

https://doi.org/10.26637/MJM0702/0021

Fixed point theorem of a set valued map on Cone metric space

Jigmi Dorjee Bhutia¹* and Kalishankar Tiwary ²

Abstract

This paper presents some extensions of the result that has been proved in [\[5\]](#page-6-0). We obtain a result on common fixed point theorem in cone metric space for two set valued maps.

Keywords

Cone metric space, H-cone metric, Fixed point.

AMS Subject Classification

47H10, 54H25, 54C60.

¹*Department of Mathematics, Cooch Behar College, Cooch Behar-736101, India.*

²*Department of Mathematics, Raiganj University, Raiganj-733134, India.*

***Corresponding author**: 1 jigmibhutia@gmail.com;

Article History: Received **18** November **2018**; Accepted **25** April **2019** c 2019 MJM.

Contents

1. Introduction

In the year 1969, S.B.Nadler [\[1\]](#page-6-2) gave a generalisation of Banach contraction principle in case of set-valued maps in metric space. In 1968 [\[2\]](#page-6-3) Kannan established a fixed point theorem for mapping satisfying: $d(Tx, Ty) \le \alpha \{d(x, Tx) +$ $d(y, Ty)$ }, where $\alpha \in [0, \frac{1}{2})$. Kannan's paper was extended by many authors during the period of time, one of which came in the year 1971, by S. Riech in his paper [\[3\]](#page-6-4). Where a map satisfies the contraction condition: $d(Tx,Ty) \leq {a_1 d(x,Tx)} +$ $a_2d(y, Ty) + a_3d(x, y)$, where $a_i \ge 0$, $\forall i = 1, 2, 3$ and $\sum_{i=1}^{3} a_i$ < 1. Then in 1972, Chatterjea [23] established a fixed point theorem for mapping satisfying: $d(Tx, Ty) \le \alpha \{d(x, Ty) +$ $d(y, Tx)$ }, where $\alpha \in [0, \frac{1}{2})$.

It is during the year 2007 when Huang and Zhang [\[4\]](#page-6-5) introduced the concept of cone metric space by replacing the range set of non negative real numbers of the metric d by the ordered Banach space. Since then many other authors in [\[12\]](#page-6-6)- [\[19\]](#page-6-7) and the references therein, have obtained the fixed point theorems on single valued maps.In [\[5\]](#page-6-0), the existence of a fixed

point in cone metric space for set valued mappings has been obtained by the concept of H-Cone metric. For more recent fixed point theorems in cone metric spaces for multivalued mappings we refer [[\[5\]](#page-6-0)-[\[11\]](#page-6-8)] and references therein.

2. Preliminaries

Let *E* be a real Banach space $P \subset E$. Then P is said to a cone if it satisfies the following conditions:

- 1. *P* is a nonempty closed subset and $P \neq \emptyset$.
- 2. $x, y \in P$ and $a, b \in R$ where $a \ge 0$ and $b \ge 0$ then $ax + by$ ∈ *P*.
- 3. *If* $x \in P$ and $-x \in P$, then $x = \theta$.

Cone induces a Partial order relation We can define a partial order relation \preceq on *E* with respect to the cone *P* in the following way: *x* \le *y* if and only if *y*−*x* ∈ *P*. Also *x* << *y* if and only if $y \le x \in Int$ *P* and $x < y$ implies $x \le y$ but $x \ne y$. If *IntP* \neq θ then the cone is a solid cone.

Definition 2.1. *[\[4\]](#page-6-5) Let X be a non empty set and* $d: X \times X \rightarrow$ *E satisfying*

- *1.* $\theta \preceq d(x, y)$ *and* $d(x, y) = \theta$ *if and only if* $x = y$.
- 2. $d(x, y) = d(y, x)$.
- *3. d*(*x*, *y*) \le *d*(*x*, *z*) + *d*(*z*, *y*), ∀ *x*, *y* ∈ *X*.

Then *d* is called the cone metric and the pair (X,d) is called the cone metric space.

Example 1 [\[5\]](#page-6-0): Let $E = R^2$ and $P = \{(x, y) \in R^2 : x \ge 0 \text{ and } 0\}$ *y* ≥ 0}, *X* = *R*² and *d*(*x*, *y*) = (|*x*−*y*|, α|*x*−*y*|), ∀*x*, *y* ∈ *X* and $\alpha > 0$. Then (X,d) is a cone metric space and P is a normal cone with normal constant 1.

There are two different kinds of cones: Normal (with a normal constant) and Non-Normal cones. Let *E* be a real Banach space, $P \subset E$ be a cone and \prec be the partial ordering defined by *P* . Then *P* is said to be normal if there exist positive real number $\mathcal{K} > 0$ such that, for all $x, y \in E$, $\theta \le x \le y$ \Rightarrow $||x|| \leq \mathcal{K} ||y||$. Or, equivalently if $x_n \leq y_n \leq z_n$ and lim_{*n*→∞} *x_n* = lim_{*n*→∞} *z_n* = *x*, then lim_{*n*→∞} *y_n* = *n*. The least of all such constant K is known as normal constant.

