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Abstract
Robustness of a network is the ability of the network to maintain its functionality when some vertices or edges are
removed due to targeted attacks or random failures. This paper studies an interesting graph measure that we call
the network criticality. The notion of network criticality is derived from the probabilistic definition of betweenness,
which is defined based on random walks in a graph, as the main metric to quantify the survival value of a network
with respect to changes in topology and dynamics. The objective of the paper is twofold. First, we discuss
some known formulae of network criticality and derive its relation with some other graph measures. Second, we
propose a new measure of network functionality based on network criticality.
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1. Introduction
With the growing appreciation of complex network mod-

els of various systems like, water supply, energy supply, com-
munication and transportation, the techniques of network anal-
ysis have come to play an important role in the representation

and understanding of the structure of complex systems. In par-
ticular, different measures of importance and robustness have
allowed to quantify aspects of networks which are responsible
for their topological or dynamical properties.

A study of the effects of different catastrophic disasters
like, floods or any natural calamity or the targeted attacks
on networks, it is found that the transportation network is
the most important [4]. As the restoration of other networks
will be decided by movement of people and equipments to
the sites where damage has occurred and in this situation the
performance of transportation network is the key. So first
one has to ensure the existence of a connected road network
for the operation of the whole society. And second, we have
to stop any disruption that makes partial or complete failure
of the road network. As it might cause remarkable negative
social and economic impact, even the disruption of the whole
society. Thus, it is very important for a road network to
maintain its function as much as possible after the disruption;
and also to recover its function at earliest from the partial or
complete failure in order to minimize the losses of money
and casualties caused by the disruptions in the road network.
The road network robustness concerns exactly with these two
ideas.

Gribble [10] defined robustness as the ability of a network
to operate correctly under a wide range of operational con-
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ditions, and to fail gracefully outside of that range. Based
on some of the indicators like the average speed, network
throughput, the operation status of a road network is often
evaluated for the network level performance. Thus the study
of road network robustness can be simply understood as the
analysis of the performance of the road network under the situ-
ations with considerable changes in its supply or/and demand
compared with its normal or desired performance. But the
concept of network robustness should not be confused with
the concept of network reliability, which also analyzes the
network performance under some changes in the operational
conditions.

In computer science the concept of network robustness is
often defined as the ability of a computer system to cope with
the failures during run time. The robustness is a well stud-
ied topic in several types of large-scaled complex networks,
such as communication networks [1], internet [19], metabolic
networks [13], as well as general complex networks [5][16].
But for transportation networks, such as the road networks,
robustness has gained very limited attention. Also it is hard
to find a unified or widely accepted definition for road net-
work robustness in the literature. The following definition
summarizes the interpretations from several researchers, such
as [2][10]: Road network robustness is the insusceptibility
of a road network to disturbing incidents, and could be un-
derstood as the opposite of network vulnerability. In other
words, road network robustness is the ability of a road net-
work to continue to operate correctly across a wide range
of operational conditions. And the most accepted definition
of the network reliability is given by (Billington & Allan,
1992)[7] and (Wakabayashi & Iida, 1992) [11] as follows:
Reliability is the probability of a road network performing
its proposed service level adequately for the period of time
intended under the operating conditions encountered. From
these definitions of the two concepts given above, their objects
are clearly described as the probability (for reliability) and the
ability (for robustness) of road networks to perform properly.
Besides this major difference, (Immers & Jansen, 2005)[12]
later pointed out that (travel time) reliability is normally a
user-oriented quality of the system, and robustness is one of
the characteristics of the road system itself.

The rest of the paper is organized as follows. In the next
section we present some known results related to network
criticality and some other graph measures like tree-number.
Section 3 discusses some relations between network criticality
and the graph measures considered in Section 2. In Section 4,
we propose a new measure of functionality of a network based
on network criticality. Conclusions are presented in Section
5.

2. Preliminaries
An undirected graph G = (V,E) consists of a finite set V

of vertices (or nodes) and a finite set E ⊆V ×V of edges. If
an edge e = (u,v) connects two vertices u and v then vertices
u and v are said to be incident with the edge e and adjacent to

each other. The set of all vertices which are adjacent to u is
called the neighbourhood, N(u) of u. The degree of a vertex,
v is defined to be the number of edges having v as one of its
end point. A directed graph or digraph G is a graph with some
direction associated with each of its edges. A walk is defined
as a sequence of vertices and edges, beginning and ending
with vertices, such that each edge is incident with the vertices
preceding and following it. A walk is called closed if the
initial(starting) and terminal(terminating) vertices coincide
and open otherwise. A trail is a walk without repeated edges
and path is a walk without repeated vertices. A graph is said
to be connected if there exists a path between every pair of its
vertices.

