

https://doi.org/10.26637/MJM0701/0024

A note on strong zero-divisor graphs of near-rings

Prohelika Das¹*

Abstract

For a near-ring *N*, the strong zero-divisor graph $\Gamma_s(N)$ is a graph with vertices $V^*(N)$, the set of all non-zero left *N*-subset having non-zero annihilators and two vertices *I* and *J* are adjacent if and only if IJ = 0. In this paper, we study diameter and girth of the graph $\Gamma_s(N)$ wherein the nilpotent and invariant vertices are playing a significant role. We show that if $diam(\Gamma_s(N)) > 3$, then *N* is necessarily a strongly semi-prime near-ring. Also we find the $\chi(\Gamma_s(N))$ and investigate some characterizations of cliques and maximal cliques in $\Gamma_s(N)$.

Keywords

Near-ring; essential ideal; diameter; girth; chromatic number.

AMS Subject Classification

16Y30, 13A15.

¹ Department of Mathematics, Cotton University, Guwahati-781001, India.
*Corresponding author: 1 dasprohelika@yahoo.com
Article History: Received 21 October 2018; Accepted 19 January 2019

Contents

1	Introduction
2	Diameter and girth123
3	Coloring of $\Gamma_s(N)$
	References

1. Introduction

Let *N* be a zero symmetric (right) near-ring and V(N) be the set of all left *N*-subsets with non-zero left annihilators. The strong zero-divisor graph denoted $\Gamma_S(N)$ is a directed simple graph with the set of vertices $V^*(N) = V(N)\{0\}$ such that any two distinct *I* and $J \in V^*(N)$ are adjacent if and only if IJ = 0.

The concept of zero-divisor graph of a commutative ring was first introduced by Beck in [4]. Beck [4] has mainly investigated coloring of the ring. He has conjectured that $\chi(\Gamma(R)) = clique(\Gamma(R))$. Anderson et all redefined the notion of zero-divisor graphs in [2] and proved that such a graph is always connected and its diameter is less than or equal to 3. Anderson and Mulay in [3] studied diameter and girth of zero-divisor graph of a commutative ring. The notion of zero-divisor graph was extended to a non-commutative ring [1] and various properties of diameter and girth were established. Behboodhi [5] studied annihilator ideal graphs dealing with the annihilators of ideals of a commutative ring. Redmond[8] has generalised the notion of zero-divisor graph. For an ideal *I* of a commutative ring *R*, Redmond [8] defined an undirected graph $\Gamma_I(R)$ with vertices $\{x \in R \setminus I \mid xy \in I \text{ for some } y \in R \setminus I\}$ where distinct vertices *x* and *y* are adjacent if and only if $xy \in I$.

©2019 MJM

In this paper, we study some graph theoretic aspect of a near-ring *N*. For basic definitions and results related to near-ring, we would like to mention Pilz [7]. A subset *I* of *N* is left(right)*N*-subset of *N* if $NI \subseteq I(IN \subseteq I)$ and *I* is invariant if it is both left as well as right *N*-subset of *N*. If *I* is a left *N*-subset of *N*, then $l(I) = \{x \in N \mid xI = 0\}$ is the left annihilator of *I*. For any *N*-subset *I*, l(I) is also a left *N*-subset of *N*. If *I* and *J* be two left *N*-subsets, then so is $I \cap J$. A left *N*-subset *I* of *N* is nilpotent with index $n(n \in Z_+)$ if $I^n = 0$ and $I^m \neq 0$ for m < n. The near-ring *N* is strongly semi-prime if it has no non-zero nilpotent invariant subsets. A left *N*-subset(ideal) *I* of *N* is essential in *N* if for any non-zero left *N*-subset(ideal) *A* of *N*, $I \cap A \neq 0$.

Recall that a graph *G* is connected if there is a path between any two distinct vertices. The graph *G* is complete if every two vertices are adjacent. The distance between two distinct vertices *x* and *y* of *G* is the length of the shortest path from *x* to *y* denoted d(x,y). If no such path exists, then $d(x,y) = \infty$. The diameter of the graph *G* is $diam(G) = sup\{d(x,y)|x \text{ and} y \text{ are distinct vertices of } G\}$. The girth of *G* is the length of distance of the shortest cycle in *G*, denoted gr(G). If there is no such cycle, then $gr(G) = \infty$. The minimal numbers of colors so that no two adjacent elements of the graph *G* have same color is the chromatic number of *G* denoted $\chi(G)$.