Definition 2.2. *[\[4\]](#page-6-5): Let* (*X*,*d*) *be a cone metric space. Let* ${x_n}$ *be a sequence in X and* $x \in X$ *. If for every* $\varepsilon \in E$ *with* ε >> θ *there is N such that for all* $n > N$ *,* $d(x_n, x) < \varepsilon$ *. Then* $\{x_n\}$ *is said to be convergent and x is the limit of* $\{x_n\}$ *. We denote this by,* $lim_{n\to\infty}x_n = x$ *as* $n\to\infty$ *.*

Definition 2.3. *: Let* (X,d) *be a metric space. Let* $\{x_n\}$ *be a sequence in X.If for any* $\varepsilon \in E$ *with* $\varepsilon >> \theta$ *there is a positive integer N such that for all* $n, m > N$, $d(x_n, x_m) < \epsilon$. Then {*xn*} *is said to be a Cauchy sequence in X.*

Definition 2.4. *: If every Cauchy sequence* $\{x_n\}$ ⊂ *M is convergent in* $x \in M$, then (M, d) *is called a complete cone metric space.*

Lemma 2.5. *[\[21\]](#page-6-9) Let E be a Banach space. (i) If* $a, b, c \in E$ and $a \preceq b \ll c$, then $a \ll c$. *(ii) If* $\theta \preceq a \ll c$ *for each* $c \gg \theta$ *, then* $a = \theta$ *. (iii)* If *E* is a real Banach space with cone *P* and if $a \preceq \lambda a$ *where* $a \in P$ *and* $\lambda \in (0,1)$ *, then* $a = \theta$ *.*

Remark 2.6. [\[21\]](#page-6-9): If $c \gg \theta$, $\theta \ll a_n$ and $a_n \to \theta$, then there *exists N, such that for all* $n > N$ *, we have* $a_n \ll c$ *.*

A set *A* ⊂ *M* is closed if for any sequence $\{x_n\}$ ⊂ *A* convergent to *x*, then $x \in A$.

We denote $N(M)$ as the collection fo all nonempty subsets of *M* and *C*(*M*) as collection of all nonempty closed subsets of *M*.

Definition 2.7. An element $x \in M$ is said to be a fixed point *of a set-valued mapping* $T: M \to N(M)$ *if* $x \in Tx$. Denote *Fix*(*T*)={ $x \in M : x \in Tx$ }.

The following is the definition of H-cone metric as given by Wardowski in [\[6\]](#page-6-10) came in the year 2011.

Definition 2.8. Let (M,d) be a cone metric space and $\mathscr A$ *be the collection of all nonempty subsets of M. A map* \mathcal{H} *:* $\mathscr{A} \times \mathscr{A} \to E$ is called an H-cone metric with respect to d if *for any* $A_1, A_2 \in \mathcal{A}$ *the following conditions hold:*

- *1.* $\mathcal{H}(A_1, A_2) = 0 \Rightarrow A_1 = A_2.$
- 2. *H* $(A_1, A_2) = H (A_2, A_1)$.
- *3.* \forall $\varepsilon \in E$ *with* $\theta \ll \varepsilon$, $\forall x \in A_1$, \exists *at least one* $y \in A_2$, *such that* $d(x, y) \preceq \mathcal{H} (A_1, A_2) + \varepsilon$ *.*
- *4. anyone of the following holds there exist*

 (a) \forall ε \in *E with* $\theta \ll \varepsilon$, \exists *at least one* $x \in A_1$, *such that* $\mathcal{H}(A_1, A_2) \preceq d(x, y) + \varepsilon$. $\forall y \in A_2$.

(b)
$$
\forall
$$
 $\varepsilon \in E$ and $\theta \ll \varepsilon$, \exists at least one $x \in A_2$, such
that $\mathcal{H}(A_1, A_2) \preceq d(x, y) + \varepsilon$. $\forall y \in A_1$.

For examples we refer [\[6\]](#page-6-10) to the readers. The author in [6] have proved that if (M,d) is a cone metric space and \mathcal{H} : $\mathscr{A} \times \mathscr{A} \to E$ is H-cone metric with respect to d then the pair $(\mathscr{A}, \mathscr{H})$ is a cone metric space.

In [\[6\]](#page-6-10), the author have proved the following result.

Theorem 2.9. *Let* (*M*,*d*) *be a complete cone metric space with a normal cone* P with a normal constant $\mathscr H$. Let $\mathscr A$ be a *nonempty collection of all nonempty closed subsets of M and let* $H : \mathcal{A} \times \mathcal{A} \rightarrow E$ *be an H-cone metric with respect to d.* If for a map $T: M \to \mathcal{A} \exists \lambda \in (0,1)$ such that $\forall x, y \in M$, $\mathcal{H}(Tx, Ty) \preceq \lambda d(x, y)$, then $FixT \neq \emptyset$.

In the year 2013, H-cone metric in the sense of Arshad and Ahmad [\[11\]](#page-6-8) was defined in the following way to make it more comparable with a standard metric.

