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A note on strong zero-divisor graphs of near-rings
Prohelika Das1*

Abstract
For a near-ring N, the strong zero-divisor graph Γs(N) is a graph with vertices V ∗(N), the set of all non-zero left
N-subset having non-zero annihilators and two vertices I and J are adjacent if and only if IJ = 0. In this paper, we
study diameter and girth of the graph Γs(N) wherein the nilpotent and invariant vertices are playing a significant
role. We show that if diam(Γs(N))> 3, then N is necessarily a strongly semi-prime near-ring. Also we find the
χ(Γs(N)) and investigate some characterizations of cliques and maximal cliques in Γs(N).
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1. Introduction
Let N be a zero symmetric (right) near-ring and V (N) be

the set of all left N-subsets with non-zero left annihilators.
The strong zero-divisor graph denoted ΓS(N) is a directed
simple graph with the set of vertices V ∗(N) =V (N){0} such
that any two distinct I and J ∈V ∗(N) are adjacent if and only
if IJ = 0.

The concept of zero-divisor graph of a commutative ring
was first introduced by Beck in [4]. Beck [4] has mainly
investigated coloring of the ring. He has conjectured that
χ(Γ(R)) = clique(Γ(R)). Anderson et all redefined the notion
of zero-divisor graphs in [2] and proved that such a graph is
always connected and its diameter is less than or equal to
3. Anderson and Mulay in [3] studied diameter and girth
of zero-divisor graph of a commutative ring. The notion
of zero-divisor graph was extended to a non-commutative
ring [1] and various properties of diameter and girth were
established. Behboodhi [5] studied annihilator ideal graphs
dealing with the annihilators of ideals of a commutative ring.
Redmond[8] has generalised the notion of zero-divisor graph.
For an ideal I of a commutative ring R, Redmond [8] defined

an undirected graph ΓI(R) with vertices {x ∈ R\ I | xy ∈ I for
some y ∈ R\ I} where distinct vertices x and y are adjacent if
and only if xy ∈ I.

In this paper, we study some graph theoretic aspect of a
near-ring N. For basic definitions and results related to near-
ring, we would like to mention Pilz [7]. A subset I of N is
left(right)N-subset of N if NI ⊆ I(IN ⊆ I) and I is invariant
if it is both left as well as right N-subset of N. If I is a left N-
subset of N, then l(I) = {x ∈ N | xI = 0} is the left annihilator
of I. For any N-subset I, l(I) is also a left N-subset of N. If I
and J be two left N-subsets, then so is I∩ J. A left N-subset
I of N is nilpotent with index n(n ∈ Z+) if In = 0 and Im 6= 0
for m < n. The near-ring N is strongly semi-prime if it has no
non-zero nilpotent invariant subsets. A left N-subset(ideal) I
of N is essential in N if for any non-zero left N-subset(ideal)
A of N, I∩A 6= 0.

Recall that a graph G is connected if there is a path be-
tween any two distinct vertices. The graph G is complete if
every two vertices are adjacent. The distance between two dis-
tinct vertices x and y of G is the length of the shortest path from
x to y denoted d(x,y). If no such path exists, then d(x,y) = ∞.
The diameter of the graph G is diam(G) = sup{d(x,y)|x and
y are distinct vertices of G}. The girth of G is the length of
distance of the shortest cycle in G, denoted gr(G). If there
is no such cycle, then gr(G) = ∞. The minimal numbers of
colors so that no two adjacent elements of the graph G have
same color is the chromatic number of G denoted χ(G).

In this paper, we study diameter and girth of the strong
zero-divisor graphs of near-rings wherein the nilpotency and
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invariant character of vertices playing a significant role. We
prove that any path joining vertex I to an invariant vertex J
is contained in a cycle provided l(I + J) 6= 0. We show that a
strongly semi-prime near-ring contains no non-zero nilpotent
invariant subset if Γs(N) > 3. Moreover, we show that in
this case Γs(N) contains not more than two invariant subsets
I1 and I2 so that l(I1) and l(I2) are essential. In addition to
the above, we investigate the coloring of Γs(N) and some
characterisations of cliques and maximal cliques of Γs(N).