In this paper, we study diameter and girth of the strong zero-divisor graphs of near-rings wherein the nilpotency and invariant character of vertices playing a significant role. We prove that any path joining vertex I to an invariant vertex Jis contained in a cycle provided $l(I+J) \neq 0$. We show that a strongly semi-prime near-ring contains no non-zero nilpotent invariant subset if $\Gamma_s(N) > 3$. Moreover, we show that in this case $\Gamma_s(N)$ contains not more than two invariant subsets I_1 and I_2 so that $l(I_1)$ and $l(I_2)$ are essential. In addition to the above, we investigate the coloring of $\Gamma_s(N)$ and some characterisations of cliques and maximal cliques of $\Gamma_s(N)$.

Below we discuss some examples of strong zero-divisor graphs $\Gamma_s(N)$ in contrast to zero-divisor graph $\Gamma(N)$

Example 1.1. If the graph $\Gamma_s(N)$ contains a point only, then $N \cong Z_4$ or $\frac{Z_2[x]}{\langle x^2 \rangle}$. In this case $gr(\Gamma_s(N)) = \infty$. Also $\Gamma_s(Z_4) \cong \Gamma(Z_4)$

Example 1.2. If the graph $\Gamma_s(N)$ contains two points, then $\Gamma_s(N)$ contains no cycle and $gr(\Gamma_s(N) = \infty)$. In this case $N \cong Z_2 \times Z_2$ or Z_6 . Here $Z_2 \times Z_2 \ncong Z_6$, however their strong zero divisor graphs $\Gamma_s(Z_2 \times Z_2)$ and $\Gamma_s(Z_6)$ are isomorphic *i.e.* $\Gamma_s(Z_2 \times Z_2) \cong \Gamma(Z_2 \times Z_2) \cong \Gamma_s(Z_6)$ ($Z_2 \times Z_2 \ncong Z_6$)

Example 1.3. The graph $\Gamma_s(\frac{Z_3[x]}{\langle x^2 \rangle})$ is graph with finite girth 3. Here $I = \{\langle x^2 \rangle, x + \langle x^2 \rangle, 2x + \langle x^2 \rangle\}$ is a nilpotent ideal as $I^2 = 0$. $\Gamma_s(\frac{Z_3[x]}{\langle x^2 \rangle}) \cong \Gamma_s(\frac{Z_2[x,y]}{\langle x^2, y^2, xy \rangle})$ but $\frac{Z_3[x]}{x^2} \ncong \frac{Z_{2[x,y]}}{\langle x^2, y^2, xy \rangle}$.

Example 1.4. The graph below is a complete bipartite graph with girth 4. $\Gamma_s\left(\frac{Z_4[x]}{\langle x^2 \rangle}\right) \ncong \Gamma_s\left(\frac{Z_2[x,y]}{\langle x^2, xy, y^2 \rangle}\right) \left(\frac{Z_4[x]}{\langle x^2 \rangle} \cong \frac{Z_2[x,y]}{\langle x^2, xy, y^2 \rangle}\right)$

2. Diameter and girth

In this section, we present some of characteristic of paths, diameter and girth of $\Gamma_s(N)$. We note that the vertex 0 is adjacent to every other vertices which we exclude here for obvious reason.

A vertex $I \in \Gamma_s(N)$ is an invariant vertex if it is an invariant N subset of the near-ring N. The right annihilator $r(I) = \{x \in N \mid Ix = 0\}$ of a left N-subset I of N is a right N-subset of N not necessarily coincide to l(I). However in a strongly semiprime near-ring N, in case of an invariant subset I, Il(I) = 0 as $(Il(I))^2 = I(l(I)I)l(I) = 0$ giving thereby $l(I) \subseteq r(I)$. Similarly $r(I) \subseteq l(I)$. Thus we state the following lemma.

Lemma 2.1. [6] Let N be a strongly semi-prime near-ring. Then for an invariant subset I of N, l(I) = r(I).