Definition 2.10. *[\[11\]](#page-6-8): Let* (*M*,*d*) *be a cone metric space and* A *be a collection of all nonempty subsets of M. A map* $\mathscr{H}: \mathscr{A} \times \mathscr{A} \rightarrow E$ is called an H-cone metric in the sense of *Arshad and Ahmad if the following conditions hold:*

- *1.* $\theta \preceq H(A, B)$ *for all A,B* $\mathscr A$ *and* $\mathscr H$ $(A, B) = \theta$ *if and only if* $A = B$;
- 2. $\mathscr{H}(A,B) = \mathscr{H}(B,A), \forall A,B \in \mathscr{A}$;
- 3. $\mathcal{H}(A,B) \preceq \mathcal{H}(A,C) + \mathcal{H}(C,B)$, $\forall A,B,C \in \mathcal{A}$;
- *4. if* $A, B \in \mathcal{A}$, $\theta < \varepsilon \in E$ *with* $\mathcal{H}(A,B) < \varepsilon$, *then for each a* \in *A* there exists $b \in B$ such that $d(a,b) < \varepsilon$.

Using this H-cone metric the following result [[\[11\]](#page-6-8), Th.3] was proved

Theorem 2.11. *[\[11\]](#page-6-8) Let* (*M*,*d*) *be a complete cone metric space. Let* $\mathscr A$ *be a nonempty collection of all nonempty closed subsets of M and let* \mathcal{H} : $\mathcal{A} \times \mathcal{A} \rightarrow E$ *be an H-cone metric induced by d. If for a map* $T: M \to \mathscr{A} \exists \lambda \in (0,1)$ *such that* $\forall x, y \in M$ *H* $(Tx, Ty) \preceq \lambda d(x, y)$ *, then FixT* $\neq \phi$ *.*

The following example has been shown in [[\[14\]](#page-6-11), Eg 1.10] which indicates that Definition 2.10 is different from Definition 2.8.

Example 2.12. *Let* $X = \{a, b, c\}$ *and* $d: X \times X \rightarrow [0, +\infty)$ *be defined by*

 $d(a,b) = d(b,a) = \frac{1}{2}, d(a,c) = d(c,a) = d(b,c) = d(c,b) =$ 1*,* $d(a,a) = d(b,b) = d(c,c) = 0$ *. Let* $A = \{\{a\},\{b\},\{c\}\},$ \mathscr{H} : $A \times A \rightarrow [0, +\infty)$ *as* $\mathscr{H}(\{a\},\{b\}) = \mathscr{H}(\{b\},\{a\}) = 1,$

 $\mathscr{H}(\{a\},\{c\}) = \mathscr{H}(\{c\},\{a\}) = \mathscr{H}(\{b\},\{c\}) = \mathscr{H}(\{c\},\{b\})$ d by the formulae *= 2,*

 $\mathscr{H}(\{a\},\{a\}) = \mathscr{H}(\{b\},\{b\}) = \mathscr{H}(\{c\},\{c\}) = 0.$ *Then* H *is an H-cone metric which satisfies Definition 2.10*

but not Definition 2.8. In fact, (iv) of Definition 2.8 does not hold.

Doric in the paper [[\[13\]](#page-6-12), Th 2.3], have used the H-cone metric due to Arshad and Ahmad to prove the following result.

Theorem 2.13. *Let E be a Banach space, let P be a solid not necessarily normal cone of E and let* (*X*,*d*) *be a cone metric space over E. Let* $\mathcal A$ *be a family of nonempty closed, and bounded subsets of X and let there exist H-cone metric* $\mathscr{H}: \mathscr{A} \times \mathscr{A} \rightarrow E$ *induced by d. Suppose that* $T, S: X \rightarrow \mathscr{A}$ *be two cone multivalued mappings and suppose that there is* $\lambda \in (0,1)$ *such that* $\forall x, y \in X$ *at least one of the following is holds:*

- *1.* $\mathcal{H}(Tx, Sy) \preceq d(x, y)$;
- 2. *H* $(Tx, Sy) \prec d(x, u)$ *for each fixed u* $\in Tx$;
- *3.* $\mathcal{H}(Tx, Sy) \preceq d(y, v)$ *for each fixed* $v \in Sy$;
- *4.* $\mathscr{H}(Tx, Sy) \preceq \lambda \frac{d(x,y)+d(y,u)}{2}$ $\frac{a^2 + a(y, u)}{2}$ for each fixed $v \in Sy$ and $u \in Tx$.

Then T and S have a common fixed point.

The following example is given by Wardowski [[\[6\]](#page-6-10), Ex. 3.3] which satisfies Defn. 2.8.

Example 2.14. *Let* $M = [0, 1]$ *,* $E = R^2$ *be a Banach space with the standard norm,* $P = \{(x, y) \in R^2 : x \geq 0 \}$ *be a normal cone and let* $d: M \times M \rightarrow E$ *be of the form* $d(x,y) = (|x-y|, \frac{1}{2}|x-y|)$ *. Let* $\mathscr A$ *be a family of subsets of M of the form* $\mathcal{A} = \{ [0, x] : x \in M \} \cup \{ \{x\} : x \in M \}.$ *We define an H-cone metric* \mathcal{H} : $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{E}$ with respect *to d by the formulae*

In [\[5\]](#page-6-0), the author have given the following example that satisfies defn 2.8.

