

https://doi.org/10.26637/MJM0701/0024

A note on strong zero-divisor graphs of near-rings

Prohelika Das^{1*}

Abstract

For a near-ring *N*, the strong zero-divisor graph Γ*s*(*N*) is a graph with vertices *V* ∗ (*N*), the set of all non-zero left *N*-subset having non-zero annihilators and two vertices *I* and *J* are adjacent if and only if *IJ* = 0. In this paper, we study diameter and girth of the graph Γ*s*(*N*) wherein the nilpotent and invariant vertices are playing a significant role. We show that if *diam*(Γ*s*(*N*)) > 3, then *N* is necessarily a strongly semi-prime near-ring. Also we find the χ(Γ*s*(*N*)) and investigate some characterizations of cliques and maximal cliques in Γ*s*(*N*).

Keywords

Near-ring; essential ideal; diameter; girth; chromatic number.

AMS Subject Classification

16Y30, 13A15.

Contents

1. Introduction

Let *N* be a zero symmetric (right) near-ring and $V(N)$ be the set of all left *N*-subsets with non-zero left annihilators. The strong zero-divisor graph denoted $\Gamma_S(N)$ is a directed simple graph with the set of vertices $V^*(N) = V(N)\{0\}$ such that any two distinct *I* and $J \in V^*(N)$ are adjacent if and only if $IJ = 0$.

The concept of zero-divisor graph of a commutative ring was first introduced by Beck in [4]. Beck [4] has mainly investigated coloring of the ring. He has conjectured that $\chi(\Gamma(R)) = clique(\Gamma(R))$. Anderson et all redefined the notion of zero-divisor graphs in [2] and proved that such a graph is always connected and its diameter is less than or equal to 3. Anderson and Mulay in [3] studied diameter and girth of zero-divisor graph of a commutative ring. The notion of zero-divisor graph was extended to a non-commutative ring [1] and various properties of diameter and girth were established. Behboodhi [5] studied annihilator ideal graphs dealing with the annihilators of ideals of a commutative ring. Redmond[8] has generalised the notion of zero-divisor graph. For an ideal *I* of a commutative ring *R*, Redmond [8] defined

an undirected graph $\Gamma_I(R)$ with vertices $\{x \in R \setminus I \mid xy \in I \text{ for } I \in I\}$ some $y \in R \setminus I$ where distinct vertices *x* and *y* are adjacent if and only if $xy \in I$.

In this paper, we study some graph theoretic aspect of a near-ring *N*. For basic definitions and results related to nearring, we would like to mention Pilz [7]. A subset *I* of *N* is left(right)*N*-subset of *N* if $NI \subseteq I$ ($IN \subseteq I$) and *I* is invariant if it is both left as well as right *N*-subset of *N*. If *I* is a left *N*subset of *N*, then $l(I) = \{x \in N \mid xI = 0\}$ is the left annihilator of *I*. For any *N*-subset *I*, *l*(*I*) is also a left *N*-subset of *N*. If *I* and *J* be two left *N*-subsets, then so is $I \cap J$. A left *N*-subset *I* of *N* is nilpotent with index $n(n \in \mathbb{Z}_+)$ if $I^n = 0$ and $I^m \neq 0$ for $m < n$. The near-ring N is strongly semi-prime if it has no non-zero nilpotent invariant subsets. A left *N*-subset(ideal) *I* of *N* is essential in *N* if for any non-zero left *N*-subset(ideal) *A* of *N*, $I \cap A \neq 0$.

Recall that a graph *G* is connected if there is a path between any two distinct vertices. The graph *G* is complete if every two vertices are adjacent. The distance between two distinct vertices *x* and *y* of *G* is the length of the shortest path from *x* to *y* denoted $d(x, y)$. If no such path exists, then $d(x, y) = \infty$. The diameter of the graph *G* is $diam(G) = sup{d(x, y)|x}$ and *y* are distinct vertices of *G*}. The girth of *G* is the length of distance of the shortest cycle in G , denoted $gr(G)$. If there is no such cycle, then $gr(G) = \infty$. The minimal numbers of colors so that no two adjacent elements of the graph *G* have same color is the chromatic number of *G* denoted $\chi(G)$.