An adjacency matrix A of a graph G= (V,E), with |V |= n
is an n×n matrix, where Ai j = 1 if and only if (i, j) ∈ E and
Ai j = 0 otherwise. The adjacency matrix of any undirected
graph is symmetric. Another matrix representation of graph
is the Laplacian of a graph. The Laplacian, L of a graph G is
an n×n matrix, defined by L = D−A, where D is a diagonal
matrix whose entries correspond to the degree of the vertices
in G and A is the adjacency matrix of G. Laplacian of any
undirected graph is also symmetric. But unlike the adjacency
matrix, the laplacian of a graph is always singular.

2.1 Betweenness centrality
A well-known centrality measure is the betweenness centrality
[9]. The betweenness centrality of a node u, ηu is the number
of shortest path going through u. Mathematically it is defined
as:

ηu = ∑
s 6=u∈V

∑
t 6=u∈V

σst(u)
σst

, (2.1)

where, σst is the number of shortest paths from vertex s to
t, and σst(u) is the number of shortest paths from s to t that
pass through u. Betweenness centrality identifies nodes that
make the most traffic flow of the network. An important node
will lie on a large number of paths between other nodes in
the network. From this node we can control the traffic flow
of the network. In general the high degree nodes have high
betweenness centrality because many of the shortest paths may
pass through them. However a high betweenness centrality
node need not always be a high degree node.

Similarly one can define the betweenness of a link (edge)
(i, j), ηi j, is the number of shortest path going through (i, j).
Mathematically,

ηi j = ∑
s∈V

∑
t∈V

σst((i, j))
σst

, (2.2)

where, σst is the number of shortest paths from vertex s to t,
and σst((i, j)) is the number of shortest paths from s to t that
pass through (i, j).

2.2 The tree-number
The number of spanning trees of a graph G is known as the
tree-number of G [6]. It is denoted by κ(G). In 1964, Temper-

224



On network criticality in robustness analysis of a network structure — 225/229

ley obtained the following result, which gives a formula for
the tree-number of a graph G with n vertices.

Theorem 2.1. (Temperley) The tree-number of a graph G
with n vertices is given by the formula

κ(G) = n−2det(J+L),

where L is the laplacian of the graph G and J is the n× n
matrix with all entries equal to 1.

Using this theorem one can obtain the following result that
gives a formula for κ(G) in terms of the laplacian spectrum
of the graph. The formula is as follows:

κ(G) =
µ1µ2 . . .µn−1

n
, (2.3)

where 0≤ µ1 ≤ µ2 ≤ . . .≤ µn−1 is the laplacian spectrum of
graph G with n vertices.

2.3 The effective graph resistance
The effective graph resistance is another popular graph mea-
sure that attracts many researchers specially people working
in circuit theory. Klein and Randić [14] have proved that it can
be written as a function of the non-zero Laplacian eigenvalues,
which is as follows.

Theorem 2.2. The effective graph resistance R satisfies

R = n
n−1

∑
i=1

1
µi
,

where 0≤ µ1 ≤ µ2 ≤ . . .≤ µn−1 is the laplacian spectrum of
graph G with n vertices.

Some results and properties of effective graph resistance
may be found in [8].

2.4 Network criticality
This measure of robustness was first proposed by Leon-Garcia
and Tizghadam [17] and its applications are well studied in
[15][18]. This measure is a probabilistic measure for traffic
engineering (specifically routing and resource allocation) in
backbone networks, where the transport is the main service
and robustness to the unexpected changes in network parame-
ters is required. It reflects the effect of environmental changes
such as traffic variation and capacity changes.

A random-walk on a network is defined with transition
probability matrix [pr(l) = pr(i→ j)], where the elements
are functions of link weights and denote the probability of
transitioning from node i to neighbour node j along link l =
(i, j). In the generic random-walks, the transition probability
from node i to its neighbouring node j is proportional to the
weight of link l = (i, j) (i.e. high weight due to low travel
time):

pr(l) =
Wl

∑e∈Ao(i)We
, (2.4)

where Ao(i) denotes the set of outgoing edges attached to node
i, and Wl , We are the weights on the edges l, e respectively.
Using this probability transition matrix, one can obtain a
betweenness matrix [17]. Betweenness of link l = (i, j) is
equal to b(l) = τWl . Similarly, the criticality of a link l would
be η(l) = b(l)

Wl
= τ . Here τ is independent of the node/link

position. In fact τ is a global quantity of the network. This τ

is termed as ‘network criticality’. An alternative formula for τ ,
which is in terms of the Moore-Penrose inverse of Laplacian
matrix L, is as follows [8]:

τ = 2n trace(L+), (2.5)

where n is the number of nodes and L+ is the Moore-Penrose
inverse of Laplacian matrix L of the graph.

