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Abstract. In this paper, new iterative schemes called Jungck-DI-Noor random iterative scheme and Jungck-DI-SP random
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1. Introduction

Let (Y, ρ) be a complete metric space and Γ : Y −→ Y a selfmap of Y . Suppose that FΓ = {q ∈ Y : Γq = q} is
the set of fixed points of Γ.

Over the years, different iterative schemes have been succesfully employed in approximating fixed points
(or common fixed point) of different contractive operators in different spaces (see for example, [1], [4] , [12]
and [16] -[44] and the references therein for more details). In 1971, Kirk [20] introduced the following iterative
scheme:

Let X be a normed linear space and Γ : X −→ X be a self-map on X . For arbitrarily chosen y0 ∈ X , define
the sequence {yn}∞n=0 iteratively as follows:

yn+1 =
∑̀
j=0

αjΓ
jyn,

∑̀
j=0

αj = 1, n ≥ 0. (1.1)
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Since its emergence, different researchers have modified and generalised (1.1) in different spaces, see for
example, [11],[15] and [29] and the reference therein.

In [29], Olatinwo introduced the iterative schemes below: Let Y be a Banach space and Γ : Y −→ Y be a
selfmap of Y.

(i) For an arbitrary point y0 ∈ Y , αn,t ≥ 0, αn,0 6= 0, αn,t ∈ [0, 1] and ` as a fixed integer, define the
sequence {yn}∞n=0 by

yn+1 =
∑̀
t=0

αn,tΓ
tyn,

∑̀
t=0

αn,t = 1, n ≥ 0 (1.2)

(ii) For an arbitrary point y0 ∈ Y , ` ≥ m,αn,t, βn,t ≥ 0 with αn,0, βn,0 6= 0, αn,t, βn,t ∈ [0, 1] and `,m as
fixed integers, define the sequence {yn}∞n=0 by

yn+1 = αn,0yn +
∑̀
t=0

αn,tΓ
jzn,

∑̀
t=0

αn,t = 1;

zn =

m∑
t=0

βn,tΓ
tyn,

∑̀
t=0

βn,t = 1, n ≥ 0, (1.3)

and called them Kirk-Mann and Kirk-Ishikawa algorithms, respectively.

Chugh and Kumar [12] introduced and studied the iterative scheme below: Let Y be a Banach space and
Γ : Y −→ Y be a selfmap of Y . For an arbitrary point y0 ∈ Y and for ` ≥ m ≥ p, αn,s, γn,r, βn,t ≥
0, γn,0, αn,0, βn,0 6= 0, αn,s, γn,r, βn,t ∈ [0, 1] and `,m, p as fixed integers, define the sequence {yn}∞n=0 by

yn+1 = γn,0yn +
∑̀
r=1

γn,rΓrzn,
∑̀
r=0

γn,r = 1;

zn = αn,0yn +

m∑
s=1

αn,sΓ
szn,

m∑
s=0

αn,s = 1; (1.4)

zn =

p∑
t=0

βn,tΓ
tyn,

p∑
t=0

βn,t = 1, n ≥ 0,

In 1976, Jungck[19] introduced and studied the iterative scheme below: Let Z be a Banach space, Y an
arbitrary set and S,Γ : Y −→ Z such that Γ(Y ) ⊆ S(Y ). For arbitrary x0 ∈ Y, define the sequence {Sxn}∞n=0

as follows

Sxn+1 = Γxn, n = 1, 2, · · · (1.5)

The iterative sequence defined by (1.5) is called Jungck iterative scheme and becomes Picard iterative scheme
if S = Id (identity mapping) and Y = Z. It is worthy to note that (1.5) has been studied and generalised by
different authors in different nonlinear spaces. Interested readers should see [2], [23], [24], [27] and [41] for more
details.

In [12], the following iterative scheme was introduced and studied as a generalisation of (1.4): Let Z be a
Banach space, Y an arbitrary set and S,Γ : Y −→ Z a nonself operator such that Γ(Y ) ⊆ S(Y ). For arbitrary
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y0 ∈ Y, define the sequence {Syn}∞n=0 by

Syn+1 = γn,0Syn +
∑̀
r=1

γn,rΓrzn,
∑̀
r=0

γn,r = 1;

Szn = αn,0Syn +

m∑
s=1

αn,sΓ
szn,

m∑
s=0

αn,s = 1; (1.6)

Szn = βn,0Syn +

p∑
t=1

βn,tΓ
tyn,

p∑
t=0

βn,t = 1, n ≥ 0,

where ` ≥ m ≥ p, αn,s, γn,r, βn,t ≥ 0, γn,0, αn,0, βn,0 6= 0, αn,s, γn,r, βn,t ∈ [0, 1] and `,m, p as fixed
integers.

Remark 1.1. Notably, (1.6) reduces to (1.4) if S = Id (identity).

