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Neighborhood-Prime labeling for some graphs
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Abstract
We consider here a graph with n vertices and m edges denoted by G having vertex set as V (G) and edge set as
E(G). If there is a bijective function f from V (G) to the set of positive integer upto |V (G)| such that for every vertex
u with degree at least two the gcd of the labels of adjacent vertices of u is 1 then f is called neighborhood-prime
labeling and G is called neighborhood-prime graph. In the present work we constructed some particular graphs
and we proved these are neighborhood-prime graphs.
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1. Introduction and Definitions
In our investigation we consider simple, finite, connected,

undirected graphs with V (G) and E(G) as vertex set and edge
set respectively. For various notation and terminology we
follow Gross Yellen [4] and for some results of number theory
we follow Burton [2]. Now We give brief note of definition
which are useful in present investigation.
Definition 1.1 : Consider a graph G = [V (G),E(G)] with n
vertices and a bijective function f : V (G)→{1,2,3...n} . We
say that f is prime labeling if for every e ∈ E(G) with e = uv,
( f (u), f (v)) = 1. A graph having prime labeling is called
prime graph [1].
Definition 1.2 : For vertex v in G, neighborhood of v is the set
of all vertices which are at distance one to v and it is denoted
by N(v).
Definition 1.3 : Consider a graph G = [V (G),E(G)] with n
vertices and a bijective function f : V (G)→{1,2,3...n} . We
say that f is a neighborhood-prime labeling if for every vertex
u in G with deg(u)> 1,gcd { f (p)|p ∈ N(u)}= 1 and graph
G is called neighborhood-prime graph [5].

Definition 1.4 : A Helm Hn is the graph obtained from the
wheel graph Wn = Cn +K1 by attaching a pendent edge to
each vertex of cycle in Cn .

A concept of prime labeling was given by Entringer. Tout-
et-all introduced prime labeling in [1]. Now a days it is an
interesting field of research. S.K.Patel and N.P.Shrimali intro-
duced the the notion neighborhood-prime labeling and they
shown that Helm, Cycle, Path admit neighborhood-prime
labeling [5]. In [6] they proved union of some graphs are
neighborhood-prime. For further list of results regarding
prime graph and neighborhood-prime graph reader may refer
[3].

2. Main Results
Theorem 2.1:Hn(Wn) is neighborhood-prime graph where the
graph Hn(Wn) is obtained by identifying each pendent vertex
of Hn by rim vertex of Wheel graph Wn.
Proof : In a graph G=Hn(Wn) central vertex of Hn is denoted
by u and rim vertices of Hn are denoted by u1,u2,u3...un. In
a ith copy of Wn in a graph G the rim vertex of Wn which
is identified with pendent vertex of Hn is denoted by ui,1 ,
remaining rim vertices of Wn are denoted by ui,2, ui,3 ... ui,n
and central vertex of Wn is denoted by ui,n+1 for each i.
Case:(i) n is even.
We define f : V (G)−→ {1,2,3, ...|V (G)|} as follows.
f (u) = 2, f (u1) = 1, f (u1,1) = 3
f (ui) = 2+(i−1)(n+2); 2≤ i≤ n
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f (ui,1) = 3+(i−1)(n+2); 2≤ i≤ n
f (ui, j) = j+2+(i−1)(n+2); 1≤ i≤ n : 2≤ j ≤ n+1
we consider w as a vertex at each position in a graph G. We
will show that gcd { f (p)|p ∈ N(w)}= 1.
If w = u , u1 ∈ N(w) and f (u1) = 1 .
If w = ui for any i, {u,ui,1} ⊆ N(w). f (u) = 2 and f (ui,1) is
odd for each i.
If w = ui,1 for any i, {ui,n,ui,n+1} ⊆ N(w) . f (ui,n) and
f (ui,n+1) are consecutive numbers.

