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Rainbow coloring in some corona product graphs
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Abstract
Let G be a non-trivial connected graph on which is defined a coloring c : E(G)→{1,2, · · · ,k},k ∈ N of the edges
of G, where adjacent edges may be colored the same. A path P in G is called a rainbow path if no two edges of
P are colored the same. G is said to be rainbow-connected if for every two vertices u and v in it, there exists a
rainbow u− v path. The minimum k for which there exist such a k-edge coloring is called the rainbow connection
number of G, denoted by rc(G). In this paper we determine rc(G) for some corona product graphs.
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1. Introduction
All graphs in this paper are finite, non-trivial, simple,

connected and undirected graphs. Coloring problems related
to vertex coloring and edge coloring are one of the interesting
problems in graph theory and many results exist in literature.
A path in a graph is called a rainbow path if no two edges in
it are colored the same. Let G be a graph on which is defined
a coloring c : E(G)→ {1,2, · · · ,k},k ∈ Nof the edges of G,
where adjacent edges may be colored the same. A path P in
G is called a rainbow path if no two edges of P are colored
the same. G is said to be rainbow connected if for every
two vertices u and v in it, there exists a rainbow u− v path.
The minimum k for which there exist such a k-edge coloring
is called the rainbow connection number of G, denoted by
rc(G). Clearly, every rainbow connected graph is a connected
graph, and conversely, any connected graph has a trivial edge
coloring that makes it rainbow connected, i.e., a coloring such
that each edge has a distinct color.

The concept of rainbow coloring was introduced by Char-
trand et.al. in [1]. For graph products like direct and strong
product graphs, Gologranc et.al. in [2] investigated the bounds
with respect to rainbow coloring. For other results related to
the bounds we refer [3],[4],[5],[6] and for the exact values of
rc(G) for various graphs, we refer [7], [8], [9], [10], [11] and
[12].

2. Preliminaries
In this section, we recall some definitions which will be

used throughout the paper.

Definition 2.1. Let G and H be two graphs. The corona
product of G and H, denoted by G◦H, is obtained by taking
one copy of G and |V(G)| copies of H, and by joining each
vertex of the ith copy of H to the ith vertex of G, where 1≤ i≤
|V (G)|.

The corona product graph K4 ◦P3 is shown in figure 1
below.
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Figure 1. The graph K4 ◦P3
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Definition 2.2. A connected graph G which has a given prop-
erty, but G−e does not, for every edge of G is called a critical
graph with respect to the given property.

We say that a connected graph G is partially critical or
P− critical with respect to some edge E in G or a subset of
edges in G.

3. Main Results
For the path graph Pn we know that rc(Pn) = n−1 and for

the complete graph Kn we know that rc(Kn) = 1.

In our first result, we determine the rainbow connec-
tion number of the corona product Pn ◦Kn.

Theorem 3.1. Let G = Pn ◦Kn. Then for n ≥ 2, rc(G) =
src(G) = 2n−1.

Proof. Let V (Pn) = {vi : 1≤ i≤ n} and let the vertex set of
the i copies of Kn namely (Kn)i be V{(Kn)i}= {ui j : 1≤ i≤
n,0≤ j ≤ n−1}.

By definition of the corona product, each vertex of Pn is
adjacent to every vertex of a copy of Kn, that is, for 1≤ i≤ n
the vertex vi ∈ V (Pn) is adjacent to the vertices of the set
{ui j : 1≤ j ≤ n} in the ith copy of Kn.

Let E(Pn ◦Kn) = {E1 ∪ E2 ∪ E3} where E1 = E(Pn) =
{ei = (vi,vi+1);1 ≤ i ≤ n− 1}, E2 be the edge set of (Kn)i
for 1≤ i≤ n and E3 = {(ek)i = (vi,ui j);1≤ i≤ n,1≤ k ≤ n
and 0≤ j ≤ n−1}.

We assign a rainbow coloring to the edges of Pn ◦Kn as
follows:

For 1≤ i≤ n assign the color i to the edges of (Kn)i and
to the edges (ek)i of Pn ◦Kn and for 1 ≤ j ≤ n− 1, assign
the color j + n to the edges of (Pn) of Pn ◦Kn. From this
assignment of colors, it is clear that

rc(Pn ◦Kn)≤ 2n−1 ——–(i)
To prove rc(Pn ◦Kn) ≥ 2n− 1, we assume that rc(Pn ◦

Kn) = 2n−2.
Then, for a proper rainbow coloring, 2n−2 colors must be

assigned to the edges of (Pn ◦Kn). Since Pn ◦Kn has n copies
of Kn, we assign n colors to the n copies of Kn and assign the
remaining n−2 colors to n−1 edges of Pn. An easy check
shows that at least two of the edges of Pn are colored with the
same colors.

