

https://doi.org/10.26637/MJM0701/0023

Hamiltonian laceability in the shadow distance graph of path graphs

P. Gomathi^{1*} and R. Murali²

Abstract

A connected graph *G* is termed hamiltonian-*t*-laceable (t^* -laceable) if there exists in it a hamiltonian path between every pair (at least one pair) of distinct vertices *u* and *v* with the property $d(u,v) = t, 1 \le t \le diam(G)$, where *t* is a positive integer. In this paper, we establish laceability properties in the edge tolerant shadow distance graph of the path graph P_n with distance set $D_s = \{1, 2k\}$.

Keywords

Hamiltonian laceable, hamiltonian-*t*-laceable, hamiltonian-*t**-laceable, shadow graph, shadow distance graph.

AMS Subject Classification 05C45, 05C99

¹ Department of Mathematics, BMS College of Engineering, Bengaluru-560019, India.

² Department of Mathematics, Dr. Ambedkar Institute of Technology, Bengaluru-560056, India.

*Corresponding author: ¹ pgomathi.maths@bmsce.ac.in; ²muralir2968@dr-ait.org

Article History: Received 24 October 2018; Accepted 11 January 2019

Contents

1	Introduction118
2	Distance graph and shadow distance graph 119
3	Terminologies119
4	Results 119
5	Conclusion
	References 120

1. Introduction

Let *G* is a finite, simple, connected and undirected graph. Let *u* and *v* be two vertices in *G*. The distance between *u* and *v* denoted by d(u,v) is the length of a shortest path in *G*. *G* is hamiltonian laceable if there exists in it a hamiltonian path for every pair of vertices at an odd distance. *G* is hamiltonian*t*-laceable (*t**-laceable) if there exists in it a hamiltonian path between every pair (at least one pair) of vertices *u* and *v* with the property $d(u,v) = t, 1 \le t \le diam(G)$, where *t* is a positive integer. Throughout this paper, P_n denotes the path graph on *n* vertices.

Laceability in brick products of even cycles was explored by Alspach et.al. in [1]. A characterization for a 1-connected graph to be hamiltonian-*t*-laceable for t = 1, 2 and 3 was given in [7] and this was extended to t = 4 and 5 by Thimmaraju and Murali in [9]. Leena Shenoy [8] studied hamiltonian laceability properties in product graphs involving cycles and paths. More results in the laceability properties of product graphs can be found in [5], [6] and [4].

©2019 MJM

Definition 1.1. The shadow graph of a connected graph G is constructed by taking two copies of G say G' and G''. Join each vertex u' of G' to the neighbors of the corresponding vertex u'' of G''.

The shadow graph of G is denoted by $D_2(G)$.

In figure 1, the shadow graph of the wheel graph $W_{1,5}$ is illustrated.

Definition 1.2. A graph G^* is k-edge fault tolerant with respect to a graph G if the graph obtained by removing any k edges from G^* contains G, where k is a positive integer.

Definition 1.3. Let P be a path between the vertices v_i to v_j in a graph G and let P' be a path between the vertices v_j and v_k . Then, the path $P \cup P'$ is the path obtained by extending the path P from v_i to v_j to v_k through the common vertex v_j (i.e. if $P : v_i...v_j$ and $P' : v_j...v_k$ then $P \cup P' : v_i...v_j...v_k$)

2. Distance graph and shadow distance graph

Definition 2.1. For a graph G, Let D_s be the set of all distances between distinct pairs of its vertices and let D_s (called the distance set) be a subset of D. The distance graph [11] of G, denoted by $D(G,D_s)$ is the graph having the same vertex set as that of G and two vertices u and v are adjacent in $D(G,D_s)$ whenever $d(u,v) \in D_s$.

By definition, if $D_s = \{1\}$, then $D(G, D_s) \cong G$, $D(G, D_s)$ is a complete graph and $D(G, \{\})$ is a completely disconnected graph.

In [9], the authors have shown that distance graph of the path graph of even order is hamiltonian-1*-laceable and 2*-laceable with the distance set $D_s = \{1, 2k\}$. Leena Shenoy et.al. in [8], have shown that the pairs of vertices (a_1, a_k) and (a_1, a_{2k}) are attainable (in the sense that there exists a hamiltonian path) in the distance graph of the path graph of order n > 5 with distance set $S = \{1, k, 2k\}$.