Let *I* be a left *N*-subset with $l(I) \neq 0$ and let $x(\neq 0) \in l(I)$. If $J \subseteq l(I)$ be a non-zero nilpotent *N*-subset. Then there exists a positive integer *m* such that $xJ^m = 0$ but $xJ^{m-1} = 0$. It is clear that $l(I+J) \subseteq l(I) \cap l(J)$.

Lemma 2.2. [6] Let N be a near-ring such that the left annihilators are distributively generated. If I be a left N-subset with $l(I) \neq 0$ and $J \subseteq l(I)$ is a nilpotent left N-subset of N, then $l(I+J) \neq 0$.

Proof. Let $x(\neq 0) \in l(I)$ such that $xJ^m = 0$ and $xJ^{m-1} \neq 0$ for some positive integer *m*. Now $xJ^{m-1}J = xJ^m = 0$ and $xJ^{m-1}I = xJ^{m-2}JI = 0$. Thus $xJ^{m-1}(I+J) = 0$ giving thereby $xJ^{m-1} \subseteq l(I+J)$. Thus $l(I+J) \neq 0$.

Thus in this lemma, we see that the nilpotency of $J \subseteq l(I)$ leads us to $l(I+J) \neq 0$.

Throughout the paper, by a near-ring N we mean a strongly semi-prime near-ring unless otherwise specified.

Theorem 2.3. Let N be a near-ring and J be an invariant N-subset such that $l(I+J) \neq 0$ for some $I \in V(\Gamma_S(N))$. Then any path joining I and J is contained in a cycle of $\Gamma_S(N)$.

Proof. Let $P: I \longrightarrow K_1 \longrightarrow K_2 \longrightarrow \dots \longrightarrow K_n \longrightarrow J$ be any path. Now $l(I+J) \subseteq l(I) \cap l(J)$ implies $l(I) \cap l(J) \neq 0$ as $l(I+J) \neq 0$. Let $M = l(I) \cap l(J)$ which is a non-zero left *N*-subset of *N*. Then $I \longrightarrow K_1 \longrightarrow K_2 \longrightarrow \dots \longrightarrow K_n \longrightarrow J \longrightarrow M \longrightarrow I$ is a cycle containing the path *P* since $JM = J(l(I) \cap l(J)) = J(l(I) \cap r(J)) = 0$ and $MI = (l(I) \cap l(J))I = 0$. \Box

Theorem 2.4. Let N be a near-ring such that $girth(\Gamma_S(N)) >$ 3. Then N has no non-zero nilpotent invariant subset

Proof. Let $I(\neq 0)$ be a nilpotent invariant subset of N and n be the least positive integer such that $I^n = 0$. Now $I.I^{n-1} = 0$ gives that $I^{n-1} \subseteq r(I) = l(I)$ [Lemma 2.2]. Thus l(I) is a non-zero left N-subset of N so that $I^{n-1}l(I) = I^{n-2}.Il(I) = I^{n-2}Ir(I) = 0$. Thus $l(I) \longrightarrow I \longrightarrow I^{n-1} \longrightarrow l(I)$ is a circuit, which is a contradiction.

In the example 1.3 $gr(\Gamma_s(\frac{Z_4[x]}{\langle x^2 \rangle})) = 3$. Here $\frac{Z_4[x]}{\langle x^2 \rangle}$ is not strongly semi-prime. The non-zero ideal $I = \{\langle x^2 \rangle, x + \langle x^2 \rangle, 2x + \langle x^2 \rangle, 3x + \langle x^2 \rangle\}$ is nilpotent as $I^2 = 0$.

A left *N*-subset *I* of *N* is said to be simple if there exists no non-zero left *N*- subset *J* such that $J \subseteq I$

Theorem 2.5. Let *I* be an essential simple *N*-subset of *N*, then *I* is adjacent to every nilpotent $J \in V(\Gamma_S(N))$.

