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A note on strong zero-divisor graphs of near-rings

Prohelika Das'*

Abstract

For a near-ring N, the strong zero-divisor graph I';(N) is a graph with vertices V*(N), the set of all non-zero left
N-subset having non-zero annihilators and two vertices I and J are adjacent if and only if 7J = 0. In this paper, we
study diameter and girth of the graph I';(N) wherein the nilpotent and invariant vertices are playing a significant
role. We show that if diam(I';(N)) > 3, then N is necessarily a strongly semi-prime near-ring. Also we find the
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x(Ts(N)) and investigate some characterizations of cliques and maximal cliques in T';(N).
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1. Introduction
Let N be a zero symmetric (right) near-ring and V (N) be

the set of all left N-subsets with non-zero left annihilators.

The strong zero-divisor graph denoted I's(N) is a directed
simple graph with the set of vertices V*(N) = V(N){0} such
that any two distinct 7 and J € V*(N) are adjacent if and only
if IJ =0.

The concept of zero-divisor graph of a commutative ring
was first introduced by Beck in [4]. Beck [4] has mainly
investigated coloring of the ring. He has conjectured that
X(T(R)) = clique(T'(R)). Anderson et all redefined the notion
of zero-divisor graphs in [2] and proved that such a graph is
always connected and its diameter is less than or equal to
3. Anderson and Mulay in [3] studied diameter and girth
of zero-divisor graph of a commutative ring. The notion
of zero-divisor graph was extended to a non-commutative
ring [1] and various properties of diameter and girth were
established. Behboodhi [5] studied annihilator ideal graphs

dealing with the annihilators of ideals of a commutative ring.
Redmond[8] has generalised the notion of zero-divisor graph.

For an ideal I of a commutative ring R, Redmond [8] defined

an undirected graph I'y(R) with vertices {x € R\ I | xy € I for
some y € R\ I} where distinct vertices x and y are adjacent if
and only if xy € I.

In this paper, we study some graph theoretic aspect of a
near-ring N. For basic definitions and results related to near-
ring, we would like to mention Pilz [7]. A subset I of N is
left(right)N-subset of N if NI C I(IN C I) and [ is invariant
if it is both left as well as right N-subset of N. If / is a left N-
subset of N, then [(I) = {x € N | xI = 0} is the left annihilator
of 1. For any N-subset I, [([) is also a left N-subset of N. If I
and J be two left N-subsets, then so is /N J. A left N-subset
I of N is nilpotent with index n(n € Z) if " =0 and I #0
for m < n. The near-ring N is strongly semi-prime if it has no
non-zero nilpotent invariant subsets. A left N-subset(ideal) /
of N is essential in N if for any non-zero left N-subset(ideal)
Aof N,INA#0.

Recall that a graph G is connected if there is a path be-
tween any two distinct vertices. The graph G is complete if
every two vertices are adjacent. The distance between two dis-
tinct vertices x and y of G is the length of the shortest path from
x to y denoted d(x,y). If no such path exists, then d(x,y) = co.
The diameter of the graph G is diam(G) = sup{d(x,y)|x and
y are distinct vertices of G}. The girth of G is the length of
distance of the shortest cycle in G, denoted gr(G). If there
is no such cycle, then gr(G) = e. The minimal numbers of
colors so that no two adjacent elements of the graph G have
same color is the chromatic number of G denoted x (G).

In this paper, we study diameter and girth of the strong
zero-divisor graphs of near-rings wherein the nilpotency and
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invariant character of vertices playing a significant role. We
prove that any path joining vertex / to an invariant vertex J
is contained in a cycle provided I(I+J) # 0. We show that a
strongly semi-prime near-ring contains no non-zero nilpotent
invariant subset if I's(N) > 3. Moreover, we show that in
this case I';(V) contains not more than two invariant subsets
I and I, so that [(I}) and [(I,) are essential. In addition to
the above, we investigate the coloring of I'y(N) and some
characterisations of cliques and maximal cliques of I';(N).