Definition 2.2. The shadow distance graph [10] of G, denoted by $D_{sd}(G,d)$ is constructed from G with the following conditions:

- 1. consider two copies of G say G itself and G'
- 2. *if* $u \in V(G)$ (*first copy*) *then we denote the corresponding vertex as* $u' \in V(G')$ (*second copy*)
- 3. the vertex set of $D_{sd}(G,d)$ is $V(G) \cup V(G')$
- 4. the edge set of $D_{sd}(G,d)$ is $E(G) \cup E(G') \cup E_d$ where E_d is the set of all edges between distinct vertices $u \in V(G)$ and $v' \in V(G')$ that satisfy the condition $d(u,v) \in D_s$ in G.

Figure 2. The shadow distance graph $D_{Sd}(P_8, (1,4))$

3. Terminologies

We use the following terminologies in our results.

•
$$xP[n] = x(x+1)(x+2)\dots(x+n-1)$$
.

- $xP^{-1}[n] = x(x-1)(x-2)....(x-n+1).$
- xZ[n] = x(x'+1)(x+2)(x'+3)...(x+n-2)(x'+n-1)or(x+n-1) (moving from one vertex to another vertex in the adjacent level *i.e.*, moving from left to right).
- $xZ^{-1}[n] = x(x'-1)(x-2)(x'-3)\dots(x-n+2)(x'-n+1)or(x-n+1)$ (moving from one vertex to another vertex in the adjacent level *i.e.*, moving from right to left).
- $xJ=v_i \rightarrow v_j$ and $xJ^{-1}=v'_j \rightarrow v_i$ where $i \le n-2k$ and j is taken under modulo n.

4. Results

Theorem 4.1. If $n \ge 4$ is even, the 1-edge fault tolerant graph $H = D_{sd}(P_n, (1, 2k))$ is Hamiltonian-1*- laceable.

Proof. Consider two copies of P_n , say P_n and P'_n . Let $v_1, v_2, v_3, \dots, v_n$ and $v'_1, v'_2, v'_3, \dots, v'_n$ be the vertices of P_n and P'_n respectively.

Clearly, *H* has 2n vertices and 4(n+1) edges.

Now in H, $d(v_1, v'_{2k+1}) = 1$ and the path

 $P: v_1 [P(2)Z^{-1}(2)P(2)Z(2)]^k P(n-2k)(v'_n, v_n)P^{-1}(n-2k)$ v'_{2k+1} in the 1-edge fault tolerant graph H^* is a hamiltonian path between the vertices v_1 and v'_{2k+1} .

Hence the proof.

Figure 3. Hamiltonian path in the graph D_{sd} { P_12 , (1,6)} with $d(v_1, v'_1) = 1$

Theorem 4.2. If $n \ge 4$ is even, the 1-edge fault tolerant graph $H = D_{sd}(P_n, (1, 2k))$ is Hamiltonian-2*- laceable.

Proof. The vertex set of *H* is as in theorem 4.1.

In H, $d(v_1, v_{2k+2}) = 2$ and the path $P: v_1 [Jp^{-1}(2k+1)Z(2)P(2k)Z(2)P(n-2k-1)](v'_n, v_n)P^{-1}(n-2k-1)v_{2k+2}$ in the 1-edge fault tolerant graph H^* is a hamiltonian path between the vertices v_1 and v'_{2k+2} .

Hence the proof.

Figure 4. Hamiltonian path in the graph D_{sd} { P_{10} , (1,4)} with $d(v_1, v_6) = 2$

Theorem 4.3. If $n \ge 6$ is even, the 1-edge fault tolerant graph $H = D_{sd}(P_n, (1, 2k))$ is Hamiltonian-3^{*}- laceable.

Proof. The vertex set of *H* is as in theorem 4.1.

In H, $d(v_1, v_{2k+1}) = 3$ and the path

 $P: v_1 \left[P(2)Z^{-1}(2)P(2)Z(2) \right]^{k-1} (P(2)Z^{-1}(2))P(n-2k+2)$ $(v'_n, v_n)P^{-1}(n-2k)v_{2k+1}$ in the 1-edge fault tolerant graph H^* is a hamiltonian path between the vertices v_1 and v_{2k+1} .