In this paper, we study diameter and girth of the strong zero-divisor graphs of near-rings wherein the nilpotency and

invariant character of vertices playing a significant role. We prove that any path joining vertex *I* to an invariant vertex *J* is contained in a cycle provided $l(I+J) \neq 0$. We show that a strongly semi-prime near-ring contains no non-zero nilpotent invariant subset if $\Gamma_s(N) > 3$. Moreover, we show that in this case $\Gamma_s(N)$ contains not more than two invariant subsets I_1 and I_2 so that $I(I_1)$ and $I(I_2)$ are essential. In addition to the above, we investigate the coloring of $\Gamma_s(N)$ and some characterisations of cliques and maximal cliques of Γ*s*(*N*).

Below we discuss some examples of strong zero-divisor graphs $\Gamma_s(N)$ in contrast to zero-divisor graph $\Gamma(N)$

Example 1.1. *If the graph* Γ*s*(*N*) *contains a point only, then* $N \cong Z_4$ *or* $\frac{Z_2[x]}{}$ *. In this case* $gr(\Gamma_s(N)) = \infty$ *. Also* $\Gamma_s(Z_4) \cong$ $\Gamma(Z_4)$

Example 1.2. *If the graph* Γ*s*(*N*) *contains two points, then* Γ*s*(*N*) *contains no cycle and gr*(Γ*s*(*N*) = ∞*. In this case N* \cong *Z*₂ × *Z*₂ *or Z*₆*. Here Z*₂ × *Z*₂ \ncong *Z*₆*, however their strong zero divisor graphs* $\Gamma_s(Z_2 \times Z_2)$ *and* $\Gamma_s(Z_6)$ *are isomorphic* $i.e. \Gamma_s(Z_2 \times Z_2) \cong \Gamma(Z_2 \times Z_2) \cong \Gamma_s(Z_6)$ $(Z_2 \times Z_2 \ncong Z_6)$

Example 1.3. *The graph* $\Gamma_s(\frac{Z_3[x]}{\langle x^2 \rangle})$ *is graph with finite girth* 3. Here $I = \{ \langle x^2 \rangle, x + \langle x^2 \rangle, 2x + \langle x^2 \rangle \}$ is a nilpotent ideal as $I^2 = 0$. $\Gamma_{s}(\frac{Z_{3}[x]}{\langle x^{2}\rangle})\cong\Gamma_{s}(\frac{Z_{2}[x,y]}{\langle x^{2},y^{2},xy\rangle})$ but $\frac{Z_{3}[x]}{x^{2}}\ncong\frac{Z_{2[x,y]}}{\langle x^{2},y^{2},x\rangle}$ $\frac{Z_{2[x,y]}}{\langle x^2,y^2,xy \rangle}$.

Example 1.4. *The graph below is a complete bipartite graph* with girth 4. $\Gamma_s(\frac{Z_4[x]}{\langle x^2 \rangle}) \ncong \Gamma_s(\frac{Z_2[x,y]}{\langle x^2, xy, y^2 \rangle}) \left(\frac{Z_4[x]}{\langle x^2 \rangle} \cong \frac{Z_2[x,y]}{\langle x^2, xy, y^2 \rangle}\right)$

2. Diameter and girth

In this section, we present some of characteristic of paths, diameter and girth of $\Gamma_s(N)$. We note that the vertex 0 is adjacent to every other vertices which we exclude here for obvious reason.

A vertex $I \in \Gamma_s(N)$ is an invariant vertex if it is an invariant *N* subset of the near-ring *N*. The right annihilator $r(I) = \{x \in I\}$ $N | Ix = 0$ of a left *N*-subset *I* of *N* is a right *N*-subset of *N* not necessarily coincide to $l(I)$. However in a strongly semiprime near-ring *N*, in case of an invariant subset *I*, $I\ell(I) =$ 0 as $(II(I))^2 = I(I(I)I)I(I) = 0$ giving thereby $I(I) \subset r(I)$. Similarly $r(I) \subseteq l(I)$. Thus we state the following lemma.

Lemma 2.1. *[6] Let N be a strongly semi-prime near-ring. Then for an invariant subset I of N,* $l(I) = r(I)$ *.*

Let *I* be a left *N*-subset with $l(I) \neq 0$ and let $x(\neq 0) \in l(I)$. If $J \subset l(I)$ be a non-zero nilpotent *N*-subset. Then there exists a positive integer *m* such that $xJ^m = 0$ but $xJ^{m-1} = 0$. It is clear that $l(I+J) \subseteq l(I) \cap l(J)$.