Following the introduction of random fixed point theorems by Prague school of probability in 1950,
considerable efforts have been devoted toward developing this theory. This unwavering interest stem from the
priceless stance of fixed point theorems in probabilistic functional analysis and probabilistic model along with
their diverse applications. It is worthwhile mentioning that problems relating to measurability of solutions,
probabilistic and statistical aspect of random solutions found their way in the current literature due to the
introduction of randomness. Also, it is of interest to note that random fixed point theorems are stochastic
generalization of classical fixed point theorems and are usually needed in the theory of random equations,
random matrices, random differential equations, and different classes of random operators emanating in physical
systems (see, for example, [10] for details). In 1976, a paper by Bharucha-Reid [6], which provided sufficient
conditions for a stochastic analogue of Schauder’s fixed point theorem for random operators, prompted various
mathematicians to construct varying degree of fixed point iteration procedures for approximating fixed point of
nonlinear random operators. In [14] and [42], Hans and Spacek initiated the idea of random fixed point theorems
for contraction self mappings, Subsequently, Itoh [7] extended the result to multivalued random operators. In
[43], using mappings that satisfied inward or the Leray Schauder condition, Xu [43] generalised the results in [7]
to the case of nonself random operators. Further results in this direction could be found in [10] and the refrence
therein

Definition 1.2. Let (Ω,Σ) be a measurable space (Ω− a set and Σ− sigma algebra), D a nonempty closed
and convex subset of a real separable Banach space E and Γ : Ω −→ D a given mapping. Then,

1. Γ is said to be measurable if Γ−1(B ∩D) ∈ Σ for each Borel subset B of H;

2. Γ : Ω×D −→ D is called random operator if Γ(., ω) : Ω −→ D is measurable for every ω ∈ D and

3. Γ is siad to be continuous if for any given ξ ∈ Ω,Γ(ξ, .) : Ω×D −→ D is continuous.

Definition 1.3. Let (Ω,Σ) be a measurable space (Ω− a set and Σ− sigma algebra), D a nonempty closed
and convex subset of a real separable Banach spaceE and Γ : Ω −→ D a given mapping. A measurable function
g : Ω −→ D is called a fixed point for the operator Γ : Ω × D −→ D if Γ(ξ, g(ξ)) = g(ξ) and it is referred
to as a coincidence point for two random operators S,Γ : Ω × D −→ D if Γ(ξ, g(ξ)) = S(ξ, g(ξ)),∀ξ ∈ Ω.
The operators S,Γ are called random weakly compatible if they commute at the random coincidence point;
i.e., if Γ(ξ, g(ξ)) = S(ξ, g(ξ)) for every ξ ∈ Ω, then Γ(S(ξ, g(ξ))) = S(Γ((ξ, g(ξ)))) or Γ(ξ, S(ξ, g(ξ))) =

S(ξ,Γ(ξ, g(ξ))). The set of random common fixed points of the random mappings S,Γ : Ω×D −→ D shall be
denoted by F (S,Γ) = {g(ξ) ∈ D : S(ξ, g(ξ)) = Γ(ξ, g(ξ)) = g(ξ), ξ ∈ Ω}.
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To approximate the fixed point of random mappings, different fixed point iterative schemes have been used
by different authors (see, for example, [14], [40], [42], [43] and the reference therein).

Recently, Rashwan and Hammad [40] introduced the following random version of Jungck-Kirk-Noor iterative
scheme defined in [24]: Let Γ, S : Ω × Z −→ Y be two random mappings defined on a nonempty closed and
convex subset D of a separable Banach space Y . Let x0 : Ω −→ D be an arbitrary measurable mapping. For
ξ ∈ Ω, n = 0, 1, 2, · · · , with Γ(ξ, Z) ⊆ S(ξ, Z), then

S(ξ, yn+1(ξ)) = αn,0S(ξ, yn(ξ)) +
∑`1

i=1 αn,iΓ
i(ξ, zn(ξ)),

∑`1
i=1 αn,i = 1;

S(ξ, zn(ξ)) = δn,0S(ξ, yn(ξ)) +
∑`2

j=1 δn,jΓ
j(ξ, tn(ξ)),

∑`2
j=1 δn,j = 1;

S(ξ, tn(ξ)) =
∑`3

k=0 γn,kΓk(ξ, yn(ξ)),
∑`3

k=1 γn,k = 1,

(1.7)

where `1, `2 and `3 are fixed integers with `1 ≥ `2 ≥ `3, αn,i ≥ 0, αn,0 6= 0, δn,j ≥ 0, δn,0 6= 0 and γn,k ≥
0, γn,0 6= 0 are measurable sequences in [0, 1]. They called (1.7) Jungck-Kirk-Noor random iterative scheme.

Remark 1.4. If `3 = 0 and `2 = `3 = 0 in (1.7), then we have the following random iterative schemes:{
S(ξ, yn+1(ξ)) = αn,0S(ξ, yn(ξ)) +

∑`1
i=1 αn,iΓ

i(ξ, zn(ξ)),
∑`1

i=1 αn,i = 1;

S(ξ, zn(ξ)) = δn,0S(ξ, yn(ξ)) +
∑`2

j=1 δn,jΓ
j(ξ, yn(ξ))

(1.8)

and

S(ξ, yn+1(ξ)) = αn,0S(ξ, yn(ξ)) +

`1∑
i=1

αn,iΓ
i(ξ, yn(ξ)),

`1∑
i=1

αn,i = 1, (1.9)

respectively. (1.8) and (1.9) are called Jungk-Kirk-Ishikawa and Jungck-Kirk-Man iterative schemes respectively.

In real life applications, the workability of the various iterative schemes studied in this paper would be
questionable if their stability is not guaranteed. In [32], Ostrowski initiated the notion of stability of iterative
schemes and started investigation on this using Banach contractive conditions. Subsequently, different
researchers have continued this investigation using more general contractive-type mappings than the one studied
in [32]. Some recent works in this direction could be seen in [33], [34],[30],[28],[13],[32],[8],[31], [17],[11],[4]
and the references therein.