Below we discuss some examples of strong zero-divisor
graphs Γs(N) in contrast to zero-divisor graph Γ(N)

Example 1.1. If the graph Γs(N) contains a point only, then
N ∼= Z4 or Z2[x]

<x2>
. In this case gr(Γs(N)) = ∞. Also Γs(Z4)∼=

Γ(Z4)

Γs(Z4) or Γ(Z4)

Example 1.2. If the graph Γs(N) contains two points, then
Γs(N) contains no cycle and gr(Γs(N) = ∞. In this case
N ∼= Z2×Z2 or Z6. Here Z2×Z2 � Z6, however their strong
zero divisor graphs Γs(Z2×Z2) and Γs(Z6) are isomorphic
i.e. Γs(Z2×Z2)∼= Γ(Z2×Z2)∼= Γs(Z6) (Z2×Z2 � Z6)

Γs(Z2 ×Z2), Γ(Z2 ×Z2) or Γs(Z6)

Example 1.3. The graph Γs(
Z3[x]
〈x2〉 ) is graph with finite girth

3. Here I = {〈x2〉,x+ 〈x2〉,2x+ 〈x2〉} is a nilpotent ideal as
I2 = 0.
Γs(

Z3[x]
〈x2〉 )

∼= Γs(
Z2[x,y]
〈x2,y2,xy〉 ) but Z3[x]

x2 � Z2[x,y]
〈x2,y2,xy〉 .

Γs(
Z3 [x]
〈x2〉

) or Γs(
Z2 [x,y]
〈x2 ,y2 ,xy〉

)

Example 1.4. The graph below is a complete bipartite graph
with girth 4. Γs(

Z4[x]
〈x2〉 )� Γs(

Z2[x,y]
〈x2,xy,y2〉 ) ( Z4[x]

〈x2〉
∼= Z2[x,y]
〈x2,xy,y2〉 )

Γs(
Z4 [x]
〈x2〉

)

2. Diameter and girth

In this section, we present some of characteristic of paths,
diameter and girth of Γs(N). We note that the vertex 0 is
adjacent to every other vertices which we exclude here for
obvious reason.

A vertex I ∈Γs(N) is an invariant vertex if it is an invariant
N subset of the near-ring N. The right annihilator r(I) = {x ∈
N | Ix = 0} of a left N-subset I of N is a right N-subset of N
not necessarily coincide to l(I). However in a strongly semi-
prime near-ring N, in case of an invariant subset I, Il(I) =
0 as (Il(I))2 = I(l(I)I)l(I) = 0 giving thereby l(I) ⊆ r(I).
Similarly r(I)⊆ l(I). Thus we state the following lemma.

Lemma 2.1. [6] Let N be a strongly semi-prime near-ring.
Then for an invariant subset I of N, l(I) = r(I).

Let I be a left N-subset with l(I) 6= 0 and let x(6= 0)∈ l(I).
If J ⊆ l(I) be a non-zero nilpotent N-subset. Then there exists
a positive integer m such that xJm = 0 but xJm−1 = 0. It is
clear that l(I + J)⊆ l(I)∩ l(J).

Lemma 2.2. [6] Let N be a near-ring such that the left anni-
hilators are distributively generated. If I be a left N-subset
with l(I) 6= 0 and J ⊆ l(I) is a nilpotent left N-subset of N,
then l(I + J) 6= 0.

Proof. Let x(6= 0) ∈ l(I) such that xJm = 0 and xJm−1 6= 0
for some positive integer m. Now xJm−1J = xJm = 0 and
xJm−1I = xJm−2JI = 0. Thus xJm−1(I+J) = 0 giving thereby
xJm−1 ⊆ l(I + J). Thus l(I + J) 6= 0.