Lemma 2.2. *[6] Let N be a near-ring such that the left annihilators are distributively generated. If I be a left N-subset with* $l(I) \neq 0$ *and* $J \subseteq l(I)$ *is a nilpotent left N-subset of N*, *then* $l(I+J) \neq 0$.

Proof. Let $x (\neq 0) \in l(I)$ such that $xJ^m = 0$ and $xJ^{m-1} \neq 0$ for some positive integer *m*. Now $xJ^{m-1}J = xJ^m = 0$ and $xJ^{m-1}I = xJ^{m-2}JI = 0$. Thus $xJ^{m-1}(I+J) = 0$ giving thereby $xJ^{m-1} \subset l(I+J)$. Thus $l(I+J) \neq 0$. \Box

Thus in this lemma, we see that the nilpotency of $J \subset l(I)$ leads us to $l(I+J) \neq 0$.

Throughout the paper, by a near-ring *N* we mean a strongly semi-prime near-ring unless otherwise specified.

Theorem 2.3. *Let N be a near-ring and J be an invariant N*-subset such that $l(I+J) \neq 0$ for some $I \in V(\Gamma_S(N))$. Then *any path joining I and J is contained in a cycle of* $\Gamma_S(N)$ *.*

Proof. Let $P: I \longrightarrow K_1 \longrightarrow K_2 \longrightarrow \dots \longrightarrow K_n \longrightarrow J$ be any path. Now $l(I+J) \subseteq l(I) \cap l(J)$ implies $l(I) \cap l(J) \neq 0$ as *l*(*I* + *J*) \neq 0. Let *M* = *l*(*I*)∩*l*(*J*) which is a non-zero left *N*subset of *N*. Then $I \longrightarrow K_1 \longrightarrow K_2 \longrightarrow \dots \longrightarrow K_n \longrightarrow J \longrightarrow$ *M* \longrightarrow *I* is a cycle containing the path *P* since $JM = J(l(I)) \cap$ $l(J) = J(l(I) \cap r(J)) = 0$ and $MI = (l(I) \cap l(J))I = 0$.

Theorem 2.4. *Let N be a near-ring such that* $girth(\Gamma_S(N)) >$ 3*. Then N has no non-zero nilpotent invariant subset*

Proof. Let $I(\neq 0)$ be a nilpotent invariant subset of *N* and *n* be the least positive integer such that $I^n = 0$. Now $I.I^{n-1} = 0$ gives that $I^{n-1} \subseteq r(I) = l(I)$ [Lemma 2.2]. Thus $l(I)$ is a non-zero left *N*-subset of *N* so that $I^{n-1}l(I) = I^{n-2}lI(I)$ $I^{n-2}Ir(I) = 0$. Thus $I(I) \longrightarrow I \longrightarrow I^{n-1} \longrightarrow I(I)$ is a circuit, which is a contradiction. П

In the example 1.3 $gr(\Gamma_s(\frac{Z_4[x]}{\langle x^2 \rangle})) = 3$. Here $\frac{Z_4[x]}{\langle x^2 \rangle}$ is not strongly semi-prime. The non-zero ideal $I = \{ \langle x^2 \rangle, x + \langle x^2 \rangle, 2x + \rangle \}$ $\langle x^2 \rangle$, $3x + \langle x^2 \rangle$ is nilpotent as $I^2 = 0$.

A left *N*-subset *I* of *N* is said to be simple if there exists no non-zero left N - subset J such that $J \subseteq I$

Theorem 2.5. *Let I be an essential simple N-subset of N, then I is adjacent to every nilpotent* $J \in V(\Gamma_{S}(N))$ *.*

Proof. Let $J \in V(\Gamma_S(N))$ be nilpotent and let *m* be the least positive integer such that $J^m = 0$. Now $I \cap J \neq 0$ as *I* is essential. Also $I \cap J = I$ since *I* is a simple *N*-subset giving thereby $J \subseteq I$. If $IJ = 0$, then we are done. For otherwise *IJ* = *I* \cap *J* = *I* which gives that $IJ^2 = IJ$. *I* = *I*. Similarly $IJ^3 = IJ^2J = IJ = I$. Continuing in this way we get that $IJ^m = I$ which gives that $I = 0$, a contradiction. \Box

Theorem 2.6. *Let N be a near-ring such that the left annihilators are distributively generated. Let I be an invariant simple N-subset and J be a nilpotent left N-subset such that* $l(I+J) = 0$ *. Then for some* $q \in l(I)$ *,* $d(I+qJ, J) = 3$ *.*