Below we discuss some examples of strong zero-divisor
graphs I';(N) in contrast to zero-divisor graph I'(N)

Example 1.1. If the graph T's(N) contains a point only, then
N=Zjor = [ ] . In this case gr(T's(N)) = oo. Also T's(Zy) =
['(Z4)

T5(Zy) orT(Zy)

Example 1.2. If the graph T'y(N) contains two points, then
I'\(N) contains no cycle and gr(Ts(N) = oo. In this case
N =7, X Zp or Zg. Here Zy X Zy 2 Zg, however their strong
zero divisor graphs Us(Zy x Z,) and T'4(Zs) are isomorphic
ie. FS(ZQ X Zz) = F(ZQ X Zz) = FS(ZG) (Zg X Z2 %26)

T5(Zy x 25). T(Zy % Zy) or T's(Zg)

Example 1.3. The graph T'(Z T [);]

3. Here I = {{x*),x+ (x*),2x+ (x*)} is a nilpotent ideal as
*=0.

L%

) is graph with finite girth

Dy
(232 xy) "

Zx]

V)

) but B o

) =L

(2

Example 1.4. The gmph below is a complete bipartite graph

with girth 4. T's (24 ) ZTs( 2 xyy]>) (Zé%] = %)

(Zabd
(7))
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2. Diameter and girth

In this section, we present some of characteristic of paths,
diameter and girth of I's(N). We note that the vertex 0 is
adjacent to every other vertices which we exclude here for
obvious reason.

A vertex I € I'y(N) is an invariant vertex if it is an invariant
N subset of the near-ring N. The right annihilator r(1) = {x €
N | Ix =0} of a left N-subset I of N is a right N-subset of N
not necessarily coincide to /(I). However in a strongly semi-
prime near-ring N, in case of an invariant subset I, Il(I) =
0 as (II(I))* = I(L(DD)I(I) = O giving thereby I(I) C r(I).
Similarly r(I) C I(I). Thus we state the following lemma.

Lemma 2.1. [6] Let N be a strongly semi-prime near-ring.
Then for an invariant subset I of N, I(I) = r(I).

Let I be a left N-subset with /(1) # 0 and let x(# 0) € I(I).
If J C I(I) be a non-zero nilpotent N-subset. Then there exists
a positive integer m such that xJ” = 0 but xJ”~! = 0. It is
clear that [(I+J) CI(I)NI(J).

Lemma 2.2. [6] Let N be a near-ring such that the left anni-
hilators are distributively generated. If I be a left N-subset
with [(I) # 0 and J C I(I) is a nilpotent left N-subset of N,
then I(I+J) # 0.

Proof. Let x(# 0) € [(I) such that xJ™ = 0 and xJ"! # 0
for some positive integer m. Now xJ" !J = xJ™ = 0 and
xJ" U = xJ"=2JI = 0. Thus xJ”~' (I 4+J) = 0 giving thereby
xJ" "V CI(I+J). Thus [(I+J) #0. O

Thus in this lemma, we see that the nilpotency of J C I(1)
leads us to (I +J) # 0.

Throughout the paper, by a near-ring N we mean a strongly
semi-prime near-ring unless otherwise specified.

Theorem 2.3. Let N be a near-ring and J be an invariant
N-subset such that [(I+J) # 0 for some I € V(Is(N)). Then
any path joining I and J is contained in a cycle of T's(N).

Proof. LetP:I — K| — K, — — K, —> J be any
path. Now [(I+J) CI(I)NI(J) implies [(I)NI(J) # 0 as
I(I4+J)#0. Let M =I(I)NI(J) which is a non-zero left N-
subset of N. Then/ — K| —> K, —> — K, —J—>
M — I is a cycle containing the path P since JM = J(I(I) N
I(N))y=JINrJ)=0and MI = (I()NIJI) =0. O

Theorem 2.4. Let N be a near-ring such that girth(I's(N)) >
3. Then N has no non-zero nilpotent invariant subset

Proof. Let I(+ 0) be a nilpotent invariant subset of N and n
be the least positive integer such that I = 0. Now I.I""! =0
gives that I"~! C r(I) = I(I)[Lemma 2.2]. Thus [(I) is a
non-zero left N-subset of N so that I"~'[(I) = "2 .1I(I) =
I"2Ir(I) = 0. Thus [(I) — I — "' — [(I) is a circuit,
which is a contradiction.