Example 2.15. *Let* $M = \{(1,0), (0,1), (0,0)\}$ *,* $E = R^2$ *be a Banach space with the standard norm,* $P = \{(x, y) \in R^2 : x \ge 0\}$ *and* $y \ge 0$ } *be a normal cone and let d :* $M \times M \rightarrow E$ *be defined by* $d((0,0),(0,1)) = d((0,1),(0,0)) = (1,\frac{2}{3}).$ $d((1,0),(0,0)) = d((0,0),(1,0)) = (\frac{4}{3},1).$

 $d((1,0),(0,1)) = d((0,1),(1,0)) = (\frac{7}{3},\frac{5}{3}).$ $d((1,0),(1,0)) = d((0,1),(0,1)) = (0,0) = d((0,0),(0,0)).$

Then the pair (M, d) is a complete cone metric space. Let $\mathscr{A} = \{ \{(0,0)\}, \{(0,1)\}, \{(1,0)\} \}$ be a family of subsets of *M* of the form

Define an H-cone metric \mathcal{H} : $\mathcal{A} \times \mathcal{A} \rightarrow E$ with respect to

 $\mathscr{H}(\{(0,0)\},\{(0,1)\})=\mathscr{H}(\{(0,1)\},\{(0,0)\})=(1,\frac{2}{3}).$ $\mathscr{H}(\{(1,0)\},\{(0,0)\})=\mathscr{H}(\{(0,0)\},\{(1,0)\})=(\frac{4}{3},1).$ $\mathscr{H}(\{(1,0)\},\{(0,1)\})=\mathscr{H}(\{(0,1)\},\{(1,0)\})=(\frac{7}{3},\frac{5}{3}).$ $\mathscr{H}(\{(1,0)\},\{(1,0)\})=\mathscr{H}(\{(0,1)\},\{(0,1)\})=\mathscr{H}(\{(0,0)\},\{(0,0)\})$ $=(0,0).$

Here we present the result by considering H-cone metric as defined by Wardowski.

3. Main Results

Theorem 3.1. *Let* (*M*,*d*) *be a complete cone metric space.* Let $\mathscr A$ be a nonempty collection of all nonempty closed subsets *of M* and T_1, T_2 : $M \rightarrow \mathcal{A}$ be the set valued maps. Consider an *H*-cone metric with respect to *d*, $\mathcal{H} : \mathcal{A} \times \mathcal{A} \rightarrow E$ satisfying *Defn. 2.8. Then if T*¹ *and T*² *satisfies the contraction condition* $\mathscr{H}(T_1x, T_2y) \preceq \lambda d(x, y), \forall x, y \in M, \lambda \in (0, 1)$ *. Then* T_1 *and T*² *has a common fixed point.*

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, $\forall n$ and $\varepsilon_n \to \theta$. as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T_1(x_0) \in \mathcal{A}$. Let $x_1 \in T_1(x_0)$ and $x_2 \in T_2(x_1)$, then by the definition of H we have $d(x_1, x_2) \preceq H$ $(T_1(x_0), T_2(x_1)) + \varepsilon_1$. Now for $x_1 \in M$. We have $x_2 \in T_2(x_1)$, there exist $x_3 \in T_1(x_2)$ such that $d(x_2, x_3) \preceq \mathcal{H}(T_2(x_1), T_1(x_2)) + \varepsilon_2$. For $x_2 \in M$ and $x_3 \in T_1(x_2)$, $\exists x_4 \in T_2(x_3)$ such that $d(x_3, x_4)$ \preceq *H* $(T_1(x_2), T_2(x_3)) + \varepsilon_3$. So now for $x_3 \in M$ and $x_4 \in T_2(x_3)$, $\exists x_5 \in T_1(x_4)$ such that $d(x_4, x_5) \preceq \mathscr{H}(T_2(x_3), T_1(x_4)) + \varepsilon_4.$ So, for $n \ge 1$ we have, $x_{2n-1} \in T_1(x_{2n-2})$ and $x_{2n} \in T_2(x_{2n-1})$. Now $d(x_{2n-1}, x_{2n}) \preceq \mathcal{H}(T_1(x_{2n-2}), T_2(x_{2n-1})) + \varepsilon_{2n-1}.$ \preceq λ $d(x_{2n-2}, x_{2n-1})+\varepsilon_{2n-1}$. \preceq λ $d(x_{2n-1}, x_{2n-2})+\varepsilon_{2n-1}$. \preceq λ (*H* ($T_1(x_{2n-2}), T_2(x_{2n-3})$)+ ε_{2n-2})+ ε_{2n-1} . $\leq \lambda^2 d(x_{2n-2}, x_{2n-3})+\lambda \varepsilon_{2n-2}+\varepsilon_{2n-1}.$ $\leq \lambda^2 d(x_{2n-3}, x_{2n-2}) + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}$ $\leq \lambda^2 \left(\mathcal{H} \left(T_1(x_{2n-4}), T_2(x_{2n-3}) \right) + \varepsilon_{2n-3} \right) + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\leq \lambda^3(d(x_{2n-4}, x_{2n-3})) + \lambda^2 \varepsilon_{2n-3} + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\leq \lambda^4 (d(x_{2n-5}, x_{2n-4})) + \lambda^3 \varepsilon_{2n-4} + \lambda^2 \varepsilon_{2n-3} + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\leq \lambda^{2n-1} d(x_0, x_1) + \lambda^{2n-2} \varepsilon_1 + \lambda^{2n-3} \varepsilon_2 + \lambda^{2n-4} \varepsilon_3 + \dots$ $\lambda^3 \varepsilon_{2n-4} + \lambda^2 \varepsilon_{2n-3} + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ That is $d(x_{2n}, x_{2n-1}) \preceq \lambda^{2n-1} d(x_0, x_1) + \sum_{i=1}^{2n-1} \lambda^{2n-1-i} \varepsilon_i$. suppose $m > n$, $d(x_{2n}, x_{2m}) \leq \sum_{j=n+1}^{m} d(x_{2j}, x_{2j+1}).$ $\leq \sum_{j=n+1}^{m} [\lambda^{2j-1} d(x_0, x_1) + \sum_{i=1}^{2j-1} d(x_i, x_i)]$ $\lambda^{2j-1} \lambda^{2j-1-i} \varepsilon_i$. $\leq d(x_0, x_1)$ ∑ $_{j=n+1}^m$ λ^{2j-1} +∑ $_{j=n+1}^m$ ∑ $_{i=1}^{2j-1}$ $i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i.$ $d(x_{2n}, x_{2m}) \preceq d(x_0, x_1) \sum_{j=n+1}^m \lambda^{2j-1} + \sum_{j=n+1}^m \sum_{i=1}^{2j-1}$ $\lambda^{2j-1}\lambda^{2j-1-i}\varepsilon_i$. Taking limit $n \rightarrow \infty$ we get, $d(x_0, x_1) \sum_{j=n+1}^m \lambda^{2j-1} \to \theta$ and $\sum_{j=n+1}^m \sum_{i=1}^{2j-1}$ $\prod_{i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i \to$ θ.