Thus in this lemma, we see that the nilpotency of J ⊆ l(I)
leads us to l(I + J) 6= 0.

Throughout the paper, by a near-ring N we mean a strongly
semi-prime near-ring unless otherwise specified.

Theorem 2.3. Let N be a near-ring and J be an invariant
N-subset such that l(I + J) 6= 0 for some I ∈V (ΓS(N)). Then
any path joining I and J is contained in a cycle of ΓS(N).

Proof. Let P : I −→ K1 −→ K2 −→ .....−→ Kn −→ J be any
path. Now l(I + J) ⊆ l(I)∩ l(J) implies l(I)∩ l(J) 6= 0 as
l(I + J) 6= 0. Let M = l(I)∩ l(J) which is a non-zero left N-
subset of N. Then I−→K1−→K2−→ .....−→Kn−→ J−→
M −→ I is a cycle containing the path P since JM = J(l(I)∩
l(J)) = J(l(I)∩ r(J)) = 0 and MI = (l(I)∩ l(J))I = 0.

Theorem 2.4. Let N be a near-ring such that girth(ΓS(N))>
3. Then N has no non-zero nilpotent invariant subset

Proof. Let I(6= 0) be a nilpotent invariant subset of N and n
be the least positive integer such that In = 0. Now I.In−1 = 0
gives that In−1 ⊆ r(I) = l(I)[Lemma 2.2]. Thus l(I) is a
non-zero left N-subset of N so that In−1l(I) = In−2.Il(I) =
In−2Ir(I) = 0. Thus l(I)−→ I −→ In−1 −→ l(I) is a circuit,
which is a contradiction.
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In the example 1.3 gr(Γs(
Z4[x]
〈x2〉 )) = 3. Here Z4[x]

〈x2〉 is not

strongly semi-prime. The non-zero ideal I = {〈x2〉,x+〈x2〉,2x+
〈x2〉,3x+ 〈x2〉} is nilpotent as I2 = 0.

A left N-subset I of N is said to be simple if there exists
no non-zero left N- subset J such that J ⊆ I

Theorem 2.5. Let I be an essential simple N-subset of N,
then I is adjacent to every nilpotent J ∈V (ΓS(N)).

Proof. Let J ∈V (ΓS(N)) be nilpotent and let m be the least
positive integer such thatJm = 0. Now I ∩ J 6= 0 as I is es-
sential. Also I ∩ J = I since I is a simple N-subset giving
thereby J ⊆ I. If IJ = 0, then we are done. For otherwise
IJ = I ∩ J = I which gives that IJ2 = IJ.J = IJ = I. Simi-
larly IJ3 = IJ2J = IJ = I. Continuing in this way we get that
IJm = I which gives that I = 0, a contradiction.

Theorem 2.6. Let N be a near-ring such that the left anni-
hilators are distributively generated. Let I be an invariant
simple N-subset and J be a nilpotent left N-subset such that
l(I + J) = 0. Then for some q ∈ l(I), d(I +qJ,J) = 3.

Proof. We give the proof in two steps such as

(i) Step 1: We show that for any two non-adjacent ver-
tices I and J where I is an invariant N-subset so that
l(I + J) 6= 0,d(I,J) = 3. Since I is an invariant N-
subset there for Il(I) = Ir(I) = 0[Lemma 2.1]. We
claim l(I)l(J) = 0. For let xy(6= 0)∈ l(I)l(J) gives that
Ixy⊆ Il(I)l(J) = lr(I)l(J) = 0, giving thereby Ixy = 0.
Thus xy ∈ r(I) = l(I). Also y ∈ l(J) implies xy ∈ l(J)
giving thereby xy∈ l(I+J). Thus l(I+J) 6= 0, a contra-
diction. Thus l(I)l(J) = 0. Thus I −→ r(I) = l(I)−→
l(J)−→ J is a directed path. Thus d(I,J) = 3.