A note on strong zero-divisor graphs of near-rings — 124/126

In the example 1.3 gr(l"s(z&%])) = 3. Here Z&%] is not

strongly semi-prime. The non-zero ideal I = { (x?),x+ (x?),2x+

(x?),3x+ (x?)} is nilpotent as I? = 0.
A left N-subset I of N is said to be simple if there exists
no non-zero left N- subset J such that J C [

Theorem 2.5. Let [ be an essential simple N-subset of N,
then I is adjacent to every nilpotent J € V(I's(N)).

Proof. LetJ € V(I's(N)) be nilpotent and let m be the least
positive integer such that/” = 0. Now I NJ # 0 as [ is es-
sential. Also INJ =1 since [ is a simple N-subset giving
thereby J C . If IJ = 0, then we are done. For otherwise
IJ =1NJ = I which gives that IJ> = [J.J = IJ = I. Simi-
larly 1J3 = 1J?J = IJ = I. Continuing in this way we get that
1J™ = I which gives that I = 0, a contradiction. O

Theorem 2.6. Let N be a near-ring such that the left anni-
hilators are distributively generated. Let I be an invariant
simple N-subset and J be a nilpotent left N-subset such that
I(I4+J)=0. Then for some q € I(I), d(I+qJ,J) =3.

Proof. We give the proof in two steps such as

(1) Step 1: We show that for any two non-adjacent ver-
tices I and J where [ is an invariant N-subset so that
I(I+J)#04d(I,J) =3. Since I is an invariant N-
subset there for I/(I) = Ir(I) = O[Lemma 2.1]. We
claim [(1)I(J) = 0. For let xy(£ 0) € [(I)I(J) gives that
Ixy CH(NI(JT) =1r(I)I(J) =0, giving thereby Ixy = 0.
Thus xy € r(I) =I(I). Alsoy € I(J) implies xy € [(J)
giving thereby xy € [(I+J). Thus [(I+J) # 0, a contra-
diction. Thus I(I){(J) =0. Thus I — r(I) =1(I) —
I(J) — J is a directed path. Thus d(1,J) = 3.

(i) Since I(# 0) is simple invariant and J is nilpotent, there-
fore IJ = O[Theorem 2.5]. Thus (I+J)?> =I*> +J*> =0.
Also I[(I+J)?=0,asx € [(I+J)? gives x(I+J) CI(I+
J). Thus x(I+J) = 0 giving thereby x € [(I4+J) =0
as IJ =0 =JI. Since J is nilpotent, therefore gJ is
also so for some ¢(# 0) € [(I) = r(I). Also ¢J? #0,
for otherwise g(I> +J?) = qI* +qJ? = qgl.I +¢J* = 0.
Thus g(# 0) € I(I* +J?) = [(I +J)?, a contradiction.
Again I + ¢qJ # J, for otherwise I C J implies [ +J = J.
Thus /(I +J) =1(J)(#£ 0), a contradiction. Hence
I+ qJ,J are distinct and I +J = I + gJ 4+ J which gives
I(I+qJ+J)=0and (I+qJ)J =1]+qJ* = qJ*(#0).
Hence d(I +qJ,J) = 3[casel].

O

Theorem 2.7. Let N be a near-ring such that I's(N) > 3, then
N does not contain more than two invariant vertices Iy and I,
such that 1(I) and I(I,) are essential.