Hence the proof.

Figure 5. Hamiltonian path in the graph D_{Sd} { P_{14} , (1,6)} with $d(v_1, v_7) = 3$

Theorem 4.4. For even n > j and odd $t \ge 5$, then 1-edge fault tolerant graph $H = D_{sd}(P_n, (1, 2k))$ is Hamiltonian-t^{*}laceable where $j = \frac{n+2k+t+1}{2}$.

Proof. The vertex set of *H* is as in theorem 4.1.

In H, $d(v_i, v_j) = t$ and the path

 $P: v_1 [P(2)Z^{-1}(2)P(2)Z(2)]^{k+q} [P(2)Z^{-1}(2)]P(4) (v'_n \cup v_n)$ $P^{-1}(2)v_i$ where $q = \frac{t-3}{2}$ and $k = \frac{n-t+1}{2}$ in the 1-edge fault tolerant graph H^* is a hamiltonian path between the vertices v_i and v_j .

Hence the proof.

Figure 6. Hamiltonian path in the graph D_{Sd} { P_{16} , (1, 10)} with $d(v_1, v_{15}) = 5$

Theorem 4.5. For even $n \ge 2k + t$ and $t \ge 4$, the graph H = $D_{sd}(P_n,(1,2k))$ is Hamiltonian-t^{*}-laceable.

Proof. The vertex set of *H* is as in theorem 4.1.

In H, $d(v_1, v_n) = t$ and the path $P: v_1 [P(2)Z^{-1}(2)P(2)Z(2)]^{k+q} (Z(2)P^{-1}(2)Z(2))v_n$ where $q = \frac{t-2}{2}$ and $k = \frac{n-t}{2}$ in the 1-edge fault tolerant graph H^* is a hamiltonian path between the vertices v_1 and v_n .

Hence the proof.

Figure 7. Hamiltonian path in the graph D_{sd} { P_{18} , (1, 12)} with $d(v_1, v_{18}) = 6$

5. Conclusion

In this paper, hamiltonian laceability properties of the 1edge fault tolerant shadow distance graphs associated with the path graph P_n is studied. We have shown that for $n \ge 5$, this graph is hamiltonian- t^* -laceable for all t, and, for all n = 2k + t, this graph is hamiltonian- t^* -laceable.

References

- ^[1] B. Alspach, C. C. Chen and K. McAvancy. On a class of Hamiltonian laceable 3-regular graphs, Discrete Mathematics, 151(1-3)(1996), 19-38.
- ^[2] F. Harary, *Graph Theory*, Addison-Wesley Publishing Company, 1969.
- ^[3] S.Y. Hsieh, G.H. Chen, C.W. Ho, Fault -free hamiltonian cycles in faulty arrangement graphs, IEEE Trans. Parallel Distributed System, 10(32)(1999), 223-237.
- ^[4] P. Gomathi and R. Murali, Hamiltonian-*t**-laceability in the Cartesian product of paths, Int. J. Math. Comp., 27(2)(2016), 95–102.
- ^[5] A. Girisha and R. Murali, *i*-Hamiltonian laceability in product graphs, International Journal of Computational Science and Mathematics, 4(2)(2012), 145–158.
- [6] A. Girisha and R. Murali, Hamiltonian laceability in cone product graphs, International Journal of Research in Engineering Science and Advanced Technology, 3(2)(2013), 95-99.
- ^[7] K. S. Harinath and R. Murali, Hamiltonian-*n**-laceable graphs, Far East Journal of Applied Mathematics, 3(1)(1999), 69-84.
- ^[8] L. N. Shenoy and R. Murali, Hamiltonian laceability in product graphs, International e-Journal of Engineering Mathematics: Theory and Applications, 9(2010), 1–13.
- [9] S. N. Thimmaraju and R. Murali, Hamiltonian-n*laceable graphs, Journal of Intelligent System Research, 3(1)(2009), 17-35.
- ^[10] U. Vijayachandra Kumar and R.Murali, Edge domination in shadow distance graphs, International Journal of Mathematics and its Applications, 4(2016), 125–130.

B Sooryanarayana, Certain Combinatorial Connections Between Groups, Graphs and Surfaces, Ph.D Thesis, 1998.

> ******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