Proof. Let $J \in V(\Gamma_S(N))$ be nilpotent and let *m* be the least positive integer such that $J^m = 0$. Now $I \cap J \neq 0$ as *I* is essential. Also $I \cap J = I$ since *I* is a simple *N*-subset giving thereby $J \subseteq I$. If IJ = 0, then we are done. For otherwise $IJ = I \cap J = I$ which gives that $IJ^2 = IJ.J = IJ = I$. Similarly $IJ^3 = IJ^2J = IJ = I$. Continuing in this way we get that $IJ^m = I$ which gives that I = 0, a contradiction.

Theorem 2.6. Let N be a near-ring such that the left annihilators are distributively generated. Let I be an invariant simple N-subset and J be a nilpotent left N-subset such that l(I+J) = 0. Then for some $q \in l(I)$, d(I+qJ,J) = 3.

Proof. We give the proof in two steps such as

- (i) Step 1: We show that for any two non-adjacent vertices *I* and *J* where *I* is an invariant *N*-subset so that *l*(*I*+*J*) ≠ 0,*d*(*I*,*J*) = 3. Since *I* is an invariant *N*-subset there for *Il*(*I*) = *Ir*(*I*) = 0[Lemma 2.1]. We claim *l*(*I*)*l*(*J*) = 0. For let *xy*(≠0) ∈ *l*(*I*)*l*(*J*) gives that *Ixy* ⊆ *Il*(*I*)*l*(*J*) = *lr*(*I*)*l*(*J*) = 0, giving thereby *Ixy* = 0. Thus *xy* ∈ *r*(*I*) = *l*(*I*). Also *y* ∈ *l*(*J*) implies *xy* ∈ *l*(*J*) giving thereby *xy* ∈ *l*(*I*+*J*). Thus *l*(*I*+*J*) ≠ 0, a contradiction. Thus *l*(*I*)*l*(*J*) = 0. Thus *I* → *r*(*I*) = *l*(*I*) → *l*(*J*) → *J* is a directed path. Thus *d*(*I*,*J*) = 3.
- (ii) Since $I(\neq 0)$ is simple invariant and *J* is nilpotent, therefore IJ = 0[Theorem 2.5]. Thus $(I+J)^2 = I^2 + J^2 = 0$. Also $l(I+J)^2 = 0$, as $x \in l(I+J)^2$ gives $x(I+J) \subseteq l(I+J)$. Thus x(I+J) = 0 giving thereby $x \in l(I+J) = 0$ as IJ = 0 = JI. Since *J* is nilpotent, therefore qJ is also so for some $q(\neq 0) \in l(I) = r(I)$. Also $qJ^2 \neq 0$, for otherwise $q(I^2+J^2) = qI^2 + qJ^2 = qI.I + qJ^2 = 0$. Thus $q(\neq 0) \in l(I^2+J^2) = l(I+J)^2$, a contradiction. Again $I + qJ \neq J$, for otherwise $I \subseteq J$ implies I+J=J. Thus $l(I+J) = l(J)(\neq 0)$, a contradiction. Hence I + qJ,J are distinct and I + J = I + qJ + J which gives l(I+qJ+J) = 0 and $(I+qJ)J = IJ + qJ^2 = qJ^2(\neq 0)$. Hence d(I+qJ,J) = 3[caseI].

Theorem 2.7. Let N be a near-ring such that $\Gamma_s(N) > 3$, then N does not contain more than two invariant vertices I_1 and I_2 such that $l(I_1)$ and $l(I_2)$ are essential.

Proof. Let I_1, I_2 and I_3 be three invariant *N*-subsets such that $l(I_1), l(I_2)$ and $l(I_3)$ are essential. Let $J_1 = l(I_1) \cap I_2 \neq 0, J_2 = l(I_2) \cap I_3 \neq 0$ and $J_3 = l(I_3) \cap I_1 \neq 0$. Clearly each $J_i, i = l(I_2) \cap I_1 \neq 0$.