Proof. Let I1,I, and I5 be three invariant N-subsets such that
I(I),I(I,) and [(I3) are essential. Let J; =I(I}) NI, #0,J, =
I(L)NL #£0 and J3 = ()N # 0. Clearly each J;,i =
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1,2,3 are left N-subsets. Also /(1;) NI C I, which gives that
(D) CI(I(I)NDL). Thus [(I(I})NL) =1(J1) # 0. Similarly
1(J2) #0and I(J3) # 0. Also Ji,J> and J3 are distinct. For
otherwise J? = hJ; = (I(L) NL)(I(L) NL) C (L)L =0
implies that J; = 0, a contradiction. Thus Jy,J, are J3 are
distinct such that J;J, = 0, JoJ3 = 0 and J3J; = 0. Thus
J1 — J» — J3 — Jj is a cycle, a contradiction. O

Theorem 2.8. [6] Let N be a such that Ts(N) contains a cycle
with an invariant vertex in it. Then gr(T's(N)) < 4.

3. Coloring of I';(N)

In this section we present some characterization of cliques
as well as of maximal cliques in I's(N). Also we establish
some bounds for chromatic no of the graph.

Theorem 3.1. Let N be a near-ring and 11,1, ...., I be ideals
of N such that I(I;)’s are maximal as annihilator. Then the
following are equivalent.

(i) P;=1(1I;)'s are prime ideals so that P, P; = 0 for i # j.
(ii) {I1,h,.....It } is a clique.

Proof. Assume that P, = [(I;)'s are prime ideals so that P, N
Pj=0fori# j. Let Iil; #0, (1 <i,j<k) gives that I;
I(I;) = P;. Now [(I;)]; = 0 implies I(I;)I; € P; which gives
that [(l;) C Pj or I; C P;. Thus [(I;) = P; C P; giving thereby
P, = P,NP; =0, a contradiction. Thus /;/; = 0. Conversely,
assume that {I,b,....,I;} is a clique. Suppose that I and
J be two ideals such that /J C P, so that I ¢ P, and J € P,.
Now IJ C P, = I(I;) implies IJI; = 0 giving thereby I C I(JI;).
Again [; is an invariant N-subset being an ideal. Thus x €
1(I;) = r(I;)[Lemma 2.2] implies /;x = 0. Thus JI;x = 0 giving
thereby x € [(J1I;). Hence I(I;) C [(1J;) giving thereby /(1) =
1(1J;) = 0. Thus I? = 0, a contradiction. O

Theorem 3.2. Let N be a near-ring and I;,i = 1,2, ...,k be the
ideals of such that I(I;)'s are pairwise disjoint and maximal
as annihilator. Then the following are equivalent.

(i) {I,b,.....I}} is a maximal clique.
(ii) I(I;)’s are only annihilator prime ideals.

Proof. Assume that {I},D,....,I;} is a maximal clique. Let
I be another ideal distinct from [;, 1 < i < k where [(I) is
maximal with [(I)NI(I;) = 0. If [(I) is prime, then we show
that ;/ = 0. Suppose that [;/ # 0 which implies I;  [(I).
Now [(I;)I;) C I(I) gives that either I(f;) C I(I) or I; C I(I).
Thus [(I;) = I(I;) NI(I) = 0, a contradiction. Hence I;/ = 0 for
i=1,2,...;k Thus {I.11,b,....,I; } is a clique which contains
{I,h,....,I+ }, a contradiction. Thus I = [; for some i,1 <i <
k. Thus I(I;)’s are only prime ideals of this type. Conversely,
let C/ be a clique such that C = {I},b,....I,} C C/. LetI € C/
such that I ¢ C. Now [,/ = 0 for all i. We claim that [(]) is a
prime ideal. Suppose A, B be two ideals such that AB C [(I)
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a contradiction. Thus [([) is a prime ideal and () = I(I;) for
some 1 <i<k. Now I;(=0) C I(I;) gives that either I C I(I;)
or I; CI(I;). Thus I(I) is a prime ideal, a contradiction. Thus
{l,b,....,I} } is a maximal clique. O

Example 3.3. Consider Zg, the integer modulo 6. Here I, =
{0,3}, L, = {0,2,4} are only ideals. Clearly {0,1},1,} is a
clique inTs(Zg). Also Annly = b, Annly = I} which are prime
ideals of Z.

Theorem 3.4. Let N be a near ring and 11,1, ...,I; be the
only ideals such that P, = (I;), 1 < i < k are pairwise disjoint
and maximal as annihilator. Then x(I's(N)) < k+ 1.

