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Abstract
This paper is devoted to study the existence and uniqueness of solution for non-local impulsive fractional
integro-differential equations involving the Caputo fractional derivative in a Banach Space. The arguments are
based upon contraction mapping principle and Krasnoselskii’s fixed point theorem.
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1. Introduction
The theory of fractional differential equations is a new

branch of mathematics by valuable tools in the modelling of
many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc.
(see [6, 11–13, 16, 19]). There has been a significant develop-
ment in fractional differential and partial differential equations
in recent years, see the monographs of Kilbas et al [14], Miller
and Ross [17], Samko et al [21] and see [1–3, 8, 10, 18, 23]
and the references therein.

Impulsive differential equations have become important
in recent years as mathematical models of phenomena in both
the physical and social sciences. There has a significant devel-
opment in impulsive theory especially in the area of impulsive
differential equations with fixed moments, see for instance
the monographs by Benchohra et al [9], Lakshmikantham et
al [15], and Samoilenko and Perestyuk [22], K.Balachandran
and J.Y.Park [5] and the references therein.

Archana chauhan et al [4] studied the existence of mild
solutions for impulsive fractional- order semilinear evolution
equations with nonlocal conditions and Bashir Ahmad & S.
Sivasundara [7] investigated the some existence results for
fractional integro - differetial equations with nonlinear condi-
tions in a Banach space.

In [25] investigated fractional evolution equations with
nonlocal conditions of the form

Dα x(t) = Ax(t)+ f (t,x(t)), t 6= ti, t ∈ J, 0 < α < 1,
∆x|t=ti = Ii(x(t)), i = 1,2, ...m, x(0) = g(x)

These results are obtained using Banach contraction fixed
point theorem.

In this paper studies existence and uniqueness results in a
Banach space for a impulsive fractional Integro-Differential
equations

cDq
t x(t) = A(t)x(t)+ f (t,x(t))+

∫ t
0 k(t,s,x(s))ds,

t ∈ J
′
= J/{t1, ..., tm} ,J := [0,T ],

x(t+k ) = x(t−k )+ yk, k = 1,2, ...,m yk ∈ X
x(0)+g(x) = x0

(1.1)

where cDq
t is the Caputo fractional derivative of order q, 0 <

q < 1. A(t) is a bounded linear operator on Banach space X.
f : J×X → X , k : J× J×X → X are jointly continuous, g :
C→ X is continuous, tk satisfy 0 = t0 < t1 < ... < tm < tm+1 =
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T, x(t+k ) = limε→0+ x(tk + ε) and x(t−k ) = limε→0− x(tk + ε)
represent the right and left limits of x(t) at t = tk.

2. Preliminaries
In this section, we study notations, definitions and pre-

liminary facts. We introduce the Banach space PC(J,X) =
{x : J→ X : x ∈C(tk, tk+1],X} ,k = 0,1,2, ...,m and their ex-
ist x(t−k ) and x(t+k ),k = 0,1,2, ..,m with x(t−k ) = x(tk) with
the norm ||x||PC := sup{||x(t)|| : t ∈ J} .

Definition 2.1. The fractionl integral of order γ with the lower
limit zero for a funtion f : [0,∞)→ X is defined as

Iγ

t f (t) =
1

Γ(γ)

∫ t

0

f (s)
(t− s)1−γ

ds, t > 0, γ > 0

provied the right side is point-wise defined on [0,∞), where
Γ(.) is the gamma funtion.

Definition 2.2. The Riemann-Liouville derivative of order γ

with the lower limit zero for a funtion f : [0,∞)→ X can be
written as

LDγ

t f (t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

f (s)
(t− s)γ+1−n ds,

t > 0, n−1 < γ < n.

Definition 2.3. The Caputo derivative of order γ for function
f : [0,∞)→ X can be written as

cDγ

t f (t) =L Dγ

[
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

]
,

t > 0, n−1 < γ < n.

Definition 2.4. A function x ∈ PC1(J,X) is said to be a solu-
tion of the problem (1.1) if x satisfies the equation

cDq
t x(t) = A(t)x(t)+ f (t,x(t))+

∫ t

0
k(t,s,x(s))ds, t ∈ J

′

a.e on J
′
, g : C→ X is continuous and the conditions x(t+k ) =

x(t−k )+ yk, k = 1,2, ...,m and x(0)+g(x) = x0.