1,2,3 are left *N*-subsets. Also $l(I_1) \cap I_2 \subseteq I_2$ which gives that $l(I_2) \subseteq l(l(I_1) \cap I_2)$. Thus $l(l(I_1) \cap I_2) = l(J_1) \neq 0$. Similarly $l(J_2) \neq 0$ and $l(J_3) \neq 0$. Also J_1, J_2 and J_3 are distinct. For otherwise $J_1^2 = J_2J_1 = (l(I_2) \cap I_3)(l(I_1) \cap I_2) \subseteq l(I_2)I_2 = 0$ implies that $J_1 = 0$, a contradiction. Thus J_1, J_2 are J_3 are distinct such that $J_1J_2 = 0$, $J_2J_3 = 0$ and $J_3J_1 = 0$. Thus $J_1 \rightarrow J_2 \rightarrow J_3 \rightarrow J_1$ is a cycle, a contradiction. \Box

Theorem 2.8. [6] Let N be a such that $\Gamma_s(N)$ contains a cycle with an invariant vertex in it. Then $gr(\Gamma_s(N)) \leq 4$.

3. Coloring of $\Gamma_s(N)$

In this section we present some characterization of cliques as well as of maximal cliques in $\Gamma_s(N)$. Also we establish some bounds for chromatic no of the graph.

Theorem 3.1. Let N be a near-ring and $I_1, I_2, ..., I_k$ be ideals of N such that $l(I_i)$'s are maximal as annihilator. Then the following are equivalent.

- (i) $P_i = l(I_i)'$ s are prime ideals so that $P_i \cap P_j = 0$ for $i \neq j$.
- (*ii*) $\{I_1, I_2, ..., I_k\}$ is a clique.

Proof. Assume that $P_i = l(I_i)'s$ are prime ideals so that $P_i \cap P_j = 0$ for $i \neq j$. Let $I_i I_j \neq 0$, $(1 \leq i, j \leq k)$ gives that $I_i \not\subseteq l(I_j) = P_j$. Now $l(I_i)I_i = 0$ implies $l(I_i)I_i \in P_j$ which gives that $l(I_i) \subseteq P_j$ or $I_i \subseteq P_j$. Thus $l(I_i) = P_i \subseteq P_j$ giving thereby $P_i = P_i \cap P_j = 0$, a contradiction. Thus $I_i I_j = 0$. Conversely, assume that $\{I_1, I_2, \dots, I_k\}$ is a clique. Suppose that I and J be two ideals such that $IJ \subseteq P_i$ so that $I \not\subseteq P_i$ and $J \not\subseteq P_i$. Now $IJ \subseteq P_i = l(I_i)$ implies $IJI_i = 0$ giving thereby $I \subseteq l(JI_i)$. Again I_i is an invariant N-subset being an ideal. Thus $x \in l(I_i) = r(I_i)$ [Lemma 2.2] implies $I_i x = 0$. Thus $JI_i x = 0$ giving thereby $l(I) = l(IJ_i) = 0$. Thus $I^2 = 0$, a contradiction. \Box

Theorem 3.2. Let N be a near-ring and I_i , i = 1, 2, ..., k be the ideals of such that $l(I_i)'$ s are pairwise disjoint and maximal as annihilator. Then the following are equivalent.

- (i) $\{I_1, I_2, \dots, I_k\}$ is a maximal clique.
- (ii) $l(I_i)$'s are only annihilator prime ideals.

Proof. Assume that $\{I_1, I_2, ..., I_k\}$ is a maximal clique. Let I be another ideal distinct from I_i , $1 \le i \le k$ where l(I) is maximal with $l(I) \cap l(I_i) = 0$. If l(I) is prime, then we show that $I_iI = 0$. Suppose that $I_iI \ne 0$ which implies $I_i \nsubseteq l(I)$. Now $l(I_i)I_i) \subseteq l(I)$ gives that either $l(I_i) \subseteq l(I)$ or $I_i \subseteq l(I)$. Thus $l(I_i) = l(I_i) \cap l(I) = 0$, a contradiction. Hence $I_iI = 0$ for i = 1, 2, ..., k. Thus $\{I, I_1, I_2, ..., I_k\}$ is a clique which contains $\{I_1, I_2, ..., I_k\}$, a contradiction. Thus $I = I_i$ for some $i, 1 \le i \le k$. Thus $l(I_i)$'s are only prime ideals of this type. Conversely, let C' be a clique such that $C = \{I_1, I_2, ..., I_k\} \subset C'$. Let $I \in C'$ such that $I \notin C$. Now $I_iI = 0$ for all i. We claim that l(I) is a prime ideal. Suppose A, B be two ideals such that $AB \subseteq l(I)$ and $A \nsubseteq l(I), B \nsubseteq l(I)$. Now ABI = 0 gives $A \subseteq l(BI) = l(I)$,

a contradiction. Thus l(I) is a prime ideal and $l(I) = l(I_i)$ for some $1 \le i \le k$. Now $II_i(=0) \subseteq l(I_i)$ gives that either $I \subseteq l(I_i)$ or $I_i \subseteq l(I_i)$. Thus l(I) is a prime ideal, a contradiction. Thus $\{I_1, I_2, ..., I_k\}$ is a maximal clique.

