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Abstract
In this paper, we study the existence of positive solutions for boundary value problems of third-order two-point
differential equations with integral boundary conditions. we mainly use the Krasnoselskii’s fixed point theorem
Value problem, at least there is a positive solution, and give an example to verify the conclusion.
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1. Introduction
In this work, we will study the existence of positive solu-

tions of nonlinear two-point boundary value problem (BVP)
for the following third-order differential equation:

u′′′ (t)+ f (u(t)) = 0, ,0 < t < 1, (1.1)

subject to the two-point boundary conditions

u′ (0) = u′ (1) = 0, u(0) = α

∫
η

0
u(s)ds, (1.2)

α , η are constants with 0 < α < 1
n+1 , η ∈ (0,1) and f ∈

C ([0,∞) , [0,∞)).
Ordinary differential equation has been widely used in

many fields of mathematics and physics, so the third-order
boundary-value problems have been many scholars’ research
object. For example, heat conduction, chemical engineering,
underground water flow, thermoelasticity, and plasma physics

can produce boundary-value problems with integral boundary
conditions [2, 8, 10]. Moreover, boundary-value problems
with integral boundary conditions constitute a very interesting
and important class of problems. They include two, three,
multipoint, and nonlocal boundary value problems as special
cases. Such kind of BVPs in Banach space has been studied
by some researchers (see [6, 11, 13, 19]).

In 2011, Zhao and Wang [18] considered the third order
two-point boundary value problem

u′′′ (t)+ f (t,u(t)) = θ , t ∈ [0,1] , (1.3)

subject to one of the following integral boundary conditions:

u(0) = θ , u′′ (0) = θ , u(1) =
∫ 1

0
g(t)u(t)dt,

u(0) =
∫ 1

0
g(t)u(t)dt, u′′ (0) = θ , u(1) = θ ,

(1.4)

In 2013, Yanping et Fei. [5] studied the third order bound-
ary value problem

u′′′ (t)+ f
(
t,u(t) ,u′ (t)

)
= 0, t ∈ [0,1] ,

u(0) = 0, u′′ (0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt.

(1.5)

In 2015, Galvis, Rojas and Sinitsyn. [3] considered the
second order boundary value problem

u′′ (t)+a(t) f (u) = 0,

u(0) = 0, α

∫
η

0
u(s)ds = u(1) , η ∈ (0,1) .

(1.6)
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In 2016, Benaicha and Haddouchi. [1] studied the exis-
tence of positive solutions of a nonlinear two-point boundary
value problem (BVP) for the following fourth-order differen-
tial equation

u′′′′ (t)+ f (u(t)) = 0, t ∈ (0,1)

u′ (0) = u′ (1) = u′′ (0) = 0, u(0) =
∫ 1

0
a(s)u(s)ds.

(1.7)

For some other results on boundary value problem, we
refer the reader to the papers [4, 7, 12, 14–17].

Motivated by the results obtained in the papers mentioned
above the aim of this paper is to establish some sufficient
conditions for the existence of at least one positive solutions
of the BVP (1.1)− (1.2).

We shall first construct the Green’s function for the asso-
ciated linear boundary value problem and then determine the
properties of the Green’s function for associated linear bound-
ary value problems. Finally, existence results for at least one
positive solution for the above problem are established when
f is superlinear or sublinear. As applications, two examples
are presented to illustrate the main results.

2. Preliminaries
We shall consider the Banach space C ([0,1]) equipped

with the sup norm

‖u‖= sup
t∈[0,1]

|u(t)|

Definition 2.1. Let E be a real Banach space. A nonempty,
closed, convex set K ⊂ E is a cone if it satisfies the following
two conditions:

(i) x ∈ K, λ ≥ 0 imply λx ∈ K;
(ii) x ∈ K, −x ∈ K imply x = 0.

Definition 2.2. An operator T : E→ E is completely contin-
uous if it is continuous and maps bounded sets into relatively
compat sets.

To prove some of our results, we will use the following
fixed point theorem, which is due to Krasnoselskii’s [9]

Theorem 2.3. [9] Let be a Banach space, and let K ⊂ E, be
a cone. Assume that Ω1 and Ω2 are open subsets of E with
0 ∈Ω1, Ω1 ⊂Ω2 and let

A : K∩
(
Ω2 \Ω1

)
→ K

be acompletely continuous operator such that
(i) ‖Au‖ ≤ ‖u‖, u ∈ K∩∂Ω1, and ‖Au‖ ≥ ‖u‖,

u ∈ K∩∂Ω2;
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K∩∂Ω1, and ‖Au‖ ≤ ‖u‖,

u ∈ K∩∂Ω2.
Then A has a fixed point in K∩

(
Ω2 \Ω1

)
.