(ii) Since I(6= 0) is simple invariant and J is nilpotent, there-
fore IJ = 0[Theorem 2.5]. Thus (I + J)2 = I2 + J2 = 0.
Also l(I+J)2 = 0, as x∈ l(I+J)2 gives x(I+J)⊆ l(I+
J). Thus x(I + J) = 0 giving thereby x ∈ l(I + J) = 0
as IJ = 0 = JI. Since J is nilpotent, therefore qJ is
also so for some q(6= 0) ∈ l(I) = r(I). Also qJ2 6= 0,
for otherwise q(I2 + J2) = qI2 +qJ2 = qI.I +qJ2 = 0.
Thus q(6= 0) ∈ l(I2 + J2) = l(I + J)2, a contradiction.
Again I+qJ 6= J, for otherwise I ⊆ J implies I+J = J.
Thus l(I + J) = l(J)(6= 0), a contradiction. Hence
I +qJ,J are distinct and I + J = I +qJ+ J which gives
l(I+qJ+J) = 0 and (I+qJ)J = IJ+qJ2 = qJ2(6= 0).
Hence d(I +qJ,J) = 3[caseI].

Theorem 2.7. Let N be a near-ring such that Γs(N)> 3, then
N does not contain more than two invariant vertices I1 and I2
such that l(I1) and l(I2) are essential.

Proof. Let I1, I2 and I3 be three invariant N-subsets such that
l(I1), l(I2) and l(I3) are essential. Let J1 = l(I1)∩ I2 6= 0,J2 =
l(I2)∩ I3 6= 0 and J3 = l(I3)∩ I1 6= 0. Clearly each Ji, i =

1,2,3 are left N-subsets. Also l(I1)∩ I2 ⊆ I2 which gives that
l(I2)⊆ l(l(I1)∩ I2). Thus l(l(I1)∩ I2) = l(J1) 6= 0. Similarly
l(J2) 6= 0 and l(J3) 6= 0. Also J1,J2 and J3 are distinct. For
otherwise J2

1 = J2J1 = (l(I2)∩ I3)(l(I1)∩ I2) ⊆ l(I2)I2 = 0
implies that J1 = 0, a contradiction. Thus J1,J2 are J3 are
distinct such that J1J2 = 0, J2J3 = 0 and J3J1 = 0. Thus
J1→ J2→ J3→ J1 is a cycle, a contradiction.

Theorem 2.8. [6] Let N be a such that Γs(N) contains a cycle
with an invariant vertex in it. Then gr(Γs(N))≤ 4.

3. Coloring of Γs(N)

In this section we present some characterization of cliques
as well as of maximal cliques in Γs(N). Also we establish
some bounds for chromatic no of the graph.

Theorem 3.1. Let N be a near-ring and I1, I2, ...., Ik be ideals
of N such that l(Ii)’s are maximal as annihilator. Then the
following are equivalent.

(i) Pi = l(Ii)
′s are prime ideals so that Pi∩Pj = 0 for i 6= j.

(ii) {I1, I2, ...., Ik} is a clique.

Proof. Assume that Pi = l(Ii)
′s are prime ideals so that Pi∩

Pj = 0 for i 6= j. Let IiI j 6= 0, (1 ≤ i, j ≤ k) gives that Ii *
l(I j) = Pj. Now l(Ii)Ii = 0 implies l(Ii)Ii ∈ Pj which gives
that l(Ii)⊆ Pj or Ii ⊆ Pj. Thus l(Ii) = Pi ⊆ Pj giving thereby
Pi = Pi∩Pj = 0, a contradiction. Thus IiI j = 0. Conversely,
assume that {I1, I2, ...., Ik} is a clique. Suppose that I and
J be two ideals such that IJ ⊆ Pi so that I * Pi and J * Pi.
Now IJ ⊆ Pi = l(Ii) implies IJIi = 0 giving thereby I ⊆ l(JIi).
Again Ii is an invariant N-subset being an ideal. Thus x ∈
l(Ii) = r(Ii)[Lemma 2.2] implies Iix = 0. Thus JIix = 0 giving
thereby x ∈ l(JIi). Hence l(Ii)⊆ l(IJi) giving thereby l(I) =
l(IJi) = 0. Thus I2 = 0, a contradiction.