A smaller value of τ means a higher level of robustness.
Indeed τ is the survival value that we need to model the
robustness because it can be used to quantify the resistance
of a network to the unwanted changes in network topology or
traffic demands, the less the network criticality, the less the
sensitivity to the changes in topology and traffic. It is also
known that τ is a strictly convex function of graph weights.
Further, τ is a non-increasing function of link weights [17].

3. Some results on τ, R and κ

First we present a known result [8] that gives a relation be-
tween network criticality τ and effective graph resistance R,
but with a different proof based on laplacian spectrum. Then
an interesting relation between τ and κ will be presented.

Theorem 3.1. The network criticality τ is twice of the effec-
tive graph resistance R, i.e., τ = 2R.

Proof. Let 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µn−1 be the laplacian spec-
trum of a graph G with n vertices. We know that L+ =
(L+ J

n )
−1− J

n [3], where J is an n×n matrix whose entries
are all equal to 1. So, we can see that

τ = 2n trace(L+) = 2n trace((L+
J
n
)−1− J

n
)

= 2n (trace(B)−1),
(3.1)

where B = (L+ J
n )
−1.

Since L J
n = 0 = J

n L, the eigenvalues of L+ J
n are the sum

of the corresponding eigenvalues of J
n and L. The eigenvalues

of J
n are 1, 0, 0,. . ., 0, so eigenvalues of L+ J

n are 1, µ1, µ2,
. . ., µn−1. And hence the eigenvalues of B = (L+ J

n )
−1 are

1, 1
µ1

, 1
µ2

, . . ., 1
µn−1

, and trace(B) = 1+∑
n−1
i=1

1
µi

. Now from
expression ( 3.1), we have

τ = 2n
n−1

∑
i=1

1
µi
. (3.2)

From theorem 2.2 and equation ( 3.2), we have the result.

A relation between τ and κ can be obtained involving the
characteristic polynomial of the laplacian of the graph, which
is as follows:
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Theorem 3.2. Let G be a graph with tree-number κ(G), then
network criticality τ of G satisfies

τ =
(−1)nσ ′′(G,0)

κ(G)
,

where σ ′′(G,0) is the value of the second derivative of the
characteristic polynomial of the laplacian of G at 0.

Proof. Let 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µn−1 be the laplacian spec-
trum of graph G with n vertices. From expression ( 2.3), we
have

n−1

∑
i=1

1
µi

=
∑

n−1
i=1 µ1µ2 . . .µi−1µi+1 . . .µn−1

∏
n−1
i=1 µi

=
S

nκ(G)
, (3.3)

where S = ∑
n−1
i=1 µ1µ2 . . .µi−1µi+1 . . .µn−1. Again from ( 3.2)

and ( 3.3)

τ =
2S

κ(G)
. (3.4)

Again if σ(G,x) is the characteristic polynomial of the
laplacian i. e. σ(G,x)=det(xI − L), then σ(G,x) = x(x−
µ1)(x−µ2) . . .(x−µn−1). Now,

σ
′(G,x) = (x−µ1)(x−µ2) . . .(x−µn−1)+ x f (x),

where f (x) = (x− µ2)(x− µ3) . . .(x− µn−1)+ (x− µ1)(x−
µ3) . . .(x−µn−1)+ . . .+(x−µ1)(x−µ2) . . .(x−µn−2). And
σ ′′(G,x) = 2 f (x)+ x f ′(x). Clearly, f (0) = (−1)n−2S. So,
σ ′′(G,0) = (−1)n 2S. Hence from equation ( 3.4), we have
the required result.

A lower bound of τe, which is the network criticality of
the reduced graph G\ e may be derived, as shown in our next
theorem.

Theorem 3.3. Let a link e (which is not a bridge) be removed
from the graph G. Then a lower bound of the network criti-
cality τe of the reduced graph G\ e is

τe ≥
n(n−1)2

m−1
,

where m is the number of edges of the original graph G and n
is the number of nodes of G.