Consider the two-point boundary value problem

u′′′+ y(t) = 0, 0 < t < 1, (2.1)

subject to the two-point boundary conditions

u′ (0) = u′ (1) = 0, u(0) = α

∫
η

0
u(s)ds. (2.2)

Lemma 2.4. Let 0 < α < 1
n+1 . Then for y∈C ([0,1] ,R) , the

problem (2.1)− (2.2) has a unique solution

u(t) =
∫ 1

0
G(t,s)y(s)ds,

where G(t,s) : [0,1]× [0,1]→ R is the Green’s function de-
fined by

G(t,s) = K (t,s)+
α

1−αη

∫ 1

0
K (n,s)dη

and

K (t,s) =
1
2

{
t2 (1− s)− (t− s)2 , 0≤ s≤ t ≤ 1

t2 (1− s) 0≤ t ≤ s≤ 1
(2.3)

Proof. integrating (2.1) over the integral [0, t] for t ∈ [0,1] ,
we obtain

u′′ (t) =−
∫ t

0
y(s)ds+C1,

u′ (t) =−
∫ t

0
(t− s)y(s)ds+C1t +C2,

u(t) =−1
2

∫ t

0
(t− s)2 y(s)ds+

1
2

C1t2 +C2t +C3. (2.4)

From the boundary conditions (2.2), we get

C1 =
∫ 1

0
(1− s)y(s)ds, C2 = 0,

Integrating again from 0 to η the expression (2.4) where
η ∈ (0,1)∫

η

0
u(s)ds =−α

6

∫
η

0
(η− s)3 y(s)ds+

η3α

6

∫ 1

0
(1− s)y(s)ds

+αC3η

From u(0) = α
∫ η

0 u(s)ds, we have

C3 =−
α

6

∫
η

0
(η− s)3 y(s)ds+

η3α

6

∫ 1

0
(1− s)y(s)ds+αC3η

which implies

C3 =−
α

6(1−αη)

∫
η

0
(η− s)3 y(s)ds

+
η3α

6(1−αη)

∫ 1

0
(1− s)y(s)ds

270
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Replacing these expressions in (2.4), we get

u(t) =−1
2

∫ t

0
(t− s)2 y(s)ds+

1
2

t2
∫ 1

0
(1− s)y(s)ds

− α

6(1−αη)

∫
η

0
(η− s)3 y(s)ds

+
η3α

6(1−αη)

∫ 1

0
(1− s)y(s)ds

=
1
2

∫ t

0

[
t2 (1− s)− (t− s)2

]
y(s)ds

+
1
2

t2
∫ 1

t
(1− s)y(s)ds

+
1
2
× α

(1−αη)

∫
η

0

1
3

[
η

3 (1− s)− (η− s)3
]

y(s)ds

+
α

6(1−αη)

∫ 1

η

η
3 (1− s)y(s)ds

=
∫ 1

0

[
K (t,s)+

α

(1−αη)

∫ 1

0
K (η ,s)dη

]
y(s)ds.

Lemma 2.5. Let θ ∈
]
0, 1

2

[
be fixed. Then

(i) K (t,s)≥ 0, for all t,s ∈ [0,1]
(ii) θ 2

2 s(1− s)≤ K (t,s)≤ 1
2 s(1− s)

f or all (t,s) ∈ [θ ,1−θ ]× [0,1].

Proof. (i) We will show that K (t,s) ≥ 0 for all t,s ∈ [0,1].
Since it is obvious for t ≤ s, we only need to prove the case
s≤ t. Now we suppose that s≤ t. Then

k (t,s) =
1
2

[
t2 (1− s)− (t− s)2

]
=

1
2

[
t (t− ts)− (t− s)2

]
≥ 1

2

[
t (t− s)− (t− s)2

]
=

1
2
(t− s)s≥ 0.

(2.5)

(i) If s≤ t, from (2.3) , we have

k (t,s) =
1
2

[
t2 (1− s)− (t− s)2

]
≥ 1

2

[
t2 (1− s)2− (t− s)2

]
=

1
2
[t (1− s)− (t− s)] [t (1− s)+(t− s)]

=
1
2
(s− ts)(t− ts+ t− s)≥ 1

2
s(1− t)(t− ts)

=
1
2

s(1− t) t (1− s) =
1
2

t (1− t)s(1− s) .