Lemma 2.5. Let q ∈ (0,1) and h : J→ X be continuous,g :
C→ X is continuous. A function x ∈C(J,X) is a solution of
the fractional integral equation

x(t) = x0−g(x)+
1

Γ(q)

∫ t

0
(t− s)q−1A(s)x(s)ds

− 1
Γ(q)

∫ a

0
(a− s)q−1h(s)ds

+
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds, (2.1)

if and only if u is a solution of the following fractional Cauchy
problems{

cDq
t x(t) = A(t)x(t)+h(t), t ∈ J,

x(0)+g(x) = x0,a > 0.
(2.2)

As a consequence of Lemma 2.6 we have the following
result which is useful in what follows.

Lemma 2.6. Let q ∈ (0,1) and h : J→ X be continuous,g :
C→ X is continuous. A function x is a solution of the frac-
tional integral equation

x(t) =



x0−g(x)+ 1
Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1h(s)ds f or t ∈ [0, t1]

x0−g(x)+ y1 +
1

Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1h(s)ds f or t ∈ (t1, t2]

x0−g(x)+ y1 + y2

+ 1
Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1h(s)ds f or t ∈ (t2, t3]

...

x0−g(x)+
m

∑
i=0

yi

+ 1
Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1h(s)ds f or t ∈ (tm,T ]

(2.3)

if and only if u is a solution of the following impulsive problem
cDq

t x(t) = A(t)x(t)+h(t), t ∈ J
′
,

x(t+k ) = x(t−k )+ yk, k = 1,2, ...,m
x(0)+g(x) = x0

(2.4)

Now, we state a known result due to Krasnoselskii which
is needed to prove the existence of at least one solution of
(1.1).

Theorem 2.7. (Krasnoselskii Theorem) Let M be a closed
convex and nonempty subset of a Banach space X. Let A,B be
the operators such that

(i) Ax+By ∈M whenever x,y ∈M

(ii) A is compact and continuous

(iii) B is a contraction mapping.

Then there exists Z ∈M such that Z = Az+Bz.

3. Main Results
This section deals with the existence and uniqueness of solu-
tions for the problem (1.1). Before stating and proving the
main result, We introduce the following hypotheses.

(H1) A(t) is a bounded linear operator and

max
t∈J
||A(t)||=C

and let us take

γ =
T q

Γ(q+1)
,γ1 =

qT q+1

Γ(q+2)
.
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(H2) There exists a constant L1 > 0 such that

|| f (t,x1)− f (t,x2)|| ≤ L1||x1− x2||,

∀ t ∈ J
′

x1,x2 ∈ X .

(H3) k : ∆×X → X is continuous

||k(t,s,x1)− k(t,s,x2)|| ≤ L2||x1− x2||,

∀ t,s ∈ J
′

x1,x2 ∈ X .

(H4) g is continuous, and there exists a constant λ < 1 such
that

||g(x1)−g(x2)|| ≤ λ ||x1− x2||∀ x1,x2 ∈ X ,

and M = ||g(0)||.

(H5) There exists functions µ,σ ∈ L1
Loc(I,R

+) such that

|| f (t,x)|| ≤ µ(t), (t,x) ∈ [0,T ]×X

||k(t,s,x)|| ≤ σ(t), (t,s,x) ∈ [0,T ]× [0,T ]×X

Theorem 3.1. Assume that (H1)− (H4) hold. If

λ r+M+ ||
m

∑
i=0

yi||+Crγ +L1γ +L2qγ1 < 1 (3.1)

Then the problem (1.1) has a unique solution provided

λ <
1
2
, L1 ≤

Γ(q+1)
4T q , L2 ≤

Γ(q+2)
4qT q+1 .

