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Hamiltonian laceability in the shadow distance
graph of path graphs

P. Gomathi'* and R. Murali@

Abstract

A connected graph G is termed hamiltonian-z-laceable (1*-laceable) if there exists in it a hamiltonian path between
every pair (at least one pair) of distinct vertices u and v with the property d(u,v) =¢,1 <t < diam(G), where ¢ is a
positive integer. In this paper, we establish laceability properties in the edge tolerant shadow distance graph of

the path graph P, with distance set D, = {1,2k}.
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1. Introduction

Let G is a finite, simple, connected and undirected graph.
Let u and v be two vertices in G. The distance between u and
v denoted by d(u,v) is the length of a shortest path in G. G
is hamiltonian laceable if there exists in it a hamiltonian path
for every pair of vertices at an odd distance. G is hamiltonian-
t-laceable (¢*-laceable) if there exists in it a hamiltonian path
between every pair (at least one pair) of vertices # and v with
the property d(u,v) =t,1 <t < diam(G), wheret is a positive
integer. Throughout this paper, P, denotes the path graph on
n vertices.

Laceability in brick products of even cycles was explored
by Alspach et.al. in [1]. A characterization for a 1-connected
graph to be hamiltonian-z-laceable for t = 1,2 and 3 was given
in [7] and this was extended to # =4 and 5 by Thimmaraju
and Murali in [9]. Leena Shenoy [8] studied hamiltonian

laceability properties in product graphs involving cycles and
paths. More results in the laceability properties of product
graphs can be found in [5], [6] and [4].

Definition 1.1. The shadow graph of a connected graph G is
constructed by taking two copies of G say G' and G". Join
each vertex u' of G’ to the neighbors of the corresponding
vertex u’ of G".

The shadow graph of G is denoted by D, (G).

In figure 1, the shadow graph of the wheel graph W 5 is
illustrated.

Figure 1. The graph of D, (W, 5)

Definition 1.2. A graph G* is k-edge fault tolerant with re-
spect to a graph G if the graph obtained by removing any k
edges from G* contains G, where k is a positive integer.
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Definition 1.3. Let P be a path between the vertices v; to v;
in a graph G and let P’ be a path between the vertices v; and
Vi. Then, the path PUP' is the path obtained by extending the
path P from v; to v; to vy through the common vertex v; (i.e.
ifP:vi..vjand P' :vj...vi then PUP' :v;...vj.....vg)

2. Distance graph and shadow distance
graph

Definition 2.1. For a graph G, Let Dy be the set of all dis-
tances between distinct pairs of its vertices and let D (called
the distance set) be a subset of D. The distance graph [11]
of G, denoted by D(G, Dy) is the graph having the same ver-
tex set as that of G and two vertices u and v are adjacent in
D(G,Dy) whenever d(u,v) € Ds.

By definition, if Dy = {1}, then D(G,Dy) = G, D(G, Dy) is
a complete graph and D(G,{}) is a completely disconnected
graph.

In [9], the authors have shown that distance graph of the
path graph of even order is hamiltonian-1*-laceable and 2*-
laceable with the distance set Dy = {1,2k}. Leena Shenoy
et.al. in [8], have shown that the pairs of vertices (a;,ay)
and (a;,ay;) are attainable (in the sense that there exists a
hamiltonian path) in the distance graph of the path graph of
order n > 5 with distance set S = {1,k,2k}.

Definition 2.2. The shadow distance graph [10] of G, de-
noted by Dy (G,d) is constructed from G with the following
conditions:

1. consider two copies of G say G itself and G’

2. ifu € V(G) (first copy) then we denote the correspond-
ing vertex as u' € V(G') (second copy)

3. the vertex set of Dyy(G,d) is V(G)UV(G')

4. the edge set of Dy (G,d) is E(G)UE(G') UE, where
E; is the set of all edges between distinct vertices u €
V(G) and V' € V(G') that satisfy the condition d(u,v) €
D; in G.
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Vi V2 V3 Ve Vs Ve V7 Vs
Figure 2. The shadow distance graph Ds;(F, (1,4))

3. Terminologies

We use the following terminologies in our results.

o xPn]=x(x+1)(x+2).....(x+n—1).
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e xPln=x(x—1)(x—2)......(x—n+1).

o xZ[n] =x(x + 1) (x+2)(x' +3) ... (x+n—2)(x"+
n—1)or(x+n—1) (moving from one vertex to another
vertex in the adjacent level i.e., moving from left to
right).

o xZ7 ' n]=x(¥ —1)(x=2)(x' =3)......... (x—n+2)(x' —
n+1)or(x —n+ 1) (moving from one vertex to another
vertex in the adjacent level i.e., moving from right to
left).

e xJ=v; — v; and xJ_1=v;- — v; where i < n—2k and j
is taken under modulo 7.