(2.6)

On other hand

K (t,s)− 1
2

s(1− s) =
1
2

[
t2 (1− s)− (t− s)2

]
− 1

2
s(1− s)

=
1
2

t2− 1
2

t2s− 1
2

t2− 1
2

s2 + ts− 1
2

s+
1
2

s2

=−1
2

t2s+ ts− 1
2

s =−1
2

s(t−1)2 ≤ 0,

(2.7)

if t ≤ s, from (2.3) we have

K (t,s) =
1
2

t2 (1− s)≥ 1
2

t2s(1− s) (2.8)

and

K (t,s) =
1
2

t2 (1− s)≤ 1
2

s(1− s) . (2.9)

Let {
t2, t ≤ 1

2
(1− t) t, t ≥ 1

2 .
(2.10)

From (2.6), (2.7), (2.8) , (2.9) and (2.10) we have

ρ (t)s(1− s)≤ K (t,s)≤ 1
2

s(1− s)

For θ ∈
]
0, 1

2

[
we have

θ 2

2
s(1− s)≤K (t,s)≤ 1

2
s(1− s) , f orall (t,s)∈ [θ ,1−θ ]×[0,1]

Lemma 2.6. Let y(t) ∈C ([0,1] , [0,∞)). The unique solution
of (2.1)-(2.2) is nonnegative and satisfies

min
θ≤t≤1−θ

u(t)≥ θ
2 ‖u‖

Proof. From Lemma 2.4 and Lemma 2.5, u(t) is nonnegative.
For t ∈ [0,1], from Lemma 2.4 and Lemma 2.5, we have that

u(t) =
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (n,s)dη

)
y(s)ds,

≤
∫ 1

0

(
1
2

s(1− s)+
α

1−αη

∫ 1

0

1
2

s(1− s)dη

)
y(s)ds

=
1
2
× 1−αη +α

1−αη

∫ 1

0
s(1− s)y(s)ds.

Then

‖u‖ ≤ 1
2
× 1−αη +α

1−αη

∫ 1

0
s(1− s)y(s) (2.11)

and,

u(t) =
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (n,s)dη

)
y(s)ds

=
θ 2

2

∫ 1

0

(
s(1− s)+

α

1−αη
(1− s)

∫ 1−θ

θ

dη

)
y(s)ds

≥ θ 2

2

∫ 1

0

(
s(1− s)+

α

1−αη
s(1− s)

)
y(s)ds

=
θ 2

2
× 1−αη +α

1−αη

∫ 1

0
s(1− s)y(s)ds.
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(2.12)

From (2.11), (2.12), we obtain

min
t∈[θ ,1−θ ]

u(t)≥ θ
2 ‖u‖

Define the cone

Γ =

{
u ∈C ([0,1] ,R) , u≥ 0 : min

t∈[θ ,1−θ ]
u(t)≥ θ

2 ‖u‖
}

and the operator A : Γ→ [0,1] by

A(u(t))=
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
f (u(s))ds

(2.13)

Remark 2.7. By Lemma 2.4 problem (1.1), (1.2) has a posi-
tive solution u(t) if and only if u is a fixed point of A.

Remark 2.8. We can prouve that for 0 < α < 1
1+η

, and η ∈
(0,1), we have

0 <
1
2
× 1−αη +α

1−αη
< 1

Lemma 2.9. The operator A defined in (2.13) is completely
continuous and satisfies AΓ⊂ Γ.

Proof. We shall prove that AΓ ⊂ Γ. Obviously, for u ∈ Γ,
A(u) ∈C+ [0,1]. For all t ∈ [0,1], we have

‖Au(t)‖

= max
0≤t≤1

(∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
f (u(s))ds

)
≤ 1

2
× 1−αη +α

1−αη

∫ 1

0
s(1− s) f (u(s)) ,

and

Au(t)

=
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
f (u(s))ds

≥ θ 2

2

∫ 1−θ

θ

(s(1− s)

+
α

1−αη
s(1− s)

∫ 1−θ

θ

dη

)
f (u(s))ds

=
θ 2

2
× 1−αη +α

1−αη
(1−2θ)

∫ 1−θ

θ

s(1− s) f (u(s))ds

≥ θ
2 ‖Au(t)‖ .