Proof. We give the proof in two steps such as

- (i) Step 1: We show that for any two non-adjacent vertices *I* and *J* where *I* is an invariant *N*-subset so that $l(I+J) \neq 0, d(I,J) = 3$. Since *I* is an invariant *N*subset there for $I\ell(I) = Ir(I) = 0$ [Lemma 2.1]. We claim $l(I)l(J) = 0$. For let $xy(\neq 0) \in l(I)l(J)$ gives that $Ixy \subseteq I\ell(I)\ell(J) = I\ell(I)\ell(J) = 0$, giving thereby $Ixy = 0$. Thus $xy \in r(I) = l(I)$. Also $y \in l(J)$ implies $xy \in l(J)$ giving thereby $xy \in l(I+J)$. Thus $l(I+J) \neq 0$, a contradiction. Thus $l(I)l(J) = 0$. Thus $I \longrightarrow r(I) = l(I) \longrightarrow$ $l(J) \longrightarrow J$ is a directed path. Thus $d(I, J) = 3$.
- (ii) Since $I(\neq 0)$ is simple invariant and *J* is nilpotent, therefore $IJ = 0$ [Theorem 2.5]. Thus $(I+J)^2 = I^2 + J^2 = 0$. Also $l(I+J)^2 = 0$, as $x \in l(I+J)^2$ gives $x(I+J) \subseteq l(I+J)$ *J*). Thus $x(I+J) = 0$ giving thereby $x \in l(I+J) = 0$ as $IJ = 0 = JI$. Since *J* is nilpotent, therefore qJ is also so for some $q(\neq 0) \in l(I) = r(I)$. Also $qJ^2 \neq 0$, for otherwise $q(I^2 + J^2) = qI^2 + qJ^2 = qI \cdot I + qJ^2 = 0$. Thus $q(\neq 0) \in l(I^2 + J^2) = l(I+J)^2$, a contradiction. Again $I + qJ \neq J$, for otherwise $I \subseteq J$ implies $I + J = J$. Thus $l(I + J) = l(J) (\neq 0)$, a contradiction. Hence $I + qJ$,*J* are distinct and $I + J = I + qJ + J$ which gives $l(I+qJ+J) = 0$ and $(I+qJ)J = IJ + qJ^2 = qJ^2(\neq 0)$. Hence $d(I + qJ, J) = 3$ [caseI].

 \Box

Theorem 2.7. Let *N* be a near-ring such that $\Gamma_s(N) > 3$, then *N* does not contain more than two invariant vertices I_1 and I_2 *such that* $l(I_1)$ *and* $l(I_2)$ *are essential.*

Proof. Let *I*1,*I*² and *I*³ be three invariant *N*-subsets such that $l(I_1), l(I_2)$ and $l(I_3)$ are essential. Let $J_1 = l(I_1) \cap I_2 \neq 0, J_2 =$ $l(I_2) \cap I_3 \neq 0$ and $J_3 = l(I_3) \cap I_1 \neq 0$. Clearly each $J_i, i =$

1,2,3 are left *N*-subsets. Also $l(I_1) ∩ I_2 ⊆ I_2$ which gives that *l*(*I*₂) ⊆ *l*(*I*(*I*₁)∩*I*₂). Thus *l*(*I*(*I*₁)∩*I*₂) = *l*(*J*₁) ≠ 0. Similarly $l(J_2) \neq 0$ and $l(J_3) \neq 0$. Also J_1, J_2 and J_3 are distinct. For otherwise $J_1^2 = J_2 J_1 = (l(I_2) \cap I_3)(l(I_1) \cap I_2) \subseteq l(I_2)I_2 = 0$ implies that $J_1 = 0$, a contradiction. Thus J_1, J_2 are J_3 are distinct such that $J_1J_2 = 0$, $J_2J_3 = 0$ and $J_3J_1 = 0$. Thus $J_1 \rightarrow J_2 \rightarrow J_3 \rightarrow J_1$ is a cycle, a contradiction. \Box

Theorem 2.8. *[6] Let N be a such that* $\Gamma_s(N)$ *contains a cycle with an invariant vertex in it. Then* $gr(\Gamma_s(N)) \leq 4$ *.*

3. Coloring of Γ*s*(*N*)

In this section we present some characterization of cliques as well as of maximal cliques in $\Gamma_s(N)$. Also we establish some bounds for chromatic no of the graph.