This implies that at least one path in Pn ◦Kn is not rainbow
connected, which is a contradiction.

Thus rc(Pn ◦Kn)≥ 2n−1 ——–(ii)
From (i) and (ii), it follows that
rc(Pn ◦Kn) = 2n−1
(An illustration for the assignment of rainbow colors in

P4 ◦K4 is provided in figure 2.)
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Figure 2. Rainbow coloring in the graph P4 ◦K4

Further, for any distinct pair of vertices u and v a rainbow
u− v geodesic requires the same number of colors.

Hence src(G) = 2n−1.
Hence the proof.

Remark: Deletion of any edge from E1 disconnects the
graph G. Hence G is not P−critical with respect to E1 . For
the edge sets E2 and E3 we have following corollary.

3.0.1 corollary
Let G = (Pn ◦Kn). Then for n ≥ 2, G is not p−critical with
respect to E2 and E3.

Proof. Let e = (x,y) be any edge in E2. If we follow a color-
ing as in theorem 2.1, it is clear that the edges in E2 can be
colored by one color. Now the deletion of the edge e from
E2 will give d(x,y) = n− 2. Let P be the path from x to y
in the set E2. Then, since two edges in path P have same
color, a x− y rainbow path in E2 of G is not possible. This
holds for every edge e in E2. Hence, to obtain a rainbow path,
one more color is required other than 2n− 1 colors already
assigned in G. This holds for every e ∈ E2 of G. Therefore,
rs(E2)− e = 2n−1+1 = 2n.

This shows that each (Kn)i of G is p−critical with respect
to E2.

A similar proof follows for the edges in E3.

For the corona product of a path and cycle graph, we
have the following result.

Theorem 3.2. Let G = Pn ◦Cn. Then for n ≥ 3, rc(G) =
src(G) = 2n−1.

Proof. Let V (Pn) = {vi : 1≤ i≤ n} and let the vertex set of
the i copies of Cn namely (Cn)i be V{(Cn)i}= {ui j : 1≤ i≤
n,0≤ j ≤ n−1}.

By definition of the corona product, each vertex of Pn is
adjacent to every vertex of copy of Cn, that is for 1 ≤ i ≤ n
the vertex vi ∈ V (Pn) is adjacent to the vertices of the set
{ui j : 0≤ j ≤ n−1} in the ith copy of Cn.

Let E(Pn◦Cn)= {E1∪E2∪E3}where E1 = E(Pn) = {ei =
(vi,vi+1);1≤ i≤ n−1}, E2 =E(Cn)i = {ei j =(ui j,ui j+1);1≤
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i≤ n,0≤ j ≤ n−1} where computation for index j is under
modulo n and E3 = {(ek)i = (vi,ui j);1≤ i≤ n,1≤ k≤ n and
0≤ j ≤ n−1}.

We assign 2n−1 colors to the edges of Pn ◦Cn as follows.
We have the following cases.
Case 1: n = 3.

In this case, for 1 ≤ i ≤ 3 we assign the color i to the
edges of (C3)i and (ek)i and for 1≤ i≤ 2 we assign the color
i+3 to the edges ei. Then, clearly rc(P3 ◦C3) = 5.

Case 2: n≥ 4
For 1 ≤ i,k ≤ n we assign the color i to the edges (ek)i

and for 1≤ i≤ n−1 we assign the color n+ i to the edges ei.
Further,

Subcase 1: n is even:
In this case, adjacent edges of (Cn)i for each i are col-

ored recursively with the colors {1,2,3, · · · , n
2}, and, after

{ n
2} the same order is followed until the last edge.

Subcase 2: n is odd:
In this case, adacent edges of (Cn)i for each i are colored

recursively with the colors {1,2, · · · ,d n
2e}, and, after d n

2e the
same order is followed until the last edge.

Hence rc(Pn ◦Cn)≤ 2n−1 ——–(i)
To prove rc(Pn ◦Cn) ≥ 2n− 1, we assume that rc(Pn ◦

Cn) = 2n− 2. Then, for a proper rainbow coloring, 2n− 2
colors must be assigned to the edges of (Pn ◦Cn). Since Pn ◦Cn
has n copies of Cn, we assign n colors to the n copies of Cn
and assign the remaining n− 2 colors to n− 1 edges of Pn.
An easy check shows that at least two of the edges of Pn are
colored with the same colors.