Proof. Let the laplacian spectrum of the reduced graph G\
e be 0 ≤ µ ′1 ≤ µ ′2 ≤ . . . ≤ µ ′n−1 and then τe = 2n∑

n−1
i=1

1
µ ′i

.
For positive real numbers a1,a2, . . . ,an, the HM-GM-AM
inequality is

n

∑
n
i=1

1
ai

≤ (
n−1

∏
i=1

ai)
1/n ≤ 1

n

n−1

∑
i=1

ai. (3.5)

Since e is not a bridge so all µ ′i are positive (as µ ′1 6= 0). And
applying inequality ( 3.5) for µ ′1,µ

′
2, . . . ,µ

′
n−1, we have

n−1

∑
n
i=1

1
µ ′i

≤ (
n−1

∏
i=1

µ
′
i )

1/(n−1) ≤ 1
n−1

n−1

∑
i=1

µ
′
i . (3.6)

From ( 3.6), we can see that ∑
n−1
i=1

1
µ ′i
≥ (n−1)2

∑
n−1
i=1 µ ′i

. Since the sum

of the laplacian eigenvalues is equal to sum of the degree of
the nodes and is again equal to twice the number of edges. So,
∑

n−1
i=1 µ ′i = 2(m−1). And hence the result.

Another lower bound of τe may be derived using tree-
number of the graph, which is as follows.

Theorem 3.4. Let a link e (which is not a bridge) be removed
from the graph G. Then a lower bound of the network criti-
cality τe of the reduced graph G\ e is

τe ≥
2n

n−2
n−1 (n−1)

κ
1

n−1
,

where κ is the tree-number of G\ e.

Proof. This result can be proved by considering the first part
of the inequality ( 3.6), and from the result of the theorem
2.2.

An upper bound of the ratio τ

τe
is the same as that of the

ratio R
Re

, which can be derived similarly as shown in [20].

Theorem 3.5. Let a link e be removed from the graph G, and
the network criticality of the reduced graph G\ e be τe. Then

τe

τ
≤ maxi

µi

µi−1
,

where 2≤ i≤ n−1.

Proof. For positive real numbers a1,a2, . . . ,an and real num-
bers b1,b2, . . . ,bn, it holds

mini
ai

bi
≤ a1 +a2 + . . .+an

b1 +b2 + . . .+bn
≤ maxi

ai

bi
. (3.7)

Let ai =
1
µ ′i

and bi =
1
µi

in the inequality ( 3.7), we get

1

1−mini
µi−µ ′i

µi

≤
∑

n−1
i=1

1
µ ′i

∑
n−1
i=1

1
µi

≤ 1

1−maxi
µi−µ ′i

µi

. (3.8)

After a link removal interlacing property gives us µi−1 ≤ µ ′i ≤
µi, where 2≤ i≤ n−1. Using this fact, the right side of the
inequality ( 3.8) can be written as

1

1−mini
µi−µ ′i

µi

≤ 1
1−maxi

µi−µi−1
µi

=
1

1− (1−mini
µi−1

µi
)

=
1

mini
µi−1

µi

= maxi
µi

µi−1
.

And hence the result.

4. A measure of network functionality
First let us consider a simple example which will motivate us
for the following discussion.
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4.1 A motivational example
In figure 1, two graphs G and G′ each of 3 nodes, and weights
on the edges are considered in such a way that G and G′ will
have almost same network criticality (i.e. the values of τ(≈ 2)
are almost the same).

Figure 1. Two graphs G and G′ with almost same network
criticality.

Now if we closely look at the graphs G and G′ we find
that removal of an edge will disconnect G′ but not G. So
from the perspective of random failures or hostile attacks G′

is more vulnerable than G. In other words we can say that the
robustness of G and G′ are not same, which is not captured by
network criticality.

4.2 The Measure
To capture the effect of this kind of random failures or hos-
tile attacks we define a measure based on the same network
criticality.

Since network criticality is a non-increasing function of
link weights, so it is expected that the removal of an edge
(reduction of link weight) will result in an increment in the
value of network criticality. But if the removed edge happens
to be a bridge, then that does not hold. Because of the fact
that L+ of a disconnected network will have lesser number
of non-zero laplacian eigenvalues and hence the value τ will
drop down dramatically.

Let G\ e be the graph obtained by removing the edge e,
and the laplacian spectrum of G \ e is 0 ≤ µ ′1 ≤ µ ′2 ≤ . . . ≤
µ ′n−1. Then by interlacing property of laplacian eigenvalues,
we have 0 ≤ µ ′1 ≤ µ1 ≤ µ ′2 ≤ µ2 ≤ . . .≤ µ ′n−1 ≤ µn−1. And
hence we have the following theorem.

Theorem 4.1. Let τ and τe be the network criticality of G
and G\ e. Then τe ≥ τ , if e is not a bridge. And τe ≥ τ− 2n

µ
,

if e is a bridge, where µ is the smallest non-zero laplacian
eigenvalue of G.