Theorem 3.1. Let *N* be a near-ring and I_1, I_2, \ldots, I_k be ideals *of N such that l*(*Ii*)*'s are maximal as annihilator. Then the following are equivalent.*

- *(i)* $P_i = l(I_i)'$ *s are prime ideals so that* $P_i \cap P_j = 0$ *for* $i \neq j$ *.*
- *(ii)* $\{I_1, I_2, ..., I_k\}$ *is a clique.*

Proof. Assume that $P_i = l(I_i)'s$ are prime ideals so that $P_i \cap I$ $P_j = 0$ for $i \neq j$. Let $I_i I_j \neq 0$, $(1 \leq i, j \leq k)$ gives that $I_i \nsubseteq$ $l(I_j) = P_j$. Now $l(I_i)I_i = 0$ implies $l(I_i)I_i \in P_j$ which gives that $l(I_i) \subseteq P_j$ or $I_i \subseteq P_j$. Thus $l(I_i) = P_i \subseteq P_j$ giving thereby $P_i = P_i \cap P_j = 0$, a contradiction. Thus $I_i I_j = 0$. Conversely, assume that $\{I_1, I_2, ..., I_k\}$ is a clique. Suppose that *I* and *J* be two ideals such that $IJ \subseteq P_i$ so that $I \nsubseteq P_i$ and $J \nsubseteq P_i$. Now $IJ \subseteq P_i = l(I_i)$ implies $IJI_i = 0$ giving thereby $I \subseteq l(JI_i)$. Again I_i is an invariant *N*-subset being an ideal. Thus $x \in$ $l(I_i) = r(I_i)$ [Lemma 2.2] implies $I_i x = 0$. Thus $JI_i x = 0$ giving thereby $x \in l(JI_i)$. Hence $l(I_i) \subseteq l(IJ_i)$ giving thereby $l(I) =$ $l(IJ_i) = 0$. Thus $I^2 = 0$, a contradiction. \Box

Theorem 3.2. Let *N* be a near-ring and I_i , $i = 1, 2, ..., k$ be the *ideals of such that l*(*Ii*) 0 *s are pairwise disjoint and maximal as annihilator. Then the following are equivalent.*

- *(i)* $\{I_1, I_2, \ldots, I_k\}$ *is a maximal clique.*
- *(ii)* $l(I_i)$ *'s are only annihilator prime ideals.*

Proof. Assume that $\{I_1, I_2, \ldots, I_k\}$ is a maximal clique. Let *I* be another ideal distinct from I_i , $1 \le i \le k$ where $l(I)$ is maximal with $l(I) \cap l(I_i) = 0$. If $l(I)$ is prime, then we show that $I_iI = 0$. Suppose that $I_iI \neq 0$ which implies $I_i \nsubseteq I(I)$. Now $l(I_i)I_i) \subseteq l(I)$ gives that either $l(I_i) \subseteq l(I)$ or $I_i \subseteq l(I)$. Thus $l(I_i) = l(I_i) \cap l(I) = 0$, a contradiction. Hence $I_iI = 0$ for $i = 1, 2, \ldots, k$. Thus $\{I, I_1, I_2, \ldots, I_k\}$ is a clique which contains $\{I_1, I_2, \ldots, I_k\}$, a contradiction. Thus $I = I_i$ for some $i, 1 \le i \le k$ *k*. Thus $l(I_i)$'s are only prime ideals of this type. Conversely, let C' be a clique such that $C = \{I_1, I_2, ..., I_k\} \subset C'$. Let $I \in C'$ such that $I \notin \mathbb{C}$. Now $I_i I = 0$ for all *i*. We claim that $I(I)$ is a prime ideal. Suppose *A*, *B* be two ideals such that $AB \subseteq l(I)$ and $A \nsubseteq l(I), B \nsubseteq l(I)$. Now $ABI = 0$ gives $A \subseteq l(BI) = l(I)$,

a contradiction. Thus $l(I)$ is a prime ideal and $l(I) = l(I_i)$ for some $1 \le i \le k$. Now $II_i(=0) \subseteq I(I_i)$ gives that either $I \subseteq I(I_i)$ or $I_i \subseteq l(I_i)$. Thus $l(I)$ is a prime ideal, a contradiction. Thus ${I_1, I_2, \ldots, I_k}$ is a maximal clique. \Box

Example 3.3. *Consider* Z_6 *, the integer modulo* 6*. Here* $I_1 =$ $\{0,3\}, I_2 = \{0,2,4\}$ *are only ideals. Clearly* $\{0,I_1,I_2\}$ *is a clique in* $\Gamma_s(Z_6)$ *. Also AnnI*₁ = *I*₂*, AnnI*₂ = *I*₁ *which are prime ideals of* Z_6 *.*

Theorem 3.4. Let *N* be a near ring and $I_1, I_2, ..., I_k$ be the *only ideals such that* $P_i = l(I_i), 1 \leq i \leq k$ *are pairwise disjoint and maximal as annihilator. Then* $\chi(\Gamma_s(N)) \leq k+1$.