This implies that at least one path in Pn ◦Cn is not rainbow
connected, which is a contradiction.

Thus rc(Pn ◦Cn)≥ 2n−1 ——–(ii)
From (i) and (ii), it follows that
rc(Pn ◦Cn) = 2n−1.
(An illustration for the assignment of rainbow colors in

P5 ◦C5 is provided in figure 3)
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Figure 3. Rainbow coloring in the graph P5 ◦C5

Further, for any distinct pair of vertices u and v a rainbow
u− v geodesic requires the same number of colors.

Hence src(G) = 2n−1

Hence the proof.

For the corona product of path and star graph, we
have the following result.

Theorem 3.3. Let G = Pn ◦K1,n. Then for n ≥ 3, rc(G) =
src(G) = 2n−1.

Proof. Let V (Pn) = {vi : 1≤ i≤ n} and let the vertex set of
the i copies of K1,n namely (K1,n)i be V{(K1,n)i}= {ui, j : 1≤
i≤ n,1≤ j ≤ n+1}.

By definition of the corona product, each vertex of Pn is
adjacent to every vertex of copy of K1,n, that is for 1≤ i≤ n
the vertex vi ∈ V (Pn) is adjacent to the vertices of the set
{ui j : 1≤ j ≤ n+1} in the ith copy of K1,n.

Let E(Pn ◦K1,n) = {E1 ∪E2 ∪E3}; where E1 = E(Pn) =
{ei : ei = (vi,vi+1);1 ≤ i ≤ n− 1}. E2 = E(K1,n)i = {ei j =
(ui1,ui j+1);1≤ i≤ n,1≤ j≤ n} and E3 = {(ek)i =(vi,uik);1≤
i≤ n,1≤ k ≤ n+1}.

We assign a rainbow coloring to the edges of E(Pn ◦K1,n)
as follows;

For 1 ≤ j ≤ n−1, assign the color j+n to the edges of
(Pn).

For 1≤ i≤ n, assign the colors {1,2, · · · , n} to the edges
of (K1,n)i and for 1 ≤ i ≤ n, assign the color i to the edges
(ek)i. From this assignment of colors, it is clear that

rc(Pn ◦K1,n)≤ 2n−1 ............(i)

To prove rc(Pn ◦K1,n) ≥ 2n− 1, we assume that rc(Pn ◦
K1,n) = 2n− 2. Then,for proper rainbow coloring, 2n− 2
colors must be assigned to the edges of (Pn ◦ K1,n).Since
(Pn ◦K1,n) has n copies of K1,n, we assign n colors to the
n copies of K1,n and assign the remaining n−2 colors to n−1
edges of Pn.An easy check shows that at least two of the edges
of Pn are colored with same colors.

This implies that at least one path in (Pn ◦K1,n) is not
rainbow connected,which is a contradiction.

Thus rc(Pn ◦K1,n)≥ 2n−1...............(ii)

From (i) and (ii) it follows that

rc(Pn ◦K1,n) = 2n−1.

(An illustration for the assignment of rainbow colors in
P5 ◦K1,5 is provided in figure 4.)
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Figure 4. Rainbow coloring in the graph P5 ◦K1,5

Further, for any distinct pair of vertices u and v a rainbow
u− v geodesic requires the same number of colors.

Hence src(G) = 2n−1.
Hence the proof.

For the corona product of star and complete graph,
we have the following result.

Theorem 3.4. Let G = K1,n ◦Kn. Then for n ≥ 2, rc(G) =
src(G) = 2n+1.

Proof. Let the vertex set V (k1,n) = {vi : 1 ≤ i ≤ n+1}. Let
vertex set of the i copies of Kn namely (Kn)i be V{(Kn)i}=
{ui j : 1≤ i≤ n+1,1≤ j ≤ n}.

By definition of corona graph, each vertex of K1,n is ad-
jacent to every vertex of copy of Kn, that is for 1≤ i≤ n+1
the vertex vi ∈ V (K1,n) is adjacent to the vertices of the set
{ui j : 1≤ j ≤ n} in the ith copy of Kn.

Let E(K1,n ◦Kn) = {E1∪E2∪E3} where E1 = E(K1,n) =
{ei = (v1,vi+1);1≤ i≤ n−1}, E2 be the edge set of (Kn)i for
1≤ i≤ n and E3 = {(ek)i = (vi,ui j);1≤ i≤ n,1≤ j,k ≤ n}.