Remark 1.5. To obtain stability and convergence results in the papers studied using (1.1), (1.4), (1.6), (1.7),
(1.8), (1.9) and their variants required that the finite sum of the countably finite sequences of the measurable
control parameters be unity (i.e.,

∑`
k=0 γn,k = 1,

∑m
i=0 αn,i = 1,

∑p
i=0 δn,j = 1 , etc.). However, in real life

applications, if `,m and p are very large, it would be very difficult or almost impossible to generate a family of
such measurable control parameters. Again, the computational cost of generating such a family of measurable
control parameters (if possible) is quite enormous and also takes a very long process.

In an attempt to overcome these challenges mentioned in Remark 1.3 for the case of a nonrandom operators,
Agwu and Igbokwe introduced alternative iterative schemes in [1]. To the best of our knowledge, the problem
of ’sum conditions’ is still unresolved for the case of random iterative schemes. Consequently, the following
question becomes necessary:

Question 1.1. Is it possible to construct alternative random iterative schemes that would address the problems
generated by the sum conditions

(∑`3
k=0 γn,k = 1,

∑`2
j=0 δn,j = 1 and

∑`1
i=0 αn,i = 1

)
imposed on the control

parameters {{γn,k}∞n=1}
`3
k=1, {{αn,i}∞n=1}

`1
i=1

and {{δn,j}∞n=1}
`2
j=1, respectively while maintaining the convergence and stability results in [40]?

Following the same argument as in [18] regarding the linear combination of the products of countably finite
family of control parameters and the problems identified in each of the iterative schemes studied, the aim of this
paper is to provide an affirmative answer to Question 1.1.
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2. Preliminary

The following definitions, lemmas and propositions will be needed to prove our main results.

Definition 2.1. (see [32]) Let (Y, d) be a metric space and let Γ : Y −→ Y be a self-map of Y . Let {xn}∞n=0 ⊆ Y
be a sequence generated by an iteration scheme

xn+1 = g(Γ, xn), (2.1)

where x0 ∈ Y is the initial approximation and g is some function. Suppeose {xn}∞n=0 converges to a fixed point
q of Γ. Let {tn}∞n=0 ⊆ Y be an arbitrary sequence and set εn = d(tn, g(Γ, tn)), n = 1, 2, · · · Then, the iteration
scheme (2.1) is called Γ-stable if and only if limn→∞ εn = 0 implies limn→∞ yn = q.

Note that in practice, the sequence {tn}∞n=0 could be obtained in the following manner: let x0 ∈ Y . Set
xn+1 = g(Γ, xn) and let t0 = x0. Now, x1 = g(Γ, x0) because of rounding in the function Γ, and a new value
t1 (approximately equal to x1) might be calculated to give t2, an approximate value of g(Γ, t1). The procedure is
continued to yield the sequence {tn}∞n=0, an approximate sequence of {xn}∞n=0.

Definition 2.2. (see, e.g., [40]) For two random operators S,Γ : Ω×D −→ E with Γ(ξ,D) ⊆ S(ξ,D) and C
is a nonempty closed and convex subset of a separable Banach space E, there exist real numbers η ∈ [0, 1], δ ∈
[0, 1) and a monotone increasing function φ : R+ −→ R+ with φ(0) = 0 and ∀x, y ∈ C, we get

‖Γ(ξ, x)− Γ(ξ, y)‖ ≤ φ(‖S(ξ, x)− Γ(ξ, x)‖) + δ‖S(ξ, x)− S(ξ, y)‖
1 + η‖S(ξ, x)− Γ(ξ, x)‖

(2.2)

Lemma 2.3. Let {τn}∞n=0 be a sequence of positive numbers such that τn → 0 as n → ∞. For 0 ≤ δ < 1, let
{wn}∞n=0 be a sequence of positive numbers satisfying wn+1 ≤ δwn+τn, n = 0, 1, 2, · · · Then, wn → 0 as n→
∞.

Lemma 2.4. (see, e.g., [40]) Let (E, ‖, ‖) be a normed linear space and S,Γ random commuting mappings on
an arbitrary set D with values in E satisfying (2.2) such that ∀x, y ∈ D, ξ ∈ Ω,

Γ(ξ,D) ⊆ S(ξ,D);

‖S(ξ, S(ξ, x))− Γ(ξ, S(ξ, x))‖ ≤ ‖S(ξ, x)− Γ(ξ, x)‖
‖S(ξ, S(ξ, x))− S(ξ, S(ξ, x))‖ ≤ ‖S(ξ, x)− S(ξ, y)‖

(2.3)

Consider φ : R+ −→ R+, a sublinear monotone increasing function such that φ(0 = 0) and φ(u) = (1 −
δ)u,∀δ ∈ [0, 1), u ∈ R+. Then, ∀i ∈ N and ∀x, y ∈ D, we get

‖Γi(ξ, x)− Γi(ξ, y)‖ ≤
∑i

j=1

(
i
j

)
νi−1φj(‖S(ξ, x)− Γ(ξ, x)‖) + νi‖S(ξ, x)− S(ξ, y)‖

1 + ηi‖S(ξ, x)− Γ(ξ, x)‖
(2.4)

Proposition 2.5. (see,e.g., [18]) Let {αi}∞i=1 ⊆ N be a countable subset of the set of real numbers R, where k is
a fixed nonnegative integer and N is any integer with k + 1 ≤ N. Then, the following holds:

αk +

N∑
i=k+1

αi

i−1∏
j=k

(1− αj) +

N∏
j=k

(1− αj) = 1. (2.5)