Proof. Since τ = 2n∑
n−1
i=1

1
µi

and τe = 2n∑
n−1
i=1

1
µ ′i

, so from the
interlacing property τe ≥ τ , if e is not a bridge. Now if e is a
bridge, then the components of the graph G\ e will increase
and also µ ′, the corresponding eigenvalue µ will be zero .
And hence we have the other inequality.

Watts-Strogatz Network Barabási-Albert Network Network
η̄ B̄c Cc Ēc η̄ B̄c Cc Ēc

η̄ 1 0.3158 0.6040 -0.7968 1 -0.6693 0.8637 0.6190
B̄c 1 0.8011 -0.2102 1 -0.7967 -0.0032
Cc 1 -0.5394 1 0.4323
Ēc 1 1

Table 1. Correlation between average network functionality
and different graph measures.

Definition 4.2. The average network functionality, η̄ of a
graph G = (V,E), with |E|= m is defined as

η̄ = 1− 1
m ∑

e∈E

[
H+(τe− τ)

τ

τe
+H−(τe− τ)

τ

2n
µ
+ τe

]
,

where µ is the smallest non-zero laplacian eigenvalue of G,
H+(x) = 1 if x≥ 0 and 0 otherwise, and H−(x) = 1 if x < 0
and 0 otherwise.

For a connected network G, µ = µ1 which is known as
the algebraic connectivity of G, and from theorem 4.1, it is
clear that 0≤ η̄ ≤ 1. This η̄ can be considered as a measure
of functionality of the network. A higher value of η̄ means a
higher degree of functionality of the network.

4.3 A statistical study of η̄

In this subsection we study the measure, η̄ in two well studied
networks namely Watts-Strogatz network and Barabási-Albert
network for different rewiring probabilities and different sizes
of seed. The results obtained for different number of nodes
(50, 100, 150, 200, 250, 300) are presented in figure 2 and
figure 3. In case of Barabási-Albert network, the average
path length increases approximately logarithmically as the
size of the network increases and in case of Watts-Strogatz
network as the rewiring probability increases, the connections
with neighbours break down with rewiring edges. So in case
of both the networks one can expect that the functionality of
the network drops down as the size of the network or rewiring
probability increases. We see that the aforesaid property is
also reflected in figure 2 and figure 3.

In figure 4 and figure 5, the results of the comparison
between average network functionality and other popular
graph measures like average betweenness (B̄c), clustering
co-efficient (Cc) and average eigenvector centrality (Ēc) are
presented. In case of both the networks, we see that the aver-
age network functionality is bounded by average betweenness
and clustering co-efficient or average eigenvector centrality,
which is because of the fact that with increase of size of the
network average betweenness increases very rapidly whereas
the rewiring edges leads to breakdown of cliques with neigh-
bours.

Table 1 shows the correlations among average network
functionality and various graph measures in Watts-Strogatz
network and Barabási-Albert network respectively. In both
networks we see that clustering co-efficient and average net-
work functionality are highly correlated, which is because of
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Figure 2. Average network functionality in Watts-Strogatz
network for different values rewiring of probability p.

Figure 3. Average network functionality in Barabási-Albert
network for different sizes of seed.

the fact that presence of more cliques reduces the chance of
an edge to become a bridge. Average network functionality
exhibits negative correlation with eigenvector centrality in
Watts-Strogatz network, and with betweeness centrality in
Barabási-Albert network. In Watts-Strogatz network it is also
visible that the degree distribution among vertices is closely
homogenous, which explains the reason of the negative corre-
lation between average network functionality and eigenvector
centrality. Again as Barabási-Albert model is based on a
preferential attachment or a “rich get richer” effect, an edge
is most likely to attach to nodes with higher degrees. So it
reduces the chance of an edge to become a bridge, and hence
we can expect a negative correlation between average network
functionality and betweeness centrality.

5. Conclusion
In this paper we have studied the measure called network

criticality and established its relation with some well known

Figure 4. Comparison of average network functionality with
other graph measures in Watts-Strogatz network.

Figure 5. Comparison of average network functionality with
other graph measures in Barabási-Albert network.

graph measures. Due to random or intentional attack if an
edge is removed, we study the change in the value of network
criticality and some interesting results have been presented.
Then in the later part of this paper we propose a measure called
average network functionality based on network criticality,
which quantifies the effect of removal of an edge.

A statistical study of the proposed measure is also pre-
sented in case of two popular networks namely Watts-Strogatz
network and Barabási-Albert network. In this study we have
found some very interesting results which establish this mea-
sure as a measure of functionality of a network.
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