Let $c \in Int P$. Then there exist a natural number *N* such that we have,

 $d(x_0, x_1)$ $\sum_{j=n+1}^m \lambda^{2j-1} \ll \frac{c}{2}$ and $\sum_{j=n+1}^m \sum_{i=1}^{2j-1}$ $\sum_{i=1}^{2j-1}$ λ^{2j−1−*i*}ε_{*i*} ≪ $\frac{c}{2}$, for all $n > N$. Therefore, $d(x_{2n}, x_{2m}) \ll c$, for all $n > N$. which gives that $\{x_{2n}\}\$ is a cauchy sequence. Since (M,d) is complete $\{x_{2n}\}\$ is convergent in *M*. Let $x_{2n} \to x_0$. Now *x*_{2*n*} ∈ *T*₂(*x*_{2*n*−1}) ∃ *x*^{*} ∈ *T*₁(*x*₀) such that $d(x_{2n}, x^*) \preceq \mathscr{H}(T_2(x_{2n-1}), T_1(x_0)) + \varepsilon_n.$ $d(x_{2n},x^*) \preceq \lambda \ d(x_{2n-1},x_0)+\varepsilon_n.$ Taking limit $n \to \infty$ we get, $d(x_0, x^*) \preceq \varepsilon_n$. Therefore, $x_0 = x^*$. But $x^* \in T_1(x_0)$. So, we have $x_0 \in T_1(x_0)$. That is x_0 is a fixed point of T_1 . Similarly, $x_{2n-1} \in T_1(x_{2n-2})$ then $\exists x^{**} \in T_2(x_0)$ such that, $d(x_{2n-1}, x^{**}) \preceq H$ (*T*₁(*x*_{2*n*-2}),*T*₂(*x*₀))+ε*n*. $d(x_{2n-1}, x^{**}) \leq \lambda \ d(x_{2n-2}, x_0) + \varepsilon_n.$ Taking limit $n \rightarrow \infty$ we get, $d(x_0, x^{**}) \le \varepsilon_n$. Therefore, $x_0 = x^{**}$. But $x^{**} \in T_2(x_0)$. So we have $x_0 \in T_2(x_0)$. That is x_0 is a fixed point of T_2 .

If we take $T_1 = T_2$, in the above theorem we get the following result due to Wardowski [[\[6\]](#page-6-10), Th 3.1].

Corollary 3.2. *Let* (*M*,*d*) *be a complete cone metric space with a normal coen* P *with a normal constant* K *. Let* $\mathcal A$ *be a nonempty collection of all nonempty closed subsets of M and* $\mathcal{H}: \mathcal{A} \times \mathcal{A} \rightarrow E$ *an be H-cone metric with respect to d. If for a map* $T : M \to \mathcal{A}$ *there exists* $\lambda \in [0,1)$ *such that* \mathcal{H} $(Tx, Ty) \preceq \lambda d(x, y), \forall x, y \in M$. then $FixT \neq \emptyset$.