Proof. 1tis clear that {I, I, ....,I; } forms a clique[Theorem
3.1]. We give each I/s a distinct color and one extra color to
'0/. We claim that these k + 1 colors are sufficient to color the
graph I'y(N). Consider I(# 0) be any ideal. Then I ¢ I(;) for
some i, for if I C I(I;) for each i, then I C I(I}) NI(L)N.....N
[(It) = 0, a contradiction. Let k = min{i|[l € I(I;)}. Thus
I ¢ I(I;) which gives that II; # 0. Here we give the color of
I to 1. Let J be another ideal which is also coloured with
the color of I,. Thus JI; # 0. We claim IJ # 0. Suppose
1J =0 gives that IJ C I(I;) which gives that either I C [(I})
or J C I(Iy) as I(I;) is a prime ideal, a contradiction. Next,
let 1,J be two left N-subsets such that / and J are given the
color of some I. Thus 71 # 0 and JI; # 0. Here 1J # 0. For
if IJ =0, we get IJI; =0. Thus I C [(JI;) = r(JI}). But for
any x € () = r(It), Itx = 0 gives JIx = 0 which implies
that x € r(JI) = {(JI;). Thus [(I;) = I(JI;) giving thereby
II; = 0, a contradiction. Thus 1J # 0. 0

Example 3.5. : Consider Zg = {0,1,2,3,4,5} which is a
near-ring with respect to the tables given below. The only left
N subsets are I} = {0,3}, L = {0,2,4} and I = {0,2,3.4}
which are invariant also and I(I,) = L, and (L) = I, are
two maximal ideals of the annihilator ideal form. Here the
chromatic number X (Ts(Zg)) is 2+ 1 =3, i.e., x(Ts(Zg)) is
equal to p+ 1, where p is the number of maximal ideals of
the form of left annihilator.

In the results below, we deal with the essentiality of an-
nihilator ideals in a near-ring N to determine the chromatic
number of I's(N).

Theorem 3.6. Let N be a near-ring with unity, then the fol-
lowing two are equivalent.

(i) If for a left N-subset I of N, I(I) is essential, then I = 0.
(ii) N is strongly semi-prime.

Example 3.7. Consider the ring Zg = {0,1,2,3,4,5} which
is strongly semi-prime with unity. Here I = I(I,) = {0,3}
and L, = I(I)) = {0,2,4} are the only non-zero ideals and
Z¢ = Ann(0) is the only essential ideal.
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Example 3.8. Z4 ={0,1,2,3} is a ring with unity. Here Zy
is not strongly semi-prime as for I = {0,2}, I*> = 0 and I(I) is
an essential ideal of Z4

Theorem 3.9. :[6]Let N be a near-ring such that T(N) has
no infinite clique, then the near-ring N satisfies the acc on
essential left N-subsets.

Proof. Letli <bh <l <...... be an ascending chain for essen-
tial left N-subsets. Suppose I; < [;+1. Now L;NI(L) <11 N
I(I;). Here I; N 1(I;) # 0 as [; is essential. Thus I NI(L;) #O.
Also I;NI(I;) # I+ 1 NI(I;) for otherwise (I; N1(I;))? = (I; 1N
()N I(L)) CU(I)]; =0, a contradiction. Now consider
an element x,, € I, NI(I,—) such that x, ¢ I,_ NI(I,—). Here
for i # j (suppose i > j), xix; € (LNI(Li—1))(I;NI(Ij-1)) C
I(fi—1)I; = 0. Thus we get an infinite clique in N, a contradic-
tion. O

Theorem 3.10. :/6]Let N be a near-ring without unity. If
[5(N) has no infinite clique, then N satisfies the acc on invari-
ant subsets having essential left N-subsets.