We assign 2n− 1 colors to the edges of K1,n ◦Kn as fol-
lows:

For 1≤ i≤ n+1, assign the color i to the edges of (Kn)i
and to the edges (ek)i and for 1≤ j ≤ n, assign the color j+
n+1 to the edges of (K1,n) of K1,n ◦Kn. From this assignment
of colors, it is clear that

rc(K1,n ◦Kn)≤ 2n+1 ——–(i)
To prove rc(K1,n ◦Kn)≥ 2n+1, we assume that rc(K1,n ◦

Kn) = 2n. Then, for a proper rainbow coloring, 2n colors must
be assigned to the edges of (K1,n ◦Kn). Since K1,n ◦Kn has
n+1 copies of Kn, we assign n+1 colors to the n+1 copies
of Kn and assign the remaining n−1 colors to n edges of K1,n.
An easy check shows that at least two of the edges of K1,n
are colored with the same colors.

This implies that at least one path in K1,n ◦Kn is not rain-
bow connected, which is a contradiction.

This implies that at least one path in K1,n ◦Kn is not rain-
bow connected, which is a contradiction.

Thus rc(K1,n ◦Kn)≥ 2n+1 ——–(ii)
From (i) and (ii), it follows that
rc(K1,n ◦Kn) = 2n+1.
(An illustration for the assignment of rainbow colors in

K1,3 ◦K3 is provided in figure 5.)
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Figure 5. Rainbow coloring in the graph K1,3 ◦K3

Further, for any distinct pair of vertices u and v a rainbow
u− v geodesic requires the same number of colors.

Hence src(G) = 2n+1.
Hence the proof.

3.1 p-critical corona product graphs
In this section, we examine the p-criticalness property of the
corona product graphs discussed in the previous section. We
begin with the graph G described in Theorem 2.1. Deletion of
any edge from E1 disconnects G. Hence G is not p− critical
with respect to E1. For the edge sets E2 and E3 we have the
following result.

Lemma 3.5. Let G = Pn ◦Kn. Then for n≥ 2, G is rainbow
p− critical with respect to E2 and E3.

Proof: Let e = (x,y) be any edge in E2. If we follow a
coloring as in theorem 2.1, it is clear that the edges in E2 can
be colored by one color. Now deletion of the edge e from E2
will give d(x,y) = n−2. Let P be the path from x to y in the
set E2. Then, since two edges in path P have same color, a
x− y rainbow path in E2 of G is not possible. This holds for
every edge e in E2. Hence, to obtain a rainbow path , one
more color is required other than the 2n−1 colors already
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assigned in G. This holds for every e ∈ E2 of G. Therefore,
rc{E2− e}= 2n−1+1 = 2n.

This shows that each G is p-critical with respect to E2.
A similar proof follows for the edges in E3.

The graphs in theorems 2.2 and 2.3 are critical with respect
to the edge sets E2 and E3. We state these properties in lemmas
2.2 and 2.3 whose proofs are similar to the proof given in
lemma 2.1.

Lemma 3.6. Let G = Pn ◦Cn. Then for n≥ 3, G is rainbow
p− critical with respect to E2 and E3.

Lemma 3.7. Let G = Pn ◦K1,n. Then for n≥ 3, G is rainbow
p− critical with respect to E2 nd E3.

For the graph G in theorem 2.4, we have the following
result.

Lemma 3.8. Let G = K1,n ◦Kn. Then for n≥ 2, G is rainbow
p− critical with respect to E2 nd E3.

Proof: Let e = (x,y) be any edge in E2. If we follow a
coloring as in theorem 2.4, it is clear that the edges in E2 can
be colored by one color. Now let us delete the edge e from
E2. Let P be the path from x to y in the set E2. Then, since
two edges in path P have same color, a x− y rainbow path
in E2 of G is not possible. This holds for every edge e in E2.
Hence, to obtain a rainbow path , one more color is required
other than the 2n+1 colors already assigned in G. Therefore,
rc{E2− e}= 2n+1+1 = 2n+2.

This shows that each G is p-critical with respect to E2.
A similar proof follows for the edges in E3.

Conclusion
In this paper, We obtain the rainbow connection number,

strong rainbow connection number and p-criticalness property
of some corona product graphs involving the path and com-
plete graph, path and cycle graph, Path and star graph and star
and complete graph.
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