Example 3.3. Consider Z_6 , the integer modulo 6. Here $I_1 = \{0,3\}$, $I_2 = \{0,2,4\}$ are only ideals. Clearly $\{0,I_1,I_2\}$ is a clique in $\Gamma_s(Z_6)$. Also $AnnI_1 = I_2$, $AnnI_2 = I_1$ which are prime ideals of Z_6 .

Theorem 3.4. Let N be a near ring and $I_1, I_2, ..., I_k$ be the only ideals such that $P_i = l(I_i), 1 \le i \le k$ are pairwise disjoint and maximal as annihilator. Then $\chi(\Gamma_s(N)) \le k+1$.

Proof. It is clear that $\{I_1, I_2, ..., I_k\}$ forms a clique[Theorem 3.1]. We give each I'_{is} a distinct color and one extra color to '0'. We claim that these k + 1 colors are sufficient to color the graph $\Gamma_s(N)$. Consider $I \neq 0$ be any ideal. Then $I \not\subseteq l(I_i)$ for some *i*, for if $I \subseteq l(I_i)$ for each *i*, then $I \subseteq l(I_1) \cap l(I_2) \cap \ldots \cap$ $l(I_k) = 0$, a contradiction. Let $k = min\{i | I \not\subseteq l(I_i)\}$. Thus $I \not\subseteq l(I_k)$ which gives that $II_k \neq 0$. Here we give the color of I_k to I. Let J be another ideal which is also coloured with the color of I_k . Thus $JI_k \neq 0$. We claim $IJ \neq 0$. Suppose IJ = 0 gives that $IJ \subseteq l(I_k)$ which gives that either $I \subseteq l(I_k)$ or $J \subseteq l(I_k)$ as $l(I_k)$ is a prime ideal, a contradiction. Next, let I, J be two left N-subsets such that I and J are given the color of some I_k . Thus $II_k \neq 0$ and $JI_k \neq 0$. Here $IJ \neq 0$. For if IJ = 0, we get $IJI_k = 0$. Thus $I \subseteq l(JI_k) = r(JI_k)$. But for any $x \in l(I_k) = r(I_k)$, $I_k x = 0$ gives $JI_k x = 0$ which implies that $x \in r(JI_k) = l(JI_k)$. Thus $l(I_k) = l(JI_k)$ giving thereby $II_k = 0$, a contradiction. Thus $IJ \neq 0$.

Example 3.5. : Consider $Z_6 = \{0, 1, 2, 3, 4, 5\}$ which is a near-ring with respect to the tables given below. The only left N subsets are $I_1 = \{0,3\}$, $I_2 = \{0,2,4\}$ and $I_3 = \{0,2,3.4\}$ which are invariant also and $l(I_1) = I_2$ and $l(I_2) = I_1$ are two maximal ideals of the annihilator ideal form. Here the chromatic number $\chi(\Gamma_s(Z_6))$ is 2 + 1 = 3, i.e., $\chi(\Gamma_s(Z_6))$ is equal to p + 1, where p is the number of maximal ideals of the form of left annihilator.

In the results below, we deal with the essentiality of annihilator ideals in a near-ring N to determine the chromatic number of $\Gamma_s(N)$.

Theorem 3.6. Let N be a near-ring with unity, then the following two are equivalent.

- (i) If for a left N-subset I of N, l(I) is essential, then I = 0.
- (ii) N is strongly semi-prime.