Proposition 2.6. (see,e.g., [18]) Let t, u and v be arbitrary elements of a real Hilbert space H . Let k be any
fixed nonnegetive integer and N ∈ N be such that k + 1 ≤ N. Let {vi}N−1

i=1 ⊆ H and {αi}Ni=1 ⊆ [0, 1] be a
countable finite subset of H and R, respectively. Define

y = αkt+

N∑
i=k+1

αi

i−1∏
j=k

(1− αj)vi−1 +

N∏
j=k

(1− αj)v.
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Then,

‖y − u‖2 = αk‖t− u‖2 +

N∑
i=k+1

αi

i−1∏
j=k

(1− αj)‖vi−1 − u‖2 +

N∏
j=k

(1− αj)‖v − u‖2

−αk

[ N∑
i=k+1

αi

i−1∏
j=k

(1− αj)‖t− vi−1‖2 +

i−1∏
j=k

(1− αj)‖t− v‖2
]

−(1− αk)
[ N∑
i=k+1

αi

i−1∏
j=k

(1− αj)‖vi−1 − (αi+1 + wi+1)‖2

+αN

i−1∏
j=k

(1− αj)‖v − vN−1‖2
]
,

where wk =
∑N

i=k+1 αi

∏i−1
j=k(1− αj)vi−1 +

∏i−1
j=k(1− αj)v, k = 1, 2, · · · , N and wn = (1− cn)v.

3. Main Results I

Let Γ, S : Ω ×D −→ H be two random mappings defined on a nonempty closed convex subset of a separable
Hilbert space, H. Let x0 : Ω −→ C be an arbitrary measurable mapping. For ξ ∈ Ω, n = 1, 2, · · · , with
Γ(ξ,D) ⊆ S(xi,D), then

S(ξ, xn+1(ξ)) = αn,1S(ξ, xn(ξ)) +
∑`1

i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

S(ξ, yn(ξ)) = γn,1S(ξ, xn(ξ)) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

S(ξ, zn(ξ)) = δn,1S(ξ, xn(ξ)) +
∑`3

s=2 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C, n ≥ 0, 1, 2, ..,

(3.1)

and 
S(ξ, xn+1(ξ)) = αn,1S(ξ, yn(ξ)) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

S(ξ, yn(ξ)) = γn,1S(ξ, zn(ξ)) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

S(ξ, zn(ξ)) = δn,1S(ξ, xn(ξ)) +
∑`3

s=2 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C, n ≥ 0, 1, 2, ..,

(3.2)

where A =
∏`1

a=1(1 − αn,a)Γ`1(ξ, yn(ξ)), B =
∏`2

b=1(1 − γn,b)Γ
`2(ξ, zn(ξ)), C =∏`3

c=1(1− δn,s)Γ`3(ξ, xn(ξ)), {{δn,s}∞n=0}as=1, {{γn,t}∞n=0}bt=1, {{αn,i}∞n=0}ci=1 are countable finite family of
measurable real sequences in [0, 1] and `1, `2, `3 ∈ N. We shall call the iterative schemes defined by (3.1) and
(3.2) the Jungck-DI-Noor random iterative scheme and Jungck-DI-SP random iterative scheme, respectively.

Remark 3.1. 1(a) If `3 = 0 in (3.1), we obtain the following remarkable iterative schemes:{
S(ξ, xn+1(ξ)) = αn,1S(ξ, xn(ξ)) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

S(ξ, yn(ξ)) = γn,1S(ξ, xn(ξ)) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B,n ≥ 0, 1, 2, ..,

(3.3)

(b) if `2 = `3 = 0 in (3.1), we have the following important algorithm:

S(ξ, xn+1(ξ)) = αn,1S(ξ, xn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, yn(ξ)) +A,

(3.4)

where A and B are as defined above. The iterative schemes defined by (3.3) and (3.4) are called Jungck-
DI-ishikawa and Jungck-DI-Mann random iterative schemes respectively.
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2. If Ω is a singleton in (3.1) and (3.2), we obtain the nonrandom version of (3.1) and (3.2), respectively.

3. If S is an identity mapping in (3.1) and (3.2), we get the following iterative algorithms:
xn+1(ξ) = αn,1xn(ξ) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

yn(ξ) = γn,1xn(ξ) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

zn(ξ) =
∑`3

s=1 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C

, n ≥ 0, 1, 2, ..,

(3.5)

and 
xn+1(ξ) = αn,1yn(ξ) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

yn(ξ) = γn,1zn(ξ) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B;

zn(ξ) =
∑`3

s=1 δn,s
∏s−1

c=1(1− δn,s)Γs−1(ξ, xn(ξ)) + C

, n ≥ 0, 1, 2, ..,

(3.6)

where A,B,C, {{δn,s}∞n=0}as=1, {{γn,t}∞n=0}bt=1, {{αn,i}∞n=0}ci=1 are and `1, `2, `3 are as defined in
(3.1). We shall call the iterative schemes defined by (3.5) and (3.6) the the modified DI-Noor random
iterative scheme and the modified DI-SP random iterative scheme, respectively.