Theorem 3.2. Let N be a near-ring and Ii, i= 1,2, ...,k be the
ideals of such that l(Ii)

′s are pairwise disjoint and maximal
as annihilator. Then the following are equivalent.

(i) {I1, I2, ...., Ik} is a maximal clique.

(ii) l(Ii)’s are only annihilator prime ideals.

Proof. Assume that {I1, I2, ...., Ik} is a maximal clique. Let
I be another ideal distinct from Ii, 1 ≤ i ≤ k where l(I) is
maximal with l(I)∩ l(Ii) = 0. If l(I) is prime, then we show
that IiI = 0. Suppose that IiI 6= 0 which implies Ii * l(I).
Now l(Ii)Ii) ⊆ l(I) gives that either l(Ii) ⊆ l(I) or Ii ⊆ l(I).
Thus l(Ii) = l(Ii)∩ l(I) = 0, a contradiction. Hence IiI = 0 for
i= 1,2, ....,k. Thus {I, I1, I2, ...., Ik} is a clique which contains
{I1, I2, ...., Ik}, a contradiction. Thus I = Ii for some i,1≤ i≤
k. Thus l(Ii)’s are only prime ideals of this type. Conversely,
let C/ be a clique such that C = {I1, I2, ..., Ik}⊂C/. Let I ∈C/

such that I /∈C. Now IiI = 0 for all i. We claim that l(I) is a
prime ideal. Suppose A,B be two ideals such that AB⊆ l(I)
and A* l(I), B* l(I). Now ABI = 0 gives A⊆ l(BI) = l(I),
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a contradiction. Thus l(I) is a prime ideal and l(I) = l(Ii) for
some 1≤ i≤ k. Now IIi(= 0)⊆ l(Ii) gives that either I ⊆ l(Ii)
or Ii ⊆ l(Ii). Thus l(I) is a prime ideal, a contradiction. Thus
{I1, I2, ...., Ik} is a maximal clique.

Example 3.3. Consider Z6, the integer modulo 6. Here I1 =
{0,3}, I2 = {0,2,4} are only ideals. Clearly {0, I1, I2} is a
clique in Γs(Z6). Also AnnI1 = I2, AnnI2 = I1 which are prime
ideals of Z6.

Theorem 3.4. Let N be a near ring and I1, I2, ..., Ik be the
only ideals such that Pi = l(Ii),1≤ i≤ k are pairwise disjoint
and maximal as annihilator. Then χ(Γs(N))≤ k+1.

Proof. It is clear that {I1, I2, ...., Ik} forms a clique[Theorem
3.1]. We give each I′i s a distinct color and one extra color to
′0′. We claim that these k+1 colors are sufficient to color the
graph Γs(N). Consider I(6= 0) be any ideal. Then I * l(Ii) for
some i, for if I ⊆ l(Ii) for each i, then I ⊆ l(I1)∩ l(I2)∩ .....∩
l(Ik) = 0, a contradiction. Let k = min{i|I * l(Ii)}. Thus
I * l(Ik) which gives that IIk 6= 0. Here we give the color of
Ik to I. Let J be another ideal which is also coloured with
the color of Ik. Thus JIk 6= 0. We claim IJ 6= 0. Suppose
IJ = 0 gives that IJ ⊆ l(Ik) which gives that either I ⊆ l(Ik)
or J ⊆ l(Ik) as l(Ik) is a prime ideal, a contradiction. Next,
let I,J be two left N-subsets such that I and J are given the
color of some Ik. Thus IIk 6= 0 and JIk 6= 0. Here IJ 6= 0. For
if IJ = 0, we get IJIk = 0. Thus I ⊆ l(JIk) = r(JIk). But for
any x ∈ l(Ik) = r(Ik), Ikx = 0 gives JIkx = 0 which implies
that x ∈ r(JIk) = l(JIk). Thus l(Ik) = l(JIk) giving thereby
IIk = 0, a contradiction. Thus IJ 6= 0.

