisfied.
Hence the problem (4.2) has a unique solution on J.
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