Proof. It is clear that $\{I_1, I_2, ..., I_k\}$ forms a clique Theorem 3.1]. We give each I_i^{\prime} s a distinct color and one extra color to $0'$. We claim that these $k+1$ colors are sufficient to color the graph $\Gamma_s(N)$. Consider $I(\neq 0)$ be any ideal. Then $I \nsubseteq I(I_i)$ for some *i*, for if $I \subseteq l(I_i)$ for each *i*, then $I \subseteq l(I_1) \cap l(I_2) \cap \ldots \cap l(I_k$ $l(I_k) = 0$, a contradiction. Let $k = min\{i | I \nsubseteq l(I_i)\}\$. Thus $I \nsubseteq l(I_k)$ which gives that $II_k \neq 0$. Here we give the color of *Ik* to *I*. Let *J* be another ideal which is also coloured with the color of I_k . Thus $JI_k \neq 0$. We claim $IJ \neq 0$. Suppose *IJ* = 0 gives that *IJ* \subseteq *l*(*I_k*) which gives that either *I* \subseteq *l*(*I_k*) or $J \subseteq l(I_k)$ as $l(I_k)$ is a prime ideal, a contradiction. Next, let *I*, *J* be two left *N*-subsets such that *I* and *J* are given the color of some I_k . Thus $II_k \neq 0$ and $JI_k \neq 0$. Here $IJ \neq 0$. For if $IJ = 0$, we get $IJI_k = 0$. Thus $I \subseteq l(JI_k) = r(JI_k)$. But for any $x \in l(I_k) = r(I_k)$, $I_k x = 0$ gives $JI_k x = 0$ which implies that $x \in r(JI_k) = l(JI_k)$. Thus $l(I_k) = l(JI_k)$ giving thereby $II_k = 0$, a contradiction. Thus $IJ \neq 0$. \Box

Example 3.5. *: Consider* $Z_6 = \{0, 1, 2, 3, 4, 5\}$ *which is a near-ring with respect to the tables given below. The only left N* subsets are $I_1 = \{0,3\}$, $I_2 = \{0,2,4\}$ and $I_3 = \{0,2,3.4\}$ *which are invariant also and* $l(I_1) = I_2$ *and* $l(I_2) = I_1$ *are two maximal ideals of the annihilator ideal form. Here the chromatic number* $\chi(\Gamma_s(Z_6))$ *is* $2+1=3$ *, i.e.,* $\chi(\Gamma_s(Z_6))$ *is equal to* $p + 1$ *, where* p *is the number of maximal ideals of the form of left annihilator.*

In the results below, we deal with the essentiality of annihilator ideals in a near-ring *N* to determine the chromatic number of $\Gamma_s(N)$.

Theorem 3.6. *Let N be a near-ring with unity, then the following two are equivalent.*

- *(i) If for a left N*-subset *I of N*, $l(I)$ *is essential, then* $I = 0$ *.*
- *(ii) N is strongly semi-prime.*

Example 3.7. *Consider the ring* $Z_6 = \{0, 1, 2, 3, 4, 5\}$ *which is strongly semi-prime with unity. Here* $I_1 = l(I_2) = \{0,3\}$ *and* $I_2 = l(I_1) = \{0, 2, 4\}$ *are the only non-zero ideals and* $Z_6 = Ann(0)$ *is the only essential ideal.*

Example 3.8. $Z_4 = \{0, 1, 2, 3\}$ *is a ring with unity. Here* Z_4 *is not strongly semi-prime as for* $I = \{0, 2\}$, $I^2 = 0$ *and* $I(I)$ *is an essential ideal of Z*⁴

Theorem 3.9. *:*[6]Let *N* be a near-ring such that $\Gamma(N)$ has *no infinite clique, then the near-ring N satisfies the acc on essential left N-subsets.*