Example 3.5. : Consider Z6 = {0,1,2,3,4,5} which is a
near-ring with respect to the tables given below. The only left
N subsets are I1 = {0,3}, I2 = {0,2,4} and I3 = {0,2,3.4}
which are invariant also and l(I1) = I2 and l(I2) = I1 are
two maximal ideals of the annihilator ideal form. Here the
chromatic number χ(Γs(Z6)) is 2+1 = 3, i.e., χ(Γs(Z6)) is
equal to p+ 1, where p is the number of maximal ideals of
the form of left annihilator.

In the results below, we deal with the essentiality of an-
nihilator ideals in a near-ring N to determine the chromatic
number of Γs(N).

Theorem 3.6. Let N be a near-ring with unity, then the fol-
lowing two are equivalent.

(i) If for a left N-subset I of N, l(I) is essential, then I = 0.

(ii) N is strongly semi-prime.

Example 3.7. Consider the ring Z6 = {0,1,2,3,4,5} which
is strongly semi-prime with unity. Here I1 = l(I2) = {0,3}
and I2 = l(I1) = {0,2,4} are the only non-zero ideals and
Z6 = Ann(0) is the only essential ideal.

Example 3.8. Z4 = {0,1,2,3} is a ring with unity. Here Z4
is not strongly semi-prime as for I = {0,2}, I2 = 0 and l(I) is
an essential ideal of Z4

Theorem 3.9. :[6]Let N be a near-ring such that Γ(N) has
no infinite clique, then the near-ring N satisfies the acc on
essential left N-subsets.

Proof. Let I1 < I2 < I3 < ......be an ascending chain for essen-
tial left N-subsets. Suppose Ii < Ii+1. Now Ii∩ l(Ii)≤ Ii+1∩
l(Ii). Here Ii∩ l(Ii) 6= 0 as Ii is essential. Thus Ii+1∩ l(Ii) 6= 0.
Also Ii∩ l(Ii) 6= Ii+1∩ l(Ii) for otherwise (Ii∩ l(Ii))

2 = (Ii+1∩
l(Ii))(Ii∩ l(Ii)) ⊆ l(Ii)Ii = 0, a contradiction. Now consider
an element xn ∈ In∩ l(In−1) such that xn /∈ In−1∩ l(In−1). Here
for i 6= j (suppose i > j), xix j ∈ (Ii∩ l(Ii−1))(I j ∩ l(I j−1)) ⊆
l(Ii−1)I j = 0. Thus we get an infinite clique in N, a contradic-
tion.

Theorem 3.10. :[6]Let N be a near-ring without unity. If
Γs(N) has no infinite clique, then N satisfies the acc on invari-
ant subsets having essential left N-subsets.

Proof. Let I1 < I2 < I3.... be an ascending chain of invariant
subsets with essential left annihilators. Suppose Ii � Ii+1. Let
xi+1(6= 0)∈ Ii+1\Ii. Now consider Ji+1 = l(Ii+1)∩〈xi+1〉 6= 0,
where 〈xi+1〉 is the ideal generated by xi+1. Here JiJ j = 0 for
i < j, a contradiction.

Theorem 3.11. :[6] Let N be a near-ring with unity and
l(I1), l(I2), ...., l(In) be the only essential N-subsets of N such
that each Ii is an ideal. Then χ(Γs(N))≤ n+1.