4(a). If `3 = 0 in (3.5), we obtain the following remarkable iterative schemes:{
xn+1(ξ) = αn,1xn(ξ) +

∑`1
i=2 αn,i

∏i−1
a=1(1− αn,a)Γi−1(ξ, yn(ξ)) +A;

yn(ξ) = γn,1xn(ξ) +
∑`2

t=2 γn,t
∏t−1

b=1(1− γn,b)Γt−1(ξ, zn(ξ)) +B,n ≥ 0, 1, 2, ..,

(3.7)

(b) if `2 = `3 = 0 in (3.5), we have the following important algorithm:

xn+1(ξ) = αn,1xn(ξ) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, yn(ξ)) +A, (3.8)

Theorem 3.2. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.1) converges to q(ξ), then the random
Jungck-DI-Noor iterative scheme is S,Γ-stable.

Proof. Let q(ξ) : Ω −→ D be a measurable mapping and z(ξ) : Ω −→ D a random coincidence point of
the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). Let
{S(ξ, tn(ξ))}∞n=0 ⊂ H and

εn = ‖S(ξ, tn+1(ξ))− αn,1S(ξ, tn(ξ))−
`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

−
`1∏

a=1

(1− αn,a)Γ`1(ξ, gn(ξ))‖, (3.9)
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where, for every ξ ∈ Ω,

S(ξ, gn(ξ)) = γn,1S(ξ, tn(ξ)) +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)Γt−1(ξ, fn(ξ))

+

`2∏
b=1

(1− γn,b)Γ`2(ξ, fn(ξ)), (3.10)

and

S(ξ, fn(ξ)) = δn,1S(ξ, tn(ξ)) +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)Γs−1(ξ, tn(ξ))

+

`3∏
c=1

(1− δn,c)Γ`3(ξ, tn(ξ)). (3.11)

Let εn → 0 as n → ∞, then by lemma 2.2 and Proposition 2.4, with S(ξ, tn(ξ)) = t,Γi−1(ξ, gn(ξ)) =

vj−1,Γ
`1(ξ, gn(ξ)) = v and k = 1, we get the following estimates:

‖S(ξ, tn+1(ξ))− q(ξ)‖2 = ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)−
[
αn,1S(ξ, tn(ξ))

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ)) +

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))

−S(ξ, tn(ξ))
]
‖2

≤ ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)‖2 + ‖ −
[
αn,1S(ξ, tn(ξ))

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ)) +

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))

−S(ξ, tn(ξ))
]
‖2

= ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)‖2 + εn
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≤ εn

+αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)‖Γi−1(ξ, gn(ξ))− q(ξ)‖2

+

`1∏
a=1

(1− αn,a)‖Γ`1(ξ, gn(ξ))− q(ξ)‖2 (3.12)

But,

‖Γi−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤ H, (3.13)

where

H =

∑i
j=1

(
i
j

)
νi−1φj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νi‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖

1 + ηi‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
(3.13) implies

‖Γi−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤
∑i

j=1

(
i
j

)
νi−1φj(0) + νi‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖

1 + ηi‖0‖
Since φi(0) = 0, it follows from the last inequality above that

‖Γi−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤ νi‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖ (3.14)

(3.12) and (3.14)

‖S(ξ, tn+1(ξ))− q(ξ)‖2 ≤ εn

+αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖2

+

`1∏
a=1

(1− αn,a)(νi)2‖S(ξ, z(ξ))− S(ξ, gn(ξ))‖2 (3.15)

Also, using (3.10) and Proposition 2.4, with S(ξ, tn(ξ)) = t,Γi−1(ξ, fn(ξ)) = vj−1,Γ
`2(ξ, fn(ξ)) = v and k =

1, we obtain the following estimaes:

‖S(ξ, gn(ξ))− q(ξ)‖
= ‖γn,1S(ξ, tn(ξ))

+

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)Γt−1(ξ, fn(ξ))

+

`2∏
b=1

(1− γn,b)Γ`2(ξ, fn(ξ))− q(ξ)‖2

≤ ‖γn,1S(ξ, tn(ξ))− q(ξ)‖2

+

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)‖Γt−1(ξ, fn(ξ))− q(ξ)‖2

+

`2∏
b=1

(1− γn,b)‖Γ`2(ξ, fn(ξ))− q(ξ)‖2 (3.16)
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Since φ(0) = 0, it follows from Lemma 2.2 that

‖Γt−1(ξ, gn(ξ))− Γt−1(ξ, z(ξ))‖ ≤ H?, (3.17)

where

H? =

∑t
j=1

(
t
j

)
νt−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νt‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖

1 + ηt‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
(3.17) implies

‖Γt−1(ξ, gn(ξ))− Γi−1(ξ, z(ξ))‖ ≤
∑t

j=1

(
t
j

)
νt−jφj(0) + νt‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖

1 + ηt‖0‖
= νt‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖ (3.18)

Again, using (3.11) and Proposition 2.4, with

S(ξ, tn(ξ)) = t,Γi−1(ξ, tn(ξ)) = vj−1,Γ
`2(ξ, tn(ξ)) = v and k = 1,

we obtain the following estimaes:

‖S(ξ, fn(ξ))− q(ξ)‖2 = ‖δn,1S(ξ, tn(ξ)) +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)Γs−1(ξ, tn(ξ))

+

`3∏
c=1

(1− δn,c)Γ`3(ξ, tn(ξ))− q(ξ)‖2

≤ δn,1‖S(ξ, tn(ξ))− q(ξ)‖2 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)‖Γs−1(ξ, tn(ξ))− q(ξ)‖2

+

`3∏
c=1

(1− δn,c)‖Γ`3(ξ, tn(ξ))− q(ξ)‖2 (3.19)

Since z(ξ) is the coincidence point of S,Γ, φ(0) = 0 and

‖Γs−1(ξ, gn(ξ))− Γs−1(ξ, z(ξ))‖ ≤W ?,

where

W ? =

∑s
j=1

(
s
j

)
νs−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νs‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖

1 + ηs‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
,

it follows that

‖Γs−1(ξ, tn(ξ))− Γs−1(ξ, z(ξ))‖ ≤
∑s

j=1

(
s
j

)
νs−jφj(0) + νs‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖

1 + ηs‖0‖
= νs‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖. (3.20)

Since (3.16) and (3.18) imply

‖S(ξ, gn(ξ))− q(ξ)‖ ≤ γn,1‖S(ξ, tn(ξ))− q(ξ)‖2 (3.21)

+
( `2∑

t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×‖S(ξ, z(ξ))− S(ξ, fn(ξ))‖2
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and (3.19) and (3.20) imply

‖S(ξ, fn(ξ))− q(ξ)‖2 ≤
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)

×‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖2,

we have (using (3.15)) that

‖S(ξ, tn+1(ξ))− q(ξ)‖2 ≤

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}

×‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖2 + εn (3.22)

Let

δn =

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}

,

so that from Proposition 2.3 and the fact that νi ∈ [0, 1), we obtain

δn =

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}

,

<

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a) +

`1∏
a=1

(1− αn,a)
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b) +

`2∏
b=1

(1− γn,b)
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c) +

`3∏
c=1

(1− δn,c)
)]}

= 1 (3.23)

Using Lemma 2.1, we obtain from (3.22) and (3.23) that S(ξ, tn(ξ))→ q(ξ) as n→∞.
Conversely, let S(ξ, tn(ξ)) → 0 as n → ∞. Then, we show that εn → 0 as n → ∞. Now, by using (3.9),
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(3.22), Proposition 2.4 and Lemma 2.2, we estimate as follows:

εn = ‖S(ξ, tn+1(ξ))− q(ξ)−
[
αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)
]
‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 + ‖αn,1S(ξ, tn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, gn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, gn(ξ))− q(ξ)‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 + αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)‖Γi−1(ξ, gn(ξ))− q(ξ)‖2 +

`1∏
a=1

(1− αn,a)‖Γ`1(ξ, gn(ξ))− q(ξ)‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 + αn,1‖S(ξ, tn(ξ))− q(ξ)‖2

+
( `1∑

i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)
‖S(ξ, gn(ξ))− q(ξ)‖2

≤ ‖S(ξ, tn+1(ξ))− q(ξ)‖2 +

{
αn,1 +

( `1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
[
γn,1 +

( `2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
c=1

(1− δn,c)(νs)2 +

`3∏
c=1

(1− δn,c)(νs)2
)]}
‖S(ξ, z(ξ))− S(ξ, tn(ξ))‖2

Observe that the right hand side of the last inequality tends to 0 as n → ∞, hence εn → 0 as n → ∞. The
completes the proof.

If `3 = 0 and `2 = `3 = 0, then Theorem 3.1 yields the following corollaries: �

Corollary 3.3. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.3) converges to q(ξ), then the random
Jungck-DI-Ishikawa iterative scheme is S,Γ-stable.

Corollary 3.4. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.4) converges to q(ξ), then the random
Jungck-DI-Mann iterative scheme is S,Γ-stable.

If S is an identity in (3.1), (3.3) and (3.4), we obtain the following corollaries:
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Corollary 3.5. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, if the sequence {xn(ξ)}∞n=0 generated by (3.5) converges to q(ξ), then the random DI-Noor iterative
scheme is S,Γ-stable.

Corollary 3.6. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.7) converges to q(ξ), then the random
DI-Ishikawa iterative scheme is S,Γ-stable.

Corollary 3.7. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.8) converges to q(ξ), then the random DI-Mann
iterative scheme is S,Γ-stable.

Theorem 3.8. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.2) converges to q(ξ), then the random
Jungck-DI-SP iterative scheme is S,Γ-stable.

Proof. Using similar argument as in Theorem 3.1, the proof of Theorem 3.4 follows immediately. �

Again, if S is an identity in (3.2), we obtain the following corollary from Theorem 3.7:

Corollary 3.9. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is
a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point
of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For
arbitrary x0(ξ) ∈ H, if the sequence {S(ξ, xn(ξ))}∞n=0 generated by (3.6) converges to q(ξ), then the random
DI-SP iterative scheme is S,Γ-stable.

4. Main Result II

Theorem 4.1. Let H be a real separable Hilbert space, Γ, S : D −→ H random commuting operators for
an arbitrary set D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where
φ : R+ −→ R+ is a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the
random coincidence point of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) =

Γi(ξ, z(ξ)) = q(ξ)). For arbitrary x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random Jungck-DI-SP iterative
scheme generated by (3.2). Then,

(i) q is the unique common fixed point of Γi−1 and Si−1(i = 2, 3, · · · ) if D = H and Γ, S commute at q
(i.e., Γ, S are weakly comprtible);

(ii) the Jungck-DI-SP iteration scheme converges strongly to q(ξ) ∈ Γ(ξ).
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Proof. Assume that {S(ξ, xn(ξ))}∞n=0 has a pointwise limit (i.e., limn→∞ S(ξ, xn(ξ)) = q(ξ),∀ξ ∈ Ω). Since
H is a separable Hilbert space, it follows that S(ξ, g(ξ)) = q(ξ) is a measurable mapping for any random
operator S : Ω ×K −→ K and any measurable mapping g : Ω −→ K. Thus, the sequence {S(ξ, xn(ξ))}∞n=0

generated by the random Jungck-DI-SP iterative scheme (3.2) is a sequence of measurable mappings. Also,
since K is convex and q(ξ) is measurable, then q : ω −→ K (being limit of measurable mapping) is as well
measurable.