Proof. Letl} < I, < I.... be an ascending chain of invariant
subsets with essential left annihilators. Suppose I; < ;. Let
Xi+1(#£0) € Iy 1 \ I;. Now consider Jir1 =1(i41) N {xit1) #0,
where (x;;1) is the ideal generated by x; ;. Here J;J; = 0 for
i < j, a contradiction. O

Theorem 3.11. :/6] Let N be a near-ring with unity and
I(I),I(I),....,[(I,) be the only essential N-subsets of N such
that each I; is an ideal. Then X (T'(N)) <n+1.

Example 3.12. Consider the set Z,~) of all rational num-
bers of the form ;"—k such that 0 < ﬁ < 1, where p is a
fixed prime number, n runs through all non negative inte-
gers. Then Z(p™) is a ring with respect to addition modulo
1 and multiplication defined as ab = 0 for all a,b € Z(p*).
It is to be noted that each subgroup of Z(p™) is an ideal
of it and the only proper ideals of Z(p™) are of the form

N 1 2 pk7171
kal - {Oa pk—l ) pk—za'---a

—= 1} for each positive integer k.
Thus the ideals are in a chain 0 < Iy < < ..... and each I;’s
are essential Z,~ is a reduced ring without unity. But here
[(Ix—1) = 0 for all k which are not essential. Here I;1; # 0 for
any i, j and x(Ts(Zp=)) = 2.

Example 3.13. : Consider the set M(N) = < Z02 g )
2

which is the set of elements of the form {( 8 g ) ) ( 8 ’11 ) ’

1 1 .
( 0 g ) , ( 0 ’ll >} where n € N. Here M(N) is a near-
ring with respect to ordinary addition and multiplication(Xn =
xn,X € Zp) with unity which is not strongly semi-prime as

0 n 0 n 00 ) .
(O 0>.<0 0)—(0 0). If N is not finite,
then M(N) has infinite invariant sets I;(i = 1,2,3,...) such

0gl0
S0,
S5027:

(N
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that 1(I;) ={( 8 8 )( 8 8 > | n € N} is essential and
x(T(M(N))) =

Theorem 3.14. Let N be a near-ring such that Ts(N) has no
infinite clique, then N satisfies the a.c.c for annihilators of left
N-subsets of N .

Proof. LetAnn(I)) C Ann(L) C Ann(L3) C ...... be an ascend-
ing chain where [; are left N — subsets such that Ann(l;) # 0.
Suppose Ann(l,—1) C Ann(l,). Let x, € Ann(I,) but x, ¢
Ann(I,_1). Consider J, = I,_1x,. Clearly J, is also a left N-
subset. Also /(Z,—1) C I(I,—1x,) which gives that [([,_1y,) #O.
Thus 1(J,) # 0. For each n, J,Jy—1 = (Li—1%n) (lnXn+1) =
I, (xnl,,x,,H) = 0. In fact J,J; = (Inflxn)(lk,lxk)
= In_1(xpIy—1)xx = O for n > k since x,, € Ann(I,) C Ann(Iy,).
Thus {J;|i > 1} forms an infinite clique, a contradiction. [J

The subset C(N) = {x; € N|x;n = nx;,n € N} of a near-
ring N is called the multiplicative centre of N

Theorem 3.15. Let {x;} CC(N) and let I =< {x1,x2,...,%, >.
If there are only finite Ix;, then I'(N) has an infinite clique.

Proof. Let Ix; = Ix; for some x;,x; € C(N). We can pick
yi € {x1,x2,.....} such that y;y; = y;yx for i < j < k. Now
Iy's are left N-subsets of N. Also [(I) C I(Iy;) gives that
I(Iy;) # 0 as I(I) # 0. Consider Z;; = Iy; — Iy;. Clearly Z;; is
a left N-subset of N. Also [(Z;;) # 0, forany x € [(I), x] =0
implies x/y; = 0 and x/y; = 0 giving thereby x(Iy; —Iy;) = 0.
Thus I(I) C I(Z;;) implies that [(Z;;) # 0. Further Z;;Z, =
(Iyi — Iy;)(Iyx — Iyr) € ((Iyiyk — Iyjyi) — (Iyiyr — Iyjyr) =0
forall i < j < k <r. Thus {Z2,Z34,....} is an infinite clique
of Ty (N). 0
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