Which give that Au ∈ Γ. Therefore A : Γ→ Γ.
Now, we shall prove that the operator A is completely

continuous. Let D⊂ Γ is a bounded subset. Then there exists
a positive constant M1 such that

‖u‖ ≤M1, ∀u ∈ D

Let M2 = sup0≤t≤1 | f (u(t))| for all (t,u) ∈ [0,1]× [0,M1].
For any k ∈ N∗, by (2.13), we have

|yk (t)|= |Anxk (t)|

=

∣∣∣∣∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
f (xk (s))ds

∣∣∣∣
≤M2

∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
≤M2×

1
2
× 1−αη +α

1−αη

∫ 1

0
s(1− s)ds

= M2×
1
2
× 1−αη +α

1−αη
× 1

6

≤ 1
6

M2,

which implies that (yk (t))k∈N∗ is uniformly bounded. Now,
we show that A is equicontinuous. For any u ∈ Γ, n≥ 2, and
t1, t2 ∈ [0,1] with |t1− t2|< δ , we have

|yk (t1)− yk (t2)|= |Au(t1)−Au(t2)|

≤
∣∣∣∣∫ 1

0
(K (t1,s)−K (t2,s)) f (xk (s))ds

∣∣∣∣
≤M2

∫ 1

0
|K (t1,s)−K (t2,s)|ds.

It follows from the uniform continuity of the function K on
[0,1]× [0,1], that for any ε > 0, we have

|K (t1,s)−K (t2,s)| ≤
ε

M2
, f or t1, t2 ∈ [0,1] , |t1− t2|< δ

Then

|yk (t1)− yk (t2)|= |Au(t1)−Au(t2)|

≤M2

∫ 1

0
|K (t1,s)−K (t2,s)|ds

≤M2×
ε

M2
= ε.

Therefore, A is equicontinuous. By the Ascoli-Arzela Theo-
rem, we know that A is completely continuous.

In what follows, we will the following notations

f0 = lim
u→0+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

.

We note that the case f0 = 0 and f∞ = ∞ corresponds to the
superlinear case and f0 = ∞ and f∞ = 0 corresponds to the
sublinear case.

3. Existence of positive solutions
In this section, we will state and prove our main results.

Theorem 3.1. Assume that f0 = 0 and f∞ = ∞. Then BVP
(1.1) and (1.2) has at least one positive solution.
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Proof. Since f0 = 0, there exists M > 0 such that f (u)< εu,
for 0 < u < M, where ε satisfies

ε

6
≤ 1

Au(t) =
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
f (u(s))ds

≤
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (η ,s)dη

)
εu(s)ds

≤ 1
2
× 1−αη +α

1−αη
ε ‖u‖

∫ 1

0
s(1− s)ds

≤ ε

6
‖u‖

≤ ‖u‖ .
(3.1)

Therefore

‖Au‖ ≤ ‖u‖ , ∀u ∈ Γ∩∂Ω1

Now, since f∞ = ∞, there exists N > 0 such that f (u)> δu,
for u > N, where δ satisfies

δ ≥ 12(1−αη)

θ 4 (4θ 3−6θ 2 +1)(1−2θ)(1−αη +α)

Let N1 = max
{

2M, N
θ 2

}
and Ω2 = {u ∈ E : ‖u‖< N1}, then

u ∈ K∩∂Ω2 implies that

min
t∈[θ ,1−θ ]

u(t)≥ θ
2 ‖u‖= θ

2N1 ≥ N

by (2.13), we obtain

Au(t)

=
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (n,s)dη

)
f (u(s))ds

≥ θ 2

2

∫ 1−θ

θ

(s(1− s)

+
α

1−αη

1
2

s(1− s)
∫ 1−θ

θ

dη

)
f (u(s))ds

=
θ 2

2
δ

∫ 1−θ

θ

(
s(1− s)

(
1−αη +α

1−αη

)
(1−2θ)

)
u(s)ds

≥ θ 2

2
δ

(
1−αη +α

1−αη

)
(1−2θ)

× min
t∈[θ ,1−θ ]

u(t)
∫ 1−θ

θ

s(1− s)ds

≥ θ
4
δ

1
2

(
1−αη +α

1−αη

)
(1−2θ)

1
6
(
4θ

3−6θ
2 +1

)
‖u‖

≥ ‖u‖ .
(3.2)

Hence ‖Au‖ ≥ u, ∀u ∈ Γ∩ ∂Ω2. Therefore, from (3.1)
and (3.2) and Theorem 2.3 the operator A has at least one
fixed point in Γ∩

(
Ω2 \Ω1

)
such that M ≤ ‖u‖ ≤ N1,which

is a positive solution of (1.1) and (1.2).