Now, we show that S,Γ, Si and Γi have a unique coincidence point z(ξ). Let K(S,Γ, Si,Γi) be the set of
all coincidence points of S,Γ, Si and Γi; and suppose there exists another coincidence point
q′ ∈ K(S,Γ, Si,Γi) with q′ 6= q. Then, we can find z?(ξ) 6= z(ξ) such that
S(ξ, z?(ξ)) = Γ(ξ, z?(ξ)) = Si(ξ, z?(ξ)) = Si(ξ, z?(ξ)) = q′(ξ). Using (2.4) and the fact that φ(0) = 0, we
get

‖q(ξ)− q′(ξ)‖ = ‖Γi−1(ξ, z(ξ))− Γi−1(ξ, z?(ξ))‖ ≤ Q?, (4.1)

where

Q? =

∑i
j=1

(
s
j

)
νi−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νi‖S(ξ, z(ξ))− S(ξ, z?(ξ))‖

1 + ηi‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
.

From (4.1), we obtain

‖q(ξ)− q′(ξ)‖ ≤
∑i

j=1

(
i
j

)
νi−jφj(0) + νi‖S(ξ, z1(ξ))− S(ξ, z2(ξ))‖

1 + ηi‖0‖
= νs‖S(ξ, z(ξ))− S(ξ, z?(ξ))‖ = νi‖q(ξ)− q′(ξ)‖.,

which yields (1 − νi)‖q(ξ) − q′(ξ)‖ ≤ 0. Since νi ∈ [0, 1) and the norm is a nonnegative function, it follows
that q(ξ) = q′(ξ), which is a contradiction to our earlier assumption that q(ξ) 6= q′(ξ). Hence,
S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Si(ξ, z(ξ)) = q(ξ). Therefore, q(ξ) is unique. Further, since
Γ(ξ) and S(ξ) are weakly compartible, we have
Γ(ξ, S(ξ, z(ξ))) = S(ξ,Γ(ξ, z(ξ))) and Γi(ξ, S(ξ, z(ξ))) = Si(ξ,Γi(ξ, z(ξ))). Hence,
Γ(ξ, q(ξ)) = S(ξ, q(ξ)) = Γi(ξ, q(ξ)) = Si(ξ, q(ξ)) so that q(ξ) is the coimcidence point of Γ, S,Γi and Si.
Also, since the coincidence point is unique, we get q(ξ) = z(ξ). Thus,
Γ(ξ, z(ξ)) = S(ξ, z(ξ)) = Γi(ξ, z(ξ)) = Si(ξ, z(ξ)) = q(ξ).

Next, we show that {S(ξ, xn(ξ))}∞n=0 converges to q(ξ). Using (3.2), lemma 2.2 and Proposition 2.4, with
S(ξ, yn(ξ)) = t,Γi−1(ξ, yn(ξ)) = vj−1,Γ

`1(ξ, yn(ξ)) = v and k = 1, we get the following estimates:

‖S(ξ, xn+1(ξ))− q(ξ)‖2 = ‖αn,1S(ξ, yn(ξ)) +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)Γi−1(ξ, yn(ξ))

+

`1∏
a=1

(1− αn,a)Γ`1(ξ, yn(ξ))− q(ξ)‖2

≤ αn,1‖S(ξ, yn(ξ))− q(ξ)‖2

+

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)‖Γi−1(ξ, yn(ξ))− q(ξ)‖2

+

`1∏
a=1

(1− αn,a)‖Γ`1(ξ, yn(ξ))− q(ξ)‖2. (4.2)

Since z(ξ) is the coincidence point of S,Γ, φ(0) = 0 and

‖Γi−1(ξ, yn(ξ))− Γi−1(ξ, z(ξ))‖ ≤ P ?,
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where

P ? =

∑s
j=1

(
i
j

)
νi−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νi‖S(ξ, z(ξ))− S(ξ, yn(ξ))‖

1 + ηi‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
,

it follows that

‖Γi−1(ξ, yn(ξ))− Γi−1(ξ, z(ξ))‖ ≤
∑i

j=1

(
i
j

)
νs−jφj(0) + νs‖S(ξ, z(ξ))− S(ξ, yn(ξ))‖

1 + ηi‖0‖
= νi‖S(ξ, z(ξ))− S(ξ, yn(ξ))‖. (4.3)

(4.2) and (4.3) imply

‖S(ξ, xn+1(ξ))− q(ξ)‖2 ≤
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×‖S(ξ, yn(ξ))− q(ξ)‖2. (4.4)

Again, from (3.2), lemma 2.2 and Proposition 2.4, with S(ξ, zn(ξ)) = t,Γi−1(ξ, zn(ξ)) = vj−1,Γ
`1(ξ, zn(ξ)) =

v and k = 1, we get the following estimates:

‖S(ξ, yn(ξ))− q(ξ)‖2 = ‖γn,1S(ξ, zn(ξ)) +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)Γt−1(ξ, zn(ξ))

+

`2∏
b=1

(1− γn,b)Γ`2(ξ, zn(ξ))− q(ξ)‖2

≤ γn,1‖S(ξ, zn(ξ))− q(ξ)‖2

+

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)‖Γi−1(ξ, zn(ξ))− q(ξ)‖2

+

`2∏
b=1

(1− γn,b)‖Γ`2(ξ, zn(ξ))− q(ξ)‖2. (4.5)