Example 3.7. Consider the ring $Z_6 = \{0, 1, 2, 3, 4, 5\}$ which is strongly semi-prime with unity. Here $I_1 = l(I_2) = \{0,3\}$ and $I_2 = l(I_1) = \{0,2,4\}$ are the only non-zero ideals and $Z_6 = Ann(0)$ is the only essential ideal.

Example 3.8. $Z_4 = \{0, 1, 2, 3\}$ is a ring with unity. Here Z_4 is not strongly semi-prime as for $I = \{0, 2\}$, $I^2 = 0$ and l(I) is an essential ideal of Z_4

Theorem 3.9. :[6]Let N be a near-ring such that $\Gamma(N)$ has no infinite clique, then the near-ring N satisfies the acc on essential left N-subsets.

Proof. Let $I_1 < I_2 < I_3 < \dots$ be an ascending chain for essential left *N*-subsets. Suppose $I_i < I_{i+1}$. Now $I_i \cap l(I_i) \le I_{i+1} \cap l(I_i)$. Here $I_i \cap l(I_i) \ne 0$ as I_i is essential. Thus $I_{i+1} \cap l(I_i) \ne 0$. Also $I_i \cap l(I_i) \ne I_{i+1} \cap l(I_i)$ for otherwise $(I_i \cap l(I_i))^2 = (I_{i+1} \cap l(I_i))(I_i \cap l(I_i)) \subseteq l(I_i)I_i = 0$, a contradiction. Now consider an element $x_n \in I_n \cap l(I_{n-1})$ such that $x_n \notin I_{n-1} \cap l(I_{n-1})$. Here for $i \ne j$ (suppose i > j), $x_i x_j \in (I_i \cap l(I_{i-1}))(I_j \cap l(I_{j-1})) \subseteq l(I_{i-1})I_j = 0$. Thus we get an infinite clique in *N*, a contradiction.

Theorem 3.10. :[6]Let N be a near-ring without unity. If $\Gamma_s(N)$ has no infinite clique, then N satisfies the acc on invariant subsets having essential left N-subsets.

Proof. Let $I_1 < I_2 < I_3...$ be an ascending chain of invariant subsets with essential left annihilators. Suppose $I_i \leq I_{i+1}$. Let $x_{i+1} \neq 0 \in I_{i+1} \setminus I_i$. Now consider $J_{i+1} = l(I_{i+1}) \cap \langle x_{i+1} \rangle \neq 0$, where $\langle x_{i+1} \rangle$ is the ideal generated by x_{i+1} . Here $J_i J_j = 0$ for i < j, a contradiction.

Theorem 3.11. :[6] Let N be a near-ring with unity and $l(I_1), l(I_2), ..., l(I_n)$ be the only essential N-subsets of N such that each I_i is an ideal. Then $\chi(\Gamma_s(N)) \le n+1$.

Example 3.12. Consider the set $Z_{(p^{\infty})}$ of all rational numbers of the form $\frac{m}{p^k}$ such that $0 \leq \frac{m}{p^k} < 1$, where p is a fixed prime number, n runs through all non negative integers. Then $Z(p^{\infty})$ is a ring with respect to addition modulo 1 and multiplication defined as ab = 0 for all $a, b \in Z(p^{\infty})$. It is to be noted that each subgroup of $Z(p^{\infty})$ is an ideal of it and the only proper ideals of $Z(p^{\infty})$ are of the form $I_{k-1} = \{0, \frac{1}{p^{k-1}}, \frac{2}{p^{k-2}}, \dots, \frac{p^{k-1}-1}{p^{k}-1}\}$ for each positive integer k. Thus the ideals are in a chain $0 < I_1 < I_2 < \dots$ and each I_i 's are essential $Z_{p^{\infty}}$ is a reduced ring without unity. But here $l(I_{k-1}) = 0$ for all k which are not essential. Here $I_iI_j \neq 0$ for any i, j and $\chi(\Gamma_s(Z_{p^{\infty}})) = 2$.