Definition [\[5\]](#page-6-0): Suppose $D(x, Tx) = \{d(x, z) : z \in Tx\}$ and $S(x, Tx) = \{u \in D(x, Tx) : ||u|| = inf\{||v|| : v \in D(x, Tx)\}.$

Theorem 3.3. *Let* (*M*,*d*) *be a complete cone metric space. Let* A *be a nonempty collection of all nonempty closed subsets of M* and $T: M \rightarrow \mathcal{A}$ be the set valued map. Consider an *H*-cone metric with respect to $d \mathcal{H} : \mathcal{A} \times \mathcal{A} \rightarrow E$ satisfying *Defn. 2.8*

Then if T satisfies the contraction condition \mathcal{H} $(Tx, Ty) \preceq$ $\lambda(S(x,Tx) + S(y,Ty)), \forall x, y \in M. \lambda \in [0, \frac{1}{2})$ then *T* has a *fixed point.*

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \to \theta$, as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T(x_0) \in \mathcal{A}$. Let *x*₁ ∈ *T*(*x*₀), be such that $||d(x_0, x_1)|| = inf{||d(x_0, z)||}$, ∀ $z \in Tx_0$. Then $S(x_0, Tx_0) = d(x_0, x_1)$. Let *x*₂ ∈ *T*(*x*₁), such that $||d(x_1, x_2)||=$ inf { $||d(x_1, z)||, ∀z ∈$ *Tx*₁} .Then we have $S(x_1, Tx_1) = d(x_1, x_2)$. Inductively we have for $x_{n+1} \in Tx_n$, $S(x_n, Tx_n) = d(x_n, x_{n+1})$. Therefore, $d(x_n, x_{n+1}) \preceq \mathcal{H}(Tx_{n-1}, Tx_n)+\varepsilon_n$. $\leq \lambda \left\{ S(x_{n-1}, Tx_{n-1}) + S(x_n, Tx_n) \right\} + \varepsilon_n.$ $\leq \lambda \left\{d(x_{n-1}, x_n) + d(x_n, x_{n+1})\right\} + \varepsilon_n.$ $d(x_n, x_{n+1}) \preceq (\frac{\lambda}{1-\lambda})d(x_{n-1}, x_n)+\frac{\varepsilon_n}{(1-\lambda)}.$ So we have, \preceq $\left(\frac{\lambda}{1-\lambda}\right) \left[\left(\frac{\lambda}{1-\lambda}\right) d\left(x_{n-2}, x_{n-1}\right) + \frac{\varepsilon_{n-1}}{(1-\lambda)} \right] + \frac{\varepsilon_n}{(1-\lambda)}.$ $\leq (\frac{\lambda}{1-\lambda})^2 d(x_{n-2},x_{n-1}) + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n.$ $\preceq (\frac{\lambda}{1-\lambda})^3 d(x_{n-3},x_{n-2})+\frac{\lambda^2}{(1-\lambda)^2}$ $\frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n.$

. $\preceq (\frac{\lambda}{1-\lambda})^n d(x_0, x_1) + \frac{\lambda^{n-1}}{(1-\lambda)}$ $\frac{\lambda^{n-1}}{(1-\lambda)^n}$ $\varepsilon_1 + \frac{\lambda^{n-2}}{(1-\lambda)^n}$ $\frac{\lambda^{n-2}}{(1-\lambda)^{n-1}}$ $\varepsilon_2 + \frac{\lambda^{n-3}}{(1-\lambda)^n}$ $\frac{\lambda^{n+1}}{(1-\lambda)^{n-2}}$ ε_3 +...................+ $\frac{\lambda^2}{(1-2)}$ $\frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n.$ Therefore, we have $d(x_n, x_{n+1}) \leq \alpha^n d(x_0, x_1) + \sum_{r=1}^n \frac{\lambda^{n-r}}{(1-\lambda)^{n+r}}$ $\frac{\lambda^{n-r}}{(1-\lambda)^{n+1-r}}$ ε_r . Where $\alpha =$ $\frac{\lambda}{1-\lambda} < 1.$ For $m \geq n$, we have, $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} d(x_j, x_{j+1}).$ $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} [\alpha^j d(x_0, x_1) + \sum_{r}^{j}]$ $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j}}{(1-\lambda)^{j+1-r}}$ ε_r]. $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) + \sum_{j=n}^{m-1} \sum_{r}^{j}$ $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j}}{(1-\lambda)^{j+1-r}} \varepsilon_r$. Taking limit $n \rightarrow \infty$ we get, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \to \theta$ and $\sum_{j=n}^{m-1} \sum_{r=1}^{j}$ $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j-1}}{(1-\lambda)^{j+1-r}}$ ε_r → θ Let $c \in Int P$, then there exist a natural number *N* such that, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \ll \frac{c}{2}$ and $\sum_{j=n}^{m-1} \sum_{r=1}^{j}$ $j = 1$ $\frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \; \mathcal{E}_r \ll \frac{c}{2},$ for all $n > N$. Therefore, $d(x_n, x_m) \ll c$ That is, $\{x_n\}$ is a Cauchy sequence. Since, (M, d) is complete, $\{x_n\}$ is convergent. Let us suppose that $x_n \to x^*$ in *M*. We claim that x^* is the fixed point of *T* i.e., x^* ∈ Tx^* . suppose that, $x_1 \in Tx^*$, such that, $||d(x^*, x_1)|| = inf \{||d(x^*, z)|| :$ *z* ∈ *T x*∗}. Now, for $x_n \in Tx_{n-1}$, $\exists x_1 \in Tx^*$, such that, $d(x_n, x_1) \preceq \mathscr{H}(Tx_{n-1}, Tx^*) + \varepsilon_n.$ $\leq \lambda \left[S(x_{n-1}, Tx_{n-1}) + S(x^*, Tx^*) \right] + \varepsilon_n.$ $\leq \lambda \left[d(x_{n-1}, x_n) + d(x^*, x_1) \right] + \varepsilon_n.$ Taking $n \rightarrow \infty$, we get,