4. Results

Theorem 4.1. [fn > 4 is even, the 1-edge fault tolerant graph
H =Dy (P, (1,2k)) is Hamiltonian-1*- laceable.

Proof. Consider two copies of P,, say P, and P,
Let vi,v2,v3,.....,v, and V| ,v5,V5......, v}, be the vertices of
P, and P, respectively.

Clearly, H has 2n vertices and 4(n+ 1) edges.

Now in H, d(vi,v5;,,) = 1 and the path
P :vi[P(2)Z71(2)P(2)Z(2)]*P(n — 2k) (), v) P~ (n — 2K)
Vi 41 in the 1-edge fault tolerant graph H* is a hamiltonian
path between the vertices v; and v}, 1

Hence the proof. O

Vi V2 Vs Ve ys Ve V7o Ve Voo Vo Vi Vg

7 ] T ] v T T

Vi Vo o vy Ve Vs ove V7o Ve R Vi Ve

Figure 3. Hamiltonian path in the graph Dy, {P;2,(1,6)}
with d(vi,V}) =1

Theorem 4.2. Ifn > 4 is even, the 1-edge fault tolerant graph
H = Dy (P, (1,2k)) is Hamiltonian-2*- laceable.

Proof. The vertex set of H is as in theorem 4.1.
In H, d(v1,vars2) = 2 and the path

P:vi [Jp~ ' (2k+1)Z(2)P(2k)Z(2)P(n—2k—1)] (v}, va) P~  (n—

2k — 1)vy4o in the 1-edge fault tolerant graph H* is a hamil-
tonian path between the vertices vi and v ,.

Hence the proof. O
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Figure 4. Hamiltonian path in the graph Dy {Po,(1,4)}
with d(vy,ve) =2

Theorem 4.3. [fn > 6 is even, the 1-edge fault tolerant graph
H = Dy (P, (1,2k)) is Hamiltonian-3*- laceable.

Proof. The vertex set of H is as in theorem 4.1.
In H, d(v1,var+1) = 3 and the path
P:vi[P()Z 7' (2)P(2)2(2)]" (P(2)27(2))P(n—2k+2)
(v, va) P~ (n—2k)vay 1 in the 1-edge fault tolerant graph H*
is a hamiltonian path between the vertices v; and vy .
Hence the proof. O

Vi V2o V3oV Vs Ve V2o V8 Voo yp vn Vo Vs Vi

Vi V2 \73 \7'1. Vs Ve V7 Ve Vo Vi Vi Ve Ve o Vu
Figure 5. Hamiltonian path in the graph Dg;{P4,(1,6)}
with d(vi,v7) =3

Theorem 4.4. For even n > j and odd t > 5, then 1-edge
Sault tolerant graph H = Dyy(P,, (1,2k)) is Hamiltonian-t*-
laceable where j = %

Proof. The vertex set of H is as in theorem 4.1.
In H, d(v;,vj) =t and the path
_ k _
P:vi[P(2)Z2 1 (2)P(2)Z(2)] 1 [P(2)Z " (2)] P(4) (v, UVy)
P~1(2)v; where g = % and k = % in the 1-edge fault
tolerant graph H* is a hamiltonian path between the vertices

v;and v;.
Hence the proof. U
s Ve V7 Ve Vo9 Vo Vi Ve Vs Vi Vs V_we
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Vio V2 Vi v Vs Vs Voo Ve
Figure 6. Hamiltonian path in the graph Dg;{Pi6,(1,10)}
with d(vl,vls) =5

Theorem 4.5. For evenn > 2k+t andt > 4, the graph H =
Dyy(Py, (1,2k)) is Hamiltonian-t*-laceable.
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Ve Vi Vi Ve Vs Vi Vi Ve

Proof. The vertex set of H is as in theorem 4.1.
In H, d(v1,v,) =t and the path
P:vi[P2)z! (2)P(2)Z(2)]k+q (Z(2)P~1(2)Z(2))v, where
= % and k = "5 in the 1-edge fault tolerant graph H* is
a hamiltonian path between the vertices v; and v,,.
Hence the proof. O

VioVz vz Vo Vs Ve V7 V8 V9 Vo Vi Vi Vs Vi Vs Vi Vp Ve
2 = e
r;—ﬂl.“
e — amy
N ==~ aYAVA

Viove v v Vs Ve W Ve Vs Vi Vi Vie Ve Vi Vi Ve Vi Ve
Figure 7. Hamiltonian path in the graph Dy, {Ps,(1,12)}
with d(vhvlg) =6

5. Conclusion

In this paper, hamiltonian laceability properties of the 1-
edge fault tolerant shadow distance graphs associated with
the path graph P, is studied. We have shown that for n > 5,
this graph is hamiltonian-¢*-laceable for all ¢, and, for all
n = 2k +1, this graph is hamiltonian-¢*-laceable.
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