Example 3.13. : Consider the set $M(N) = \begin{pmatrix} Z_2 & N \\ 0 & Z_2 \end{pmatrix}$ which is the set of elements of the form $\{\begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & n \\ 0 & 1 \end{pmatrix}\}$, where $n \in N$. Here M(N) is a nearring with respect to ordinary addition and multiplication($\overline{x}n = xn, \overline{x} \in Z_2$) with unity which is not strongly semi-prime as $\begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. If N is not finite, then M(N) has infinite invariant sets $I_i(i = 1, 2, 3, ...)$ such that $l(I_i) = \{ \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mid n \in N \}$ is essential and $\chi(\Gamma_s(M(N))) = \infty.$

Theorem 3.14. Let N be a near-ring such that $\Gamma_S(N)$ has no infinite clique, then N satisfies the a.c.c for annihilators of left N-subsets of N.

Proof. Let $Ann(I_1) \subset Ann(I_2) \subset Ann(I_3) \subset$ be an ascending chain where I_i are left N – subsets such that $Ann(I_i) \neq 0$. Suppose $Ann(I_{n-1}) \subset Ann(I_n)$. Let $x_n \in Ann(I_n)$ but $x_n \notin Ann(I_{n-1})$. Consider $J_n = I_{n-1}x_n$. Clearly J_n is also a left N-subset. Also $l(I_{n-1}) \subseteq l(I_{n-1x_n})$ which gives that $l(I_{n-1x_n}) \neq 0$. Thus $l(J_n) \neq 0$. For each n, $J_nJ_{n-1} = (I_{n-1}x_n)(I_nx_{n+1}) = I_{n-1}(x_nI_nx_{n+1}) = 0$. In fact $J_nJ_k = (I_{n-1}x_n)(I_{k-1}x_k) = I_{n-1}(x_nI_{k-1})x_k = 0$ for n > k since $x_n \in Ann(I_n) \subset Ann(I_k)$. Thus $\{J_i|i>1\}$ forms an infinite clique, a contradiction. □

The subset $C(N) = \{x_i \in N | x_i n = nx_i, n \in N\}$ of a nearring *N* is called the multiplicative centre of *N*

Theorem 3.15. Let $\{x_i\} \subset C(N)$ and let $I = <\{x_1, x_2, ..., x_n >.$ If there are only finite Ix_i , then $\Gamma_s(N)$ has an infinite clique.

Proof. Let $Ix_i = Ix_j$ for some $x_i, x_j \in C(N)$. We can pick $y_i \in \{x_1, x_2,\}$ such that $y_i y_j = y_i y_k$ for i < j < k. Now $Iy'_i s$ are left *N*-subsets of *N*. Also $l(I) \subseteq l(Iy_i)$ gives that $l(Iy_i) \neq 0$ as $l(I) \neq 0$. Consider $Z_{ij} = Iy_i - Iy_j$. Clearly Z_{ij} is a left *N*-subset of *N*. Also $l(Z_{ij}) \neq 0$, for any $x \in l(I), xI = 0$ implies $xIy_i = 0$ and $xIy_j = 0$ giving thereby $x(Iy_i - Iy_j) = 0$. Thus $l(I) \subseteq l(Z_{ij})$ implies that $l(Z_{ij}) \neq 0$. Further $Z_{ij}Z_{kr} = (Iy_i - Iy_j)(Iy_k - Iy_r) \subseteq ((Iy_iy_k - Iy_jy_k) - (Iy_iy_r - Iy_jy_r) = 0$ for all i < j < k < r. Thus $\{Z_{12}, Z_{34},\}$ is an infinite clique of $\Gamma_s(N)$.

References

- S.Akbari and A.Mohammadian, On the zero-divisor graph of a commutative ring, *J. Algebra*, 274(2)(2004), 847–855.
- [2] D.D.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434– 447.
- [3] D.D.Anderson and S.B.Mulay, On the diameter and girth of a zero-divisor graph, *J. Pure Appl. Algebra*, 210(2007), 543–550.
- [4] I.Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208–226.
- [5] M. Behboodhi and Z.Rakeei, The annihilating ideal graph of commutative ring, J. Algebra Appl., 10(4)(2011), 727– 739.
- [6] P. Das, On the diameter, girth and coloring of the strong zero-divisor graph of near-rings, *Kyungpook Math. J.*, 56(2016), 1103–1113.
- [7] G. Pilz., *Near-rings*, North Holland Publishing Company, 1977.

[8] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, *Comm. Algebra*, 31(9)(2003), 4425– 4443.