Proof. Let $I_1 < I_2 < I_3 < ...$ be an ascending chain for essential left *N*-subsets. Suppose $I_i < I_{i+1}$. Now $I_i \cap l(I_i) \leq I_{i+1} \cap l(I_i)$ $l(I_i)$. Here $I_i \cap l(I_i) \neq 0$ as I_i is essential. Thus $I_{i+1} \cap l(I_i) \neq 0$. Also $I_i \cap l(I_i) \neq I_{i+1} \cap l(I_i)$ for otherwise $(I_i \cap l(I_i))^2 = (I_{i+1} \cap l(I_i))^2$ $l(I_i)(I_i \cap l(I_i)) \subseteq l(I_i)I_i = 0$, a contradiction. Now consider an element $x_n \in I_n \cap l(I_{n-1})$ such that $x_n \notin I_{n-1} \cap l(I_{n-1})$. Here f for $i \neq j$ (suppose $i > j$), $x_i x_j \in (I_i \cap l(I_{i-1}))(I_j \cap l(I_{j-1})) \subseteq$ $l(I_{i-1})I_i = 0$. Thus we get an infinite clique in *N*, a contradiction. \Box

Theorem 3.10. *:[6]Let N be a near-ring without unity. If* Γ*s*(*N*) *has no infinite clique, then N satisfies the acc on invariant subsets having essential left N-subsets.*

Proof. Let $I_1 < I_2 < I_3$ be an ascending chain of invariant subsets with essential left annihilators. Suppose $I_i \nleq I_{i+1}$. Let $x_{i+1}(\neq 0) \in I_{i+1} \setminus I_i$. Now consider $J_{i+1} = l(I_{i+1}) \cap \langle x_{i+1} \rangle \neq 0$, where $\langle x_{i+1} \rangle$ is the ideal generated by x_{i+1} . Here $J_i J_j = 0$ for $i < j$, a contradiction. П

Theorem 3.11. *:[6] Let N be a near-ring with unity and* $l(I_1), l(I_2), \ldots, l(I_n)$ *be the only essential N-subsets of N such that each I_i is an ideal. Then* $\chi(\Gamma_s(N)) \leq n+1$ *.*

Example 3.12. *Consider the set* $Z_{(p^{\infty})}$ *of all rational numbers of the form* $\frac{m}{p^k}$ such that $0 \leq \frac{m}{p^k}$ $\frac{m}{p^k} < 1$ *, where p is a fixed prime number, n runs through all non negative integers. Then Z*(*p* [∞]) *is a ring with respect to addition modulo* 1 *and multiplication defined as* $ab = 0$ *for all* $a, b \in \mathbb{Z}(p^{\infty})$ *. It is to be noted that each subgroup of Z*(*p* [∞]) *is an ideal of it and the only proper ideals of Z*(*p* [∞]) *are of the form* $I_{k-1} = \{0, \frac{1}{n^{k-1}}\}$ $\frac{1}{p^{k-1}}, \frac{2}{p^{k-1}}$ $\frac{2}{p^{k-2}}, \ldots, \frac{p^{k-1}-1}{p^k-1}$ *p ^k*−1 } *for each positive integer k. Thus the ideals are in a chain* $0 < I_1 < I_2 < ...$ *and each* I_i 's *are essential Zp*[∞] *is a reduced ring without unity. But here l*(I ^{*k*−1</sub>) = 0 *for all k which are not essential. Here* I _{*i*} I _{*j*} \neq 0 *for*} *any i*, *j* and $\chi(\Gamma_s(Z_{p^{\infty}})) = 2$.

Example 3.13. *: Consider the set* $M(N) = \begin{pmatrix} Z_2 & N \\ 0 & Z \end{pmatrix}$ $0 \quad Z_2$ \setminus which is the set of elements of the form $\{\left(\begin{array}{cc} 0 & n\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & n\ 0 & 1 \end{array}\right),$ $\begin{pmatrix} 1 & n \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, where $n \in N$. Here $M(N)$ is a near*ring with respect to ordinary addition and multiplication* $(\bar{x}n =$ $xn, \bar{x} \in Z_2$) *with unity which is not strongly semi-prime as* $\left(\begin{array}{cc} 0 & n \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & n \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$ If *N* is not finite, *then* $M(N)$ *has infinite invariant sets* I_i ($i = 1, 2, 3, ...$) *such*

that $l(I_i) = \left\{ \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} | n \in N \right\}$ *is essential and* $\chi(\Gamma_s(M(N))) = \infty$.