If w = ui, j for any i and j = 2k where k = 1,2,3....
n
2

,{
ui, j−1,ui, j+1

}
⊆ N(w). f (ui, j−1) and f (ui, j+1) are consecu-

tive odd numbers.
If w = ui, j for any i and j = 2k+1 where k = 1,2,3....

n−2
2

,{
ui, j−1,ui, j+1ui,n+1

}
⊆ N(w). f (ui, j−1) and f (ui, j+1) are

consecutive even numbers and f (ui,n+1) is odd number.
If w = ui,n+1 for any i , N(w) = {ui,1,ui,2,ui,3....ui,n}.
f (ui,1), f (ui,2), f (ui,3), .... f (ui,n) are consecutive numbers.
Case:(ii) n is odd.
We define f : V (G)−→ {1,2,3, ...|V (G)|} as follows.
f (u) = 1
f (ui) = 2+(i−1)(n+2); 1≤ i≤ n
f (ui, j) = j+2+(i−1)(n+2); 1≤ i≤ n : 1≤ j ≤ n−1

f (ui,n)=


n+3+(i−1)(n+2); i = 2k−1 where k = 1

,2,3...
n+1

2
n+2+(i−1)(n+2); i = 2k where k = 1,2

,3...
n−1

2
for 1≤ i≤ n

f (ui,n+1)=


n+2+(i−1)(n+2); i = 2k−1 where k = 1

,2,3...
n+1

2
n+3+(i−1)(n+2); i = 2k where k = 1,2

,3...
n−1

2
for 1≤ i≤ n

We consider w as a vertex at each position in a graph G. We
will show that gcd { f (p)|p ∈ N(w)}= 1.
If w = u , {u1,u2} ⊆ N(w) . f (u1) = 2 and f (u2) is odd
number .
If w = ui for any i, u ∈ N(w). f (u) = 1 .
If w = ui,1 for any i, {ui,n,ui,n+1} ⊆ N(w) . f (ui,n) and
f (ui,n+1) are consecutive numbers.

If w = ui, j for i = 2k− 1, j = 2m where k = 1,2,3....
n+1

2
and m = 1,2,3....

n−3
2

;
{

ui, j−1,ui, j+1
}
⊆ N(w). f (ui, j−1)

and f (ui, j+1) are consecutive odd numbers.

If w= ui, j for i= 2k−1, j = 2m+1 where k = 1,2,3....
n+1

2
and m = 1,2,3....

n−3
2

;
{

ui, j−1,ui, j+1ui,n+1
}
⊆ N(w).

f (ui, j−1) and f (ui, j+1) are consecutive even numbers and
f (ui,n+1) is odd number.

If w = ui, j for i = 2k, j = 2m where k = 1,2,3....
n−1

2
and

m = 1,2,3....
n−3

2
;
{

ui, j−1,ui, j+1ui,n+1
}
⊆ N(w). f (ui, j−1)

and f (ui, j+1) are consecutive even numbers and f (ui,n+1) is
odd number.

If w = ui, j for i = 2k, j = 2m+ 1 where k = 1,2,3....
n−1

2
and m = 1,2,3....

n−3
2

;
{

ui, j−1,ui, j+1
}
⊆ N(w). f (ui, j−1)

and f (ui, j+1) are consecutive odd numbers.
If w = ui,n−1 for any i ,{ui,n,ui,n+1} ⊆ N(w) . f (ui,n) and
f (ui,n+1) are consecutive numbers.
If w = ui,n for any i ,{ui,n−1,ui,n+1} ⊆ N(w) . f (ui,n−1) and
f (ui,n+1) are either consecutive numbers or consecutive odd
numbers .
If w = ui,n+1 for i , {ui,1,ui,2} ⊆ N(w). f (ui,1) and f (ui,1) are
consecutive numbers.
So f is neighborhood-prime labeling.

Illustration 2.1 Consider the graph H6(W6). The labeling is
as shown in Figure 1.
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Figure 1: Neighborhood-prime labeling for H6(W6) .

Theorem 2.2: Hn(Fn) is neighborhood-prime graph where the
graph Hn(Fn) is obtained by identifying each pendent vertex
of Hn by vertex of maximum degree in Fn.
Proof : In a graph G = Hn(Fn) central vertex of Hn is denoted
by u and rim vertices of Hn are denoted by u1,u2,u3, ....un
. In a ith copy of Fn in a graph G the vertex of Fn which is
identified with pendent vertex of Hn is denoted by ui

′
and

remaining vertices of Fn are denoted by ui,1, ui,2, ui,3 .... ui,n
for each i .
Case:(i) n is odd.
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Here we consider two sub cases.

sub case:(i) n = 3
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Figure 2: Neighborhood-prime labeling for H3(F3).

sub case:(ii) n≥ 5
We define function f as follows.
f (u) = 1.
f (ui) = 2+(i−1)(n+2) ;1≤ i≤ n

f (ui
′
)=


( n+9

2 )+
⌊ i

2

⌋
(n+1)+

⌊ i−1
2

⌋
(n+3)