Theorem 3.2. Assume that f0 = ∞ and f∞ = 0. Then BVP
(1.1) and (1.2) has at least one positive solution.

Proof. Since f0 = ∞ and f∞ = 0, there exists M > 0 such that
f (u)> γu, for u > M, where γ satisfies

γ ≥ 12(1−αη)

θ 4 (4θ 3−6θ 2 +1)(1−2θ)(1−αη +α)
.

Thus, for u∈ Γ∩∂Ω1with Ω1 = {u ∈ E : ‖u‖< M}, we have
from (3.2)

Au(t)

=
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (n,s)dη

)
f (u(s))ds

≥ θ 2

2

∫ 1−θ

θ

(
s(1− s)+

α

1−αη

∫ 1−θ

θ

s(1− s)dη

)
f (u(s))ds

≥ θ
4
γ

1
2

(
1−αη +α

1−αη

)
1
6
(
4θ

3−6θ
2 +1

)
(1−2θ)‖u‖

≥ ‖u‖ .

Then

‖Au‖ ≥ u, ∀u ∈ Γ∩∂Ω1.

On the other hand, since f∞ = 0 there exists N > 0 such
that f (u)≤ βu, for u > N, where β satisfies

β

6
≤ 1

We consider two cases:
Case 1. Suppose f is bounded. Let L be such that

f (u(t))<L and Ω2 = {u ∈ E : ‖u‖ ≤ N1}with N1 =max
{

2M, L
6

}
.

Then for u ∈ Γ∩∂Ω2, we have

Au(t)

=
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (n,s)dη

)
f (u(s))ds

≤ 1
2
× 1−αη +α

1−αη
L
∫ 1

0
s(1− s)ds

≤ L
6

≤ N1 = ‖u‖

and we obtain, ‖Au‖ ≤ ‖u‖ for u ∈ Γ∩∂Ω2.
Case 2. Suppose that f is unbounded. Since f ∈ ([0,∞) , [0,∞)),

there exists N1 > max{2M,N} such that f (u)< f (N1) with
0 < u < N1
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Now, we set Ω2 = {u ∈ E : ‖u‖< N1}. Then for u ∈
Γ∩∂Ω2, we have

Au(t)

=
∫ 1

0

(
K (t,s)+

α

1−αη

∫ 1

0
K (n,s)dη

)
f (u(s))ds

≤ 1
2
× 1−αη +α

1−αη
βN1

∫ 1

0
s(1− s)ds

≤ βN1

6
≤ N1 = ‖u‖ .

Thus, ‖Au‖ ≤ ‖u‖, for u ∈ Γ∩∂Ω2. By Theorem 2.3 A has
at least one fixed point, which is a positive solution of (1.1)
and (1.2).

4. Examples
Example 4.1. Consider the boundary value problem

u′′′ (t)+u2 (1− e−u)= 0, (4.1)

subject to the two-point boundary conditions

u′ (0) = u′ (1) = 0, u(0) =
1
3

∫ 0,5

0
u(s)ds, (4.2)

where f (u) = u2 (1− e−u) ∈C ([0,∞) , [0,∞))
On the other hand

lim
u→0+

f (u)
u

= lim
u→0+

u
(
1− e−u)= 0,

lim
u→∞

f (u)
u

= lim
u→∞

u
(
1− e−u)= ∞.

From Theorem 3.1, the problem (4.1) and (4.2) has at least
one positive solution.

Example 4.2. Consider the boundary value problem

u′′′ (t)+
√

1+u−
√

u = 0, (4.3)

subject to the two-point boundary conditions

u′ (0) = u′ (1) = 0, u(0) =
3
7

∫ 0,75

0
u(s)ds. (4.4)

where f (u) =
√

1+u−
√

u ∈C ([0,∞) , [0,∞))
On the other hand

lim
u→0+

f (u)
u

= lim
u→0+

√
1+u−

√
u

u
=+∞,

lim
u→+∞

f (u)
u

= lim
u→+∞

√
1+u−

√
u

u
= 0.

From Theorem 3.2, the problem (4.3) and (4.4) has at least
one positive solution.
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