Theorem 3.14. *Let N be a near-ring such that* $\Gamma_S(N)$ *has no infinite clique, then N satisfies the a.c.c for annihilators of left N-subsets of N .*

Proof. Let $Ann(I_1) ⊂ Ann(I_2) ⊂ Ann(I_3) ⊂$ be an ascending chain where I_i are left N − *subsets* such that $Ann(I_i) \neq 0$. Suppose $Ann(I_{n-1})$ ⊂ $Ann(I_n)$. Let x_n ∈ $Ann(I_n)$ but $x_n \notin$ *Ann*(I_{n-1}). Consider $J_n = I_{n-1}x_n$. Clearly J_n is also a left *N*subset. Also $l(I_{n-1}) \subseteq l(I_{n-1x_n})$ which gives that $l(I_{n-1x_n}) \neq 0$. Thus $l(J_n) \neq 0$. For each *n*, $J_n J_{n-1} = (I_{n-1} x_n)(I_n x_{n+1}) =$ $I_{n-1}(x_nI_nx_{n+1}) = 0.$ In fact $J_nJ_k = (I_{n-1}x_n)(I_{k-1}x_k)$ $= I_{n-1}(x_nI_{k-1})x_k = 0$ for $n > k$ since $x_n ∈ Ann(I_n) ⊂ Ann(I_k)$. Thus $\{J_i | i > 1\}$ forms an infinite clique, a contradiction.

The subset $C(N) = \{x_i \in N | x_i n = nx_i, n \in N\}$ of a nearring *N* is called the multiplicative centre of *N*

Theorem 3.15. *Let* $\{x_i\}$ ⊂ $C(N)$ *and let I* = \langle $\{x_1, x_2, ..., x_n \rangle$. *If there are only finite* Ix_i *, then* $\Gamma_s(N)$ *has an infinite clique.*

Proof. Let $Ix_i = Ix_j$ for some $x_i, x_j \in C(N)$. We can pick $y_i \in \{x_1, x_2, \ldots\}$ such that $y_i y_j = y_i y_k$ for $i < j < k$. Now *Iy*^{i}_{*s*} are left *N*-subsets of *N*. Also *l*(*I*) ⊆ *l*(*Iy*_{*i*}) gives that $l(Iy_i) \neq 0$ as $l(I) \neq 0$. Consider $Z_{ij} = Iy_i - Iy_j$. Clearly Z_{ij} is a left *N*-subset of *N*. Also $l(Z_{ij}) \neq 0$, for any $x \in l(I)$, $xI = 0$ implies $xIy_i = 0$ and $xIy_j = 0$ giving thereby $x(Iy_i - Iy_j) = 0$. Thus $l(I) \subseteq l(Z_{ij})$ implies that $l(Z_{ij}) \neq 0$. Further $Z_{ij}Z_{kr} =$ $(Iy_i - Iy_j)(Iy_k - Iy_r) \subseteq ((Iy_iy_k - Iy_jy_k) - (Iy_iy_r - Iy_jy_r) = 0$ for all $i < j < k < r$. Thus $\{Z_{12}, Z_{34}, \dots\}$ is an infinite clique of $\Gamma_s(N)$. \Box

References

- [1] S.Akbari and A.Mohammadian, On the zero-divisor graph of a commutative ring, *J. Algebra*, 274(2)(2004), 847–855.
- [2] D.D.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, *J. Algebra*, 217(1999), 434– 447.
- [3] D.D.Anderson and S.B.Mulay, On the diameter and girth of a zero-divisor graph, *J. Pure Appl. Algebra*, 210(2007), 543–550.
- [4] I.Beck, Coloring of commutative rings, *J. Algebra*, 116(1988), 208–226.
- [5] M. Behboodhi and Z.Rakeei, The annihilating ideal graph of commutative ring, *J. Algebra Appl.*, 10(4)(2011), 727– 739.
- [6] P. Das, On the diameter, girth and coloring of the strong zero-divisor graph of near-rings, *Kyungpook Math. J.*, 56(2016), 1103–1113.
- [7] G. Pilz., *Near-rings*, North Holland Publishing Company, 1977.

[8] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, *Comm. Algebra*, 31(9)(2003), 4425– 4443.

? ? ? ? ? ? ? ? ? ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 ? ? ? ? ? ? ? ? ?