;n≡ 1(mod 4)

( n+7
2 )+

⌊ i
2

⌋
(n+3)+

⌊ i−1
2

⌋
(n+1)

; n≡ 3(mod 4)
for 1≤ i≤ n

f (ui,1) = 3+(i−1)(n+2); 1≤ i≤ n

f (u2i−1,2)=


( n+11

2 )+
⌊2i−1

2

⌋
(n+1)+

⌊2i−2
2

⌋
(n+3)

;n≡ 1(mod 4)

( n+11
2 )+

⌊2i−1
2

⌋
(n+3)+

⌊2i−2
2

⌋
(n+1);

;n≡ 3(mod 4)

for 1≤ i≤ n+1
2

f (u2i,2)=


( n+13

2 )+ i(n+1)+
⌊2i−1

2

⌋
(n+3)

; n≡ 1(mod 4)

( n+9
2 )+ i(n+3)+

⌊2i−1
2

⌋
(n+1)

; n≡ 3(mod 4)

for 1≤ i≤ n−1
2

f (ui,2 j+1) = 3+ j+(i−1)(n+2) ; 1≤ i≤ n and
1≤ j ≤ n−3

2
f (ui,2 j+2) = f (ui,2)+ j ; 1≤ i≤ n and 1≤ j ≤ n−5

2

f (ui,n−1) =
n+5

2
+(i−1)(n+2) ; 1≤ i≤ n

f (u2i−1,n) =


n+7

2
+(2i−2)(n+2); n≡ 1(mod 4)

n+9
2

+(2i−2)(n+2); n≡ 3(mod 4)

for 1≤ i≤ n+1
2

f (u2i,n) =


n+9

2
+(2i−1)(n+2); n≡ 1(mod 4)

n+7
2

+(2i−1)(n+2); n≡ 3(mod 4)

for 1≤ i≤ n−1
2

We consider w as a vertex at each position in a graph G. We
will show that gcd { f (p)|p ∈ N(w)}= 1.
If w = u , ui ∈ N(w) for each i. Also f (u1) = 2, f (u2k) is odd
number for each k. .
If w = ui for any i, u ∈ N(w) and f (u) = 1.
If w = u

′
i for any i,

{
ui, j| j = 1,2, ...n

}
⊆ N(w). f (ui, j)

′
s are

consecutive numbers .
If w = ui,1 for any i ,

{
ui,2,u

′
i

}
= N(w). f (ui,2) and f (u

′
i) are

consecutive numbers or consecutive odd numbers.
If w= ui, j for any i, and j for 1≤ j≤ n−3 :

{
ui, j−1,ui, j+1

}
⊆

N(w). f (ui, j−1) and f (ui, j+1) are consecutive numbers.

If w = ui, j for any i and j = n,n− 2 ,
{

u
′
i,ui,n−1

}
⊆ N(w).

f (u
′
i) and f (ui,n−1) are consecutive numbers or consecutive

odd numbers .
If w = ui,n−1 for any i ,

{
u
′
i,ui,n

}
⊆ N(w). f (u

′
i) and f (ui,n)

are consecutive numbers .
Case:(ii) n is even.
f (u) = 2.
f (u1) = 1 , f (ui) = 2+(i−1)(n+2) : 2≤ i≤ n

f (ui
′
) =

{
( n+8

2 )+(i−1)(n+2); n≡ 2(mod 4)
( n+6

2 )+(i−1)(n+2); n≡ 0(mod 4)
;1≤ i≤ n

f (ui,1) = 3+(i−1)(n+2) ; 1≤ i≤ n

f (ui,2) =
n+10

2
+(i−1)(n+2); 1≤ i≤ n

f (ui,2 j+1) = 3+ j+(i−1)(n+2) ; 1≤ i≤ n and
1≤ j ≤ n−2

2

f (ui,2 j+2) =
n+10

2
+ j+(i−1)(n+2) ; 1≤ i≤ n and

1≤ j ≤ n−4
2

f (ui,n)=

{
( n+6

2 )+(i−1)(n+2);n≡ 2(mod4)
( n+8

2 )+(i−1)(n+2);n≡ 0(mod4)
;1≤ i≤ n

We consider w as a vertex at each position in a graph G. We
will show that gcd { f (p)|p ∈ N(w)}= 1.
If w = u , u1 ∈ N(w). Also f (u1) = 1.

w = ui for any i ,
{

u,u
′
i

}
⊆ N(w). f (u) = 2 and f (u

′
i) is odd

number.
If w= u

′
i for any i,

{
ui, j| j = 1,2, ...n

}
⊆N(w). f (ui,1), f (ui,2),

f (ui,3), .... f (ui,n) are consecutive numbers .