Since z(ξ) is the coincidence point of S,Γ, φ(0) = 0 and

‖Γt−1(ξ, zn(ξ))− Γt−1(ξ, z(ξ))‖ ≤ P ??,

where

P ?? =

∑t
j=1

(
t
j

)
νt−jφj(‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖) + νt‖S(ξ, z(ξ))− S(ξ, zn(ξ))‖

1 + ηt‖S(ξ, z(ξ))− Γ(ξ, z(ξ))‖
,

it follows that

‖Γt−1(ξ, zn(ξ))− Γt−1(ξ, z(ξ))‖ ≤
∑i

j=1

(
i
j

)
νt−jφj(0) + νt‖S(ξ, z(ξ))− S(ξ, zn(ξ))‖

1 + ηt‖0‖
= νt‖S(ξ, z(ξ))− S(ξ, zn(ξ))‖. (4.6)

(4.5) and (4.6) imply that

‖S(ξ, yn(ξ))− q(ξ)‖2 ≤
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×‖S(ξ, zn(ξ))− q(ξ)‖2. (4.7)
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Further, using (3.2) and similar argument as above, we obtain

‖S(ξ, zn(ξ))− q(ξ)‖2 ≤
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

×‖S(ξ, xn(ξ))− q(ξ)‖2. (4.8)

(4.4), (4.7) and (4.9) imply

‖S(ξ, xn+1(ξ))− q(ξ)‖2 ≤
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

×‖S(ξ, xn(ξ))− q(ξ)‖2. (4.9)

Let

δ?n =
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

(4.10)

Since νi ∈ [0, 1), w obtain from (4.10) and Proposition 2.3 that

δ?n =
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a)(νi)2 +

`1∏
a=1

(1− αn,a)(νi)2
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b)(νt)2 +

`2∏
b=1

(1− γn,b)(νt)2
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c)(νs)2 +

`3∏
b=1

(1− δn,c)(νs)2
)

<
(
αn,1 +

`1∑
i=2

αn,i

i−1∏
a=1

(1− αn,a) +

`1∏
a=1

(1− αn,a)
)

×
(
γn,1 +

`2∑
t=2

γn,t

t−1∏
b=1

(1− γn,b) +

`2∏
b=1

(1− γn,b)
)

×
(
δn,1 +

`3∑
s=2

δn,s

s−1∏
b=1

(1− δn,c) +

`3∏
b=1

(1− δn,c)
)

= 1 (4.11)

From (4.9), (4.11) and Lemma 2.1, we get that S(ξ, xn(ξ))→ q(ξ) as n→∞. The proof is completed. �
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If s is an identity in (3.1), then the following corollary from Theorem 4.1:

Corollary 4.2. Let H be a real separable Hilbert space, Γ, S : D −→ H random commuting operators for
an arbitrary set D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where
φ : R+ −→ R+ is a sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the
random coincidence point of the random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) =

Γi(ξ, z(ξ)) = q(ξ)). For arbitrary x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random DI-SP iterative scheme
generated by (3.6). Then,

(i) q is the unique common fixed point of Γi−1 and Si−1(i = 2, 3, · · · ) if D = H and Γ, S commute at q
(i.e., Γ, S are weakly comprtible);

(ii) the DI-SP iteration scheme converges strongly to q(ξ) ∈ Γ(ξ).

Theorem 4.3. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random Jungck-DI-Noor iterative scheme generated by (3.1). Then,

(i) Γ(ξ) defined by (2.4) has a unique fixed point q;

(ii) the Jungck-DI-SP iteration scheme converges strongly to qξ ∈ Γ(ξ).

Proof. Using similar argument as in Theorem 4.1, the proof of Theorem 4.2 follows immediately. �

Also, if S is an identity in (3.1), we obtain the following corollary from Theorem 4.3:

Corollary 4.4. Let H be a separable Hilbert space, Γ, S : D −→ H random commuting uperators defined on
D with Γ(ξ,D) ⊆ S(ξ,D) and S(ξ,D) a complete subspace of H satisfying (2.4), where φ : R+ −→ R+ is a
sublinear monotone increasing function with φ(0) = 0. Asumme that z(ξ) is the random coincidence point of the
random operators S,Γ, Si,Γi(i.e., S(ξ, z(ξ)) = Γ(ξ, z(ξ)) = Si(ξ, z(ξ)) = Γi(ξ, z(ξ)) = q(ξ)). For arbitrary
x0(ξ) ∈ H, let {S(ξ, xn(ξ))}∞n=0 be the random DI-Noor iterative scheme generated by (3.5). Then,

(i) Γ(ξ) defined by (2.4) has a unique fixed point q;

(ii) the DI-SP iteration scheme converges strongly to qξ ∈ Γ(ξ).

Remark 4.5. The following areas are still open:

(i) to reconstruct, approximate the fixed points and the stability results of some existing random iterative
schemes in the current literature, other than the ones under study, for finite family of certain class of
contractive-type map;

(ii) to compare convergent rates of the iterative schemes defined by (3.1) and (3.2) with those of (1.7);

(iii) to prove Proposition [2.3 and 2.4] in more general spaces so as to extend the results in this paper to such
spaces.

5. Conclusion

An affirmative answer has been provided for Question 1.1. The results obtained in this paper improve the
corresponding results in [10], [19], [40] and several others currrently announced in literature.
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