 $d(x^*, x_1) \leq \lambda \ d(x^*, x_1)$. Since, $\lambda < 1 \ d(x^*, x_1) = \theta$. $x^* = x_1 \in Tx^*$. Hence, $x^* \in Tx^*$.

Example 3.4. *Consider the H-cone metric defined in Ex. 2.14. Let us define a mapping* $T: M \rightarrow \mathcal{A}$ *as follows:*

$$
Tx = \begin{cases} \{0\}, & \text{for } x \in [0, \frac{1}{2}] \\ [0, \frac{x}{2}(x - \frac{1}{2})^2], & \text{for } x \in (\frac{1}{2}, 1] \end{cases}
$$

Then T satisfies the contraction condition:

 $\mathscr{H}(Tx,Ty) \preceq \lambda (S(x,Tx) + S(y,Ty)), \forall x, y \in M \lambda \in [0,\frac{1}{2}).$

Soln: Case 1: Let $x \in [0, \frac{1}{2}]$ and $y \in [0, \frac{1}{2}]$, then $Tx = \{0\}$ and $Ty = \{0\}$ so $D(x, Tx) = d(x, 0) = (x, \frac{x}{2}).$ $S(x, Tx) = (x, \frac{x}{2})$ and $D(y, Ty) = d(y, 0) = (y, \frac{y}{2})$ $\frac{y}{2}$, *S*(*y*, *Ty*) = $(y, \frac{y}{2})$ $\frac{y}{2}$). $\mathscr{H}(A,B) = (\{0\},\{0\}) = (0,0)$, hence we have, $\frac{1}{3}$ $[S(x,Tx) + S(y,Ty)]$ -H $(Tx,Ty) = (\alpha(x+y), \frac{\alpha}{2}(x+y)) \in$ *P*, that is $\mathscr{H}(Tx,Ty)$ $\leq \frac{1}{3}$ [S(x,Tx) + S(y,Ty)], ∀ x ∈ [0, $\frac{1}{2}$] and y ∈ $[0, \frac{1}{2}].$

Case 2: Let $x \in [0, \frac{1}{2}]$ and $y \in (\frac{1}{2}, 1]$, then $Tx = \{0\}$ and $Ty = [0, \frac{1}{2}(y - \frac{1}{2})^2]$ so $D(x, Tx) = d(x, 0) = (x, \frac{x}{2}).$ $S(x, Tx) = (x, \frac{x}{2})$ and $D(y, Ty) = \{d(y, z) : z \in Ty\} = \{d(y, z) : z \in U\}$ *z* ∈ [0, $\frac{1}{2}(y - \frac{1}{2})^2$]} Now, *y* ∈ ($\frac{1}{2}$, 1] and *z* ∈ [0, $\frac{1}{2}(y - \frac{1}{2})^2$]. Now *y* \in $(\frac{1}{2}, 1]$ implies $z \in (0, \frac{1}{8}]$. Then it is clear that $inf\{||d(y, z)|| : z \in Ty\} = d(\frac{1}{2}, \frac{1}{8}).$