110



Neighborhood-Prime labeling for some graphs — 111/112

If w = ui,1 for any i ,
{

ui,2,u
′
i

}
= N(w). f (ui,2) and f (u

′
i) are

either consecutive numbers or consecutive odd numbers.
If w = ui, j for any i and j for 1≤ j≤ n−2 ,

{
ui, j−1,ui, j+1

}
⊆

N(w). f (ui, j−1) and f (ui, j+1) are consecutive numbers.

If w = ui,n−1 for any i ,
{

u
′
i,ui,n

}
⊆ N(w). f (u

′
i) and f (ui,n)

are consecutive numbers .
If w= ui,n for any i ,

{
u
′
i,ui,n−1

}
⊆N(w). f (u

′
i) and f (ui,n−1)

are either consecutive numbers or consecutive odd numbers.
So f is neighborhood-prime labeling.

Illustration 2.2 Consider the graph H6(F6). The labeling is
as shown in Figure 3.
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Figure 3: Neighborhood-prime labeling for H6(F6).

Theorem 2.3: Hn(H̄n) is neighborhood prime graph where
the graph Hn(H̄n) is obtained by identifying each pendent
vertex of Hn by vertex of outer cycle of closed Helm graph
H̄n.
Proof : In a graph G = Hn(H̄n) central vertex of Hn is denoted
by u and rim vertices of Hn are denoted by u1,u2,u3, ....un. In
ith copy of H̄n in a graph G the vertex of outer cycle of H̄n
which is identified with pendent vertex of Hn is denoted by
ui,n , vertices of outer cycle and vertices of inner cycle are
denoted by ui,1,ui,2....ui,n and u

′
i,1,u

′
i,2...u

′
i,n respectively in

same direction for each i. More over ui, j and u
′
i, j are adjacent

vertices for j = 1,2,3...n for each i. Central vertex of ith copy
of H̄n in a graph G is denoted by vi for each i.
We define f : V (G)−→ {1,2,3, ...|V (G)|} as follows.
f (u) = 1.
f (u1) = 2n+3.
f (ui) = 2+2(i−1)(n+1); 2≤ i≤ n
f (ui, j) = 2 j+2+2(i−1)(n+1); 1≤ i≤ n and 1≤ j ≤ n
f (u

′
i, j)= 2 j+3+2(i−1)(n+1); 1≤ i≤ n and 1≤ j≤ n−1

f (u
′
i,n) = 3+2(i−1)(n+1); 1≤ i≤ n

f (v1) = 2
f (vi) = (2n+3)+2(i−1)(n+1); 2≤ i≤ n
We consider w as a vertex at each position in a graph G. We
will show that gcd { f (p)|p ∈ N(w)}= 1.
If w = u , {u1,u2} ⊆ N(w). f (u1) and f (u2) are consecutive
numbers.
If w = ui for any i: u ∈ N(w) and f (u) = 1.
If w = ui, j for any i and j 6= n,

{
u
′
i, j,ui, j+1

}
⊆ N(w). f (u

′
i, j)

and f (ui, j+1) are consecutive numbers.

If w = ui,n for any i ,
{

u
′
i,n,ui,1

}
⊆ N(w). f (u

′
i,n) and f (ui,1)

are consecutive numbers.
If w= u

′
i, j for any i and j 6= 1,

{
u
′
i, j−1,ui, j

}
⊆N(w). f (u

′
i, j−1)

and f (ui, j) are consecutive numbers.

If w = u
′
i,1 for any i ,

{
u
′
i,n,ui,1

}
⊆ N(w). f (u

′
i,n) and f (ui,1)

are consecutive numbers.
If w = vi for any i, N(w) =

{
u
′
i, j| j = 1,2, ..n

}
also f (u

′
i, j) are

consecutive odd numbers.
So f is neighborhood-prime labeling.

Illustration 2.3 Consider the graph H5(H̄5). The labeling is
as shown in Figure 4.
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Figure 4: Neighborhood-prime labeling for H5(H̄5) .