Proof. We transform the problem (1.1) into a fixed point prob-
lem. Consider the operator θ : PC(J,X)→ PC(J,X) defined
by

(θx)(t) =



x0−g(x)
+ 1

Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1[ f (t,x(t))

+
∫ t

0 k(σ ,s,x(s))dσ ]ds for t ∈ [0, t1)
x0−g(x)+ y1

+ 1
Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1[ f (t,x(t))

+
∫ t

0 k(σ ,s,x(s))dσ ]ds for t ∈ (t1, t2]
x0−g(x)+ y1 + y2

+ 1
Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1[ f (t,x(t))

+
∫ t

0 k(σ ,s,x(s))dσ ]ds for t ∈ (t2, t3]
...

x0−g(x)+
m

∑
i=0

yi

+ 1
Γ(q)

∫ t
0(t− s)q−1A(s)x(s)ds

+ 1
Γ(q)

∫ t
0(t− s)q−1[ f (t,x(t))

+
∫ t

0 k(σ ,s,x(s))dσ ]ds for t ∈ (tm,T ]

Clearly, the fixed points of the operator θ are solution of the
problem (1.1).

We shall use the Banach contraction principle to prove
that F has a fixed point.

We shall show that θ is a contraction. Let us set

sup
t∈J′
|| f (t,0)||= M1,

and

sup
t,s∈J′
||k(t,s,0)||= M2,

it can be shown that θBr ⊂ Br, where Br = {x ∈ X ; ||x|| ≤ r}.
Choose

r ≥ 2
(

x0 +λ r+M+ ||
m

∑
i=0

yi||+Crγ

+(L1r+M1)γ +(L2r+M2)γ1

)

||(θx)(t)|| ≤ x0 +λ ||x||+M+ ||
m

∑
i=0

yi||

+
1

Γ(q)

∫ T

tm
(t− s)q−1||A(s)||||x(s)||ds

+
1

Γ(q)

∫ T

tm
(t− s)q−1

[
|| f (t,x(t))||

+
∫ T

tm
||k(σ ,s,x(s))||dσ

]
ds

≤ x0 +λ r+M+ ||
m

∑
i=0

yi||+Cr
T q

Γ(q+1)

+
1

Γ(q)

∫ T

tm
(t− s)q−1

[
|| f (t,x(t))− f (s,0)||

+|| f (s,0)||+
∫ T

tm

(
||k(σ ,s,x(s))

−k(σ ,s,0)||+ ||k(σ ,s,0)||
)

dσ

]
ds

≤ x0 +λ r+M+ ||
m

∑
i=0

yi||+Crγ

+
L1r+M1

Γ(q)

∫ T

tm
(t− s)q−1ds

+
L2r+M2

Γ(q)

∫ T

tm
(t− s)qds

≤ x0 +λ r+M+ ||
m

∑
i=0

yi||+Crγ

+(L1r+M1)γ +(L2r+M2)γ1

≤ r

||(θx)(t)|| ≤ r
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Now, for x1,x2 ∈ X , We obtain

||(θx1)(t)− (θx2)(t)||

≤ ||g(x1)−g(x2)||+ ||
m

∑
i=0

yi||

+
1

Γ(q)

∫ T

tm
(t− s)q−1||A(s)(x1(s)− x2(s))||ds

+
1

Γ(q)

∫ T

tm
(t− s)q−1

[
|| f (t,x1(t))− f (t,x2(t))||

+
∫ T

tm
||k(σ ,s,x1(s))− k(σ ,s,x2(s))||dσ

]
ds

≤ Λλ+Cγ,L1,L2,T,q||x1− x2||

where Λλ+Cγ,L1,L2,T,q = λ + ||
m

∑
i=0

yi||+Cγ +L1γ +L2γ1.

Consequently by (3.1), θ is a contraction. As a conse-
quence of Banach fixed point theorem, we deduce that θ has
a fixed point which is a solution of the problem (1.1). This
completes the proof of the theorem.

Theorem 3.2. Assume that (H1),(H4),(H5) hold. Then the
problem (1.1) has atleast one solution on [0,T ].