Example 3.12. Consider the set Z(p∞) of all rational num-
bers of the form m

pk such that 0 ≤ m
pk < 1, where p is a

fixed prime number, n runs through all non negative inte-
gers. Then Z(p∞) is a ring with respect to addition modulo
1 and multiplication defined as ab = 0 for all a,b ∈ Z(p∞).
It is to be noted that each subgroup of Z(p∞) is an ideal
of it and the only proper ideals of Z(p∞) are of the form

Ik−1 = {0, 1
pk−1 ,

2
pk−2 , ....,

pk−1−1
pk−1 } for each positive integer k.

Thus the ideals are in a chain 0 < I1 < I2 < ..... and each Ii’s
are essential Zp∞ is a reduced ring without unity. But here
l(Ik−1) = 0 for all k which are not essential. Here IiI j 6= 0 for
any i, j and χ(Γs(Zp∞)) = 2.

Example 3.13. : Consider the set M(N) =

(
Z2 N
0 Z2

)
which is the set of elements of the form {

(
0 n
0 0

)
,

(
0 n
0 1

)
,(

1 n
0 0

)
,

(
1 n
0 1

)
}, where n ∈ N. Here M(N) is a near-

ring with respect to ordinary addition and multiplication(xn=
xn,x ∈ Z2) with unity which is not strongly semi-prime as(

0 n
0 0

)
.

(
0 n
0 0

)
=

(
0 0
0 0

)
. If N is not finite,

then M(N) has infinite invariant sets Ii(i = 1,2,3, ...) such
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that l(Ii) ={
(

0 n
0 0

)
,

(
0 0
0 0

)
| n ∈ N} is essential and

χ(Γs(M(N))) = ∞.

Theorem 3.14. Let N be a near-ring such that ΓS(N) has no
infinite clique, then N satisfies the a.c.c for annihilators of left
N-subsets of N .

Proof. Let Ann(I1)⊂Ann(I2)⊂Ann(I3)⊂ ...... be an ascend-
ing chain where Ii are left N− subsets such that Ann(Ii) 6= 0.
Suppose Ann(In−1) ⊂ Ann(In). Let xn ∈ Ann(In) but xn /∈
Ann(In−1). Consider Jn = In−1xn. Clearly Jn is also a left N-
subset. Also l(In−1)⊆ l(In−1xn) which gives that l(In−1xn) 6= 0.
Thus l(Jn) 6= 0. For each n, JnJn−1 = (In−1xn)(Inxn+1) =
In−1(xnInxn+1) = 0. In fact JnJk = (In−1xn)(Ik−1xk)
= In−1(xnIk−1)xk = 0 for n > k since xn ∈ Ann(In)⊂ Ann(Ik).
Thus {Ji|i > 1} forms an infinite clique, a contradiction.

The subset C(N) = {xi ∈ N|xin = nxi,n ∈ N} of a near-
ring N is called the multiplicative centre of N

Theorem 3.15. Let {xi}⊂C(N) and let I =< {x1,x2, ...,xn >.
If there are only finite Ixi, then Γs(N) has an infinite clique.

Proof. Let Ixi = Ix j for some xi,x j ∈ C(N). We can pick
yi ∈ {x1,x2, .....} such that yiy j = yiyk for i < j < k. Now
Iy′is are left N-subsets of N. Also l(I) ⊆ l(Iyi) gives that
l(Iyi) 6= 0 as l(I) 6= 0. Consider Zi j = Iyi− Iy j. Clearly Zi j is
a left N-subset of N. Also l(Zi j) 6= 0, for any x ∈ l(I), xI = 0
implies xIyi = 0 and xIy j = 0 giving thereby x(Iyi− Iy j) = 0.
Thus l(I) ⊆ l(Zi j) implies that l(Zi j) 6= 0. Further Zi jZkr =
(Iyi− Iy j)(Iyk− Iyr)⊆ ((Iyiyk− Iy jyk)− (Iyiyr− Iy jyr) = 0
for all i < j < k < r. Thus {Z12,Z34, ....} is an infinite clique
of Γs(N).
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