Theorem 2.4: Hn(GP(5,2)) is neighborhood-prime graph
where the graph Hn(GP(5,2)) is obtained by identifying each
pendent vertex of Hn by vertex of outer cycle of petersen
graph GP(5,2).
Proof :In a graph G=Hn(GP(5,2)) central vertex of Hn is de-
noted by u and rim vertices of Hn are denoted by u1,u2,u3, ....un.
In ith copy of petersen graph GP(5,2) in a graph G the vertex
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of GP(5,2) which is identified with pendent vertex of Hn is
denoted by ui,5 ,vertices of outer cycle and vertices of inner
cycle are denoted by ui,1,ui,2....ui,5 and u

′
i,1,u

′
i,2...u

′
i,5 respec-

tively in same direction for each i. More over ui, j and u
′
i, j are

adjacent vertices for j = 1,2...5 for each i.
We define f : V (G)−→ {1,2,3, ...|V (G)|} as follows.
f (u) = 1.

f (ui) = 2+(i−1)11;1≤ i≤ n

f (u2i−1, j) = 2 j+2+(2i−2)11 ; 1≤ i≤
⌊n+1

2

⌋
and

1≤ j ≤ 5

f (u2i, j) = 2 j+1+(2i−1)11 ; 1≤ i≤
⌊n

2

⌋
and

1≤ j ≤ 5

f (u
′
2i−1, j) = 2 j + 3 + (2i− 2)11 ; 1 ≤ i ≤

⌊n+1
2

⌋
and

1≤ j ≤ 4

f (u
′
2i−1,5) = 3+(2i−2)11 ; 1≤ i≤

⌊n+1
2

⌋
f (u

′
2i, j) = 2 j+4+(2i−1)11 ; 1≤ i≤

⌊n
2

⌋
and 1≤ j ≤ 4

f (u
′
2i,5) = 4+(2i−1)11 ; 1≤ i≤

⌊n
2

⌋
We consider w as a vertex at each position in a graph G. We
will show that gcd { f (p)|p ∈ N(w)}= 1.

If w = u , {u1,u2} ⊆ N(w). f (u1) = 2 and f (u2) is odd num-
ber.

If w = ui for any i, u ∈ N(w) and f (u) = 1.

If w = ui, j for any i and j 6= 5,
{

u
′
i, j,ui, j+1

}
⊆ N(w). f (u

′
i, j)

and f (ui, j+1) are consecutive numbers.

If w = ui,5 for any i ,
{

u
′
i,5,ui,1

}
⊆ N(w). f (u

′
i,5) and f (ui,1)

are consecutive numbers.

If w= u
′
i, j for any i and j 6= 2,

{
u
′
i, j+2,u

′
i, j+3

}
⊆N(w). f (ui, j+2)

and f (ui, j+3) are consecutive odd numbers where values of
j+2 and j+3 modulo 5.

If w = u
′
i,2 for any i ,

{
ui,4,ui,5

}
⊆ N(w). f (ui,4) and f (ui,5)

are odd numbers of difference eight.

f is neighborhood-prime labeling.

Illustration 2.4 Consider the graph H5(GP(5,2)). The label-
ing is as shown in Figure 5.

uu

u   1,5u

u   1,1u

u   1,2u
u   1,3u

u   1,4u

u   1,5u'

u   1,1u'

u   1,2u'

u   1,3u'

u   1,4u'

u1u

u2u

u3u
u4u

u5u
u   2,5u

u   2,1u

u   2,2u

u   2,3u

u   2,4u

u   2,1u'

u   2,2u'

u   2,3u'

u   2,4u'

u   2,5u'

u   3,5u

u   3,1u

u   3,2u

u   3,3u

u   3,4u

u   3,5u'

u   3,1u'

u   3,2u'

u   3,3u'

u   3,4u'

u   4,5u

u   4,1u

u   4,2u

u   4,3u

u   4,4u

u   4,5u'
u   4,1u'

u   4,2u'

u   4,3u'

u   4,4u'

u   5,5u

u   5,1u
u   5,2u

u   5,3u

u   5,4u

u   5,5u'

u   5,1u'

u   5,2u'

u   5,3u'

u   5,4u'
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41

38

43

40

56

47

Figure 5: Neighborhood prime labeling for H5(GP(5,2))

3. Concluding Remarks
Here we investigated four results corresponding to neigh-

borhood prime labeling for some particular graphs. Analogous
result can be obtained for the generalization of these graphs
using various graph operations in the context of neighborhood
prime labeling.
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