Proof. Choose

r ≥ 2
(

x0 +λ r+M+ ||
m

∑
i=0

yi||+Crγ

+
||µ||L′T

q

Γ(q+1)
+

q||σ ||L′T
q+1

Γ(q+2)

)
,

Consider Br = {x ∈ X : ||x||< r} . We define the operators Φ

and Ψ on Br as

(Φx)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1A(s)x(s)ds

+
1

Γ(q)

∫ t

0
(t− s)q−1

[
f (s,x(s))

+
∫ t

0
k(σ ,s,x(s))dσ

]
ds

(Ψx)(t) = x0−g(x)+
m

∑
i=1

yi

For x,y ∈ Br. We find that

||Φx+Ψy|| = ||x0−g(x)

+
m

∑
i=1

yi +
1

Γ(q)

∫ t

0
(t− s)q−1A(s)x(s)ds

+
1

Γ(q)

∫ t

0
(t− s)q−1

[
f (s,x(s))

+
∫ t

0
k(σ ,s,x(s))dσ

]
ds||

||Φx+Ψy|| ≤ x0 + ||g(x)−g(0)||+ ||g(0)||+ ||
m

∑
i=1

yi||

+
1

Γ(q)

∫ t

0
(t− s)q−1||A(s)||||x(s)||ds

+
1

Γ(q)

∫ t

0
(t− s)q−1

[
|| f (s,x(s))||

+
∫ t

0
||k(σ ,s,x(s))||dσ

]
ds

≤ x0 +λ r+M+ ||
m

∑
i=0

yi||+Crγ

+
||µ||L′T

q

Γ(q+1)
+

q||σ ||L′T
q+1

Γ(q+2)
≤ r.

Thus, Φx+Ψy ∈ Br.
If follows that the assumption (H4) that Ψ is a contraction

mapping. continuity of f and k demanded in (1.1) implies
that the operator Φ is continuous.

Also Φ is uniformly bounded on Br as

||Φ|| ≤

(
||µ||L′T

q

Γ(q+1)
+

q||σ ||L′T
q+1

Γ(q+2)

)
Now, we prove the compactness of the operator Φ. Since
f and k are respectively bounded on the compact sets Ω1 =
[0,T ]×X and Ω2 = [0,T ]× [0,T ]×X , therefore, we define

sup
(t,x)∈Ω1

|| f (t,x)||=C1, sup
(t,s,x)∈Ω2

||k(t,s,x)||=C2.

For t2, t1 ∈ [0,T ], x∈Br, Now we see (Φx)(t2) and (Φx)(t1)
equation are

(Φx)(t2) =
1

Γ(q)

∫ t2

0
(t2− s)q−1A(s)x(s)ds

+
1

Γ(q)

∫ t2

0
(t2− s)q−1

[
f (s,x(s))

+
∫ t2

0
k(σ ,s,x(s))dσ

]
ds

(Φx)(t1) =
1

Γ(q)

∫ t1

0
(t1− s)q−1A(s)x(s)dsv

+
1

Γ(q)

∫ t1

0
(t1− s)q−1

[
f (s,x(s))

+
∫ t1

0
k(σ ,s,x(s))dσ

]
ds

Taking norm on both side, we get

||(Φx)(t2)− (Φx)(t1)||

=
1

Γ(q)
||
∫ t2

0
(t2− s)q−1A(s)x(s)ds

−
∫ t1

0
(t1− s)q−1A(s)x(s)ds+

∫ t2

0
(t2− s)q−1

[
f (s,x(s))

+
∫ t2

0
k(σ ,s,x(s))dσ

]
ds−

∫ t1

0
(t1− s)q−1

[
f (s,x(s))

+
∫ t1

0
k(σ ,s,x(s))dσ

]
ds||
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||(Φx)(t2)− (Φx)(t1)||

≤ 2C
Γ(q+1)

|t2− t1|q

+
C1

Γ(q+1)

∣∣2(t2− t1)q + tq
1 − tq

2

∣∣
+

qC2

Γ(q+2)

∣∣∣2(t2− t1)q+1 + tq+2
1 − tq+1

2

∣∣∣
≤ 2

Γ(q+1)
|t2− t1|q (C+C1)

+
2qC2

Γ(q+2)
|t2− t1|q+1

which is independent of x. so Φ is relatively compact on Br.
Hence, By Arzela Ascoli Theorem, Φ is compact on Br. Thus
all the assumption of Theorem 3.2 are satisfied. Consequently,
the conclusion of Theorem 3.2 applied and the problem (1.1)
has atleast one solution.
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