So, $S(y,Ty) = d(\frac{1}{2},\frac{1}{8}) = (\frac{3}{8},\frac{3}{16}).$ Also, $\mathcal{H} (Tx, Ty) = (max{0, |0 - \frac{1}{2}(y - \frac{1}{2})^2|}, \frac{1}{2}max{0, |0 - \frac{1}{2}(y - \frac{1}{2})|^2})$ $\frac{1}{2}(y-\frac{1}{2})^2$ |}) = $(\frac{1}{2}(y-\frac{1}{2})^2, \frac{1}{4}(y-\frac{1}{2})^2)$. Hence we have, $\alpha \left[S(x,Tx) + S(y,Ty) \right] - \mathcal{H} \left(Tx,Ty \right) = \left(\alpha \left(x + \frac{3}{8} \right), \frac{\alpha}{2} \left(x + \frac{3}{8} \right) \right)$ - $(\frac{1}{2}(y-\frac{1}{2})^2, \frac{1}{4}(y-\frac{1}{2})^2)$, that is $\alpha \left[S(x,Tx) + S(y,Ty) \right] - \mathcal{H} \left(Tx,Ty \right) = (\alpha(x+\frac{3}{8}) - \frac{1}{2}(y-\frac{3}{8}) + \frac{1}{2}(y-\frac{3}{8}) + \frac{1}{2}(y-\frac{3}{8})$ $(\frac{1}{2})^2, \frac{\alpha}{2}(x+\frac{3}{8})-\frac{1}{4}(y-\frac{1}{2})^2).$ We now find what could be the minimum value of $\alpha(x+\frac{3}{8})$ – $\frac{1}{2}(y-\frac{1}{2})^2$ for $x \in [0,\frac{1}{2}]$ and $y \in (\frac{1}{2},1]$. Observe that $\alpha(x+\frac{3}{8}) - \frac{1}{2}(y-\frac{1}{2})^2$ is minimum. If $\frac{1}{2}(y-\frac{1}{2})^2$ is maximum and $\alpha(x+\frac{3}{8})$ is minimum. But, $\frac{1}{2}(y - \frac{1}{2})^2$ is maximum if *y* is maximum i.e., *y* = 1, so $\frac{1}{2}(y-\frac{1}{2})^2=\frac{1}{8}.$ and $\alpha(x+\frac{3}{8})$ is minimum if *x* is minimum i.e., $x=0$, so $\alpha(x+\frac{3}{8})=\alpha\frac{3}{8}.$ So, we have, $\alpha \frac{3}{8}$ - $\frac{1}{8} \geq 0$. $\alpha \frac{3}{8} \geq \frac{1}{8}.$ $\alpha \ge \frac{1}{3}$. Taking $\alpha = \frac{1}{3}$, we get. *H* (*Tx*,*Ty*) $\leq \frac{1}{3}$ [*S*(*x*,*Tx*) + *S*(*y*,*Ty*)], ∀ *x* ∈ [0, $\frac{1}{2}$] and *y* ∈ $(\frac{1}{2}, 1].$ Hence, $\mathcal{H} (Tx, Ty) \preceq \alpha [S(x, Tx) + S(y, Ty)], \forall x, y \in M$ where $\alpha = \frac{1}{3}$.

Theorem 3.5. *Let* (*M*,*d*) *be a complete cone metric space. Let* A *be a nonempty collection of all nonempty closed subsets of M* and $T: M \to \mathcal{A}$ be the set valued map. Consider an *H*-cone metric with respect to $d \mathcal{H} : \mathcal{A} \times \mathcal{A} \rightarrow E$ satisfying *Defn. 2.8.*

Then if T satisfies the contraction condition

 $\mathscr{H}(Tx,Ty) \preceq \lambda (S(x,Ty) + S(y,Tx)), \forall x, y \in M. \lambda \in [0,\frac{1}{2}).$ *then T has a fixed point.*

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \to$ θ as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T(x_0) \in \mathcal{A}$. Let $x_1 \in T(x_0)$, then $S(x_1, Tx_0) = \theta$. Let *x*₂ ∈ *T*(*x*₁), such that $||d(x_0, x_2)||=$ inf { $||d(x_0, z)||, ∀z ∈$ *Tx*₁}. Then we have $S(x_0, Tx_1) = d(x_0, x_2)$. Hence, we have, $d(x_1, x_2) = \mathcal{H} (Tx_0, Tx_1) + \varepsilon_1$. $\preceq \lambda(S(x_0,Tx_1)+S(x_1,Tx_0))+\varepsilon_1.$ $\preceq \lambda d(x_0, x_2) + \varepsilon_1$. $\preceq \lambda(d(x_0, x_1) + d(x_1, x_2)) + \varepsilon_1.$ $d(x_1, x_2) \preceq \frac{\lambda}{1-\lambda} (d(x_0, x_1) + \frac{1}{1-\lambda} \varepsilon_1).$ Again, since $x_2 \in T(x_1)$, which implies that $S(x_2, Tx_1) = \theta$. Let *x*₃ ∈ *T*(*x*₂), such that $||d(x_1, x_3)||=$ inf { $||d(x_1, z)||, ∀z ∈$ Tx_2 . Then we have $S(x_1, Tx_2) = d(x_1, x_3)$. Hence, we have, $d(x_2, x_3) = \mathcal{H} (Tx_1, Tx_2) + \varepsilon_1$. $\preceq \lambda(S(x_1, Tx_2) + S(x_2, Tx_1)) + \varepsilon_2.$ \preceq λ *d*(x_1, x_3)+ε₂. $\preceq \lambda(d(x_1,x_2)+d(x_2,x_3))+\varepsilon_2.$ $d(x_2, x_3) \preceq \frac{\lambda}{1-\lambda} (d(x_1, x_2) + \frac{1}{1-\lambda} \varepsilon_2).$ Inductively we have for $x_{n+1} \in Tx_n$,

 $d(x_n, x_{n+1}) \preceq (\frac{\lambda}{1-\lambda})d(x_{n-1}, x_n)+\frac{\varepsilon_n}{(1-\lambda)}.$ So we have, $\leq (\frac{\lambda}{1-\lambda})[(\frac{\lambda}{1-\lambda})d(x_{n-2},x_{n-1})+\frac{\varepsilon_{n-1}}{(1-\lambda)}]+\frac{\varepsilon_n}{(1-\lambda)}.$ $\leq (\frac{\lambda}{1-\lambda})^2 d(x_{n-2},x_{n-1}) + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n.$ $\preceq (\frac{\lambda}{1-\lambda})^3 d(x_{n-3},x_{n-2})+\frac{\lambda^2}{(1-\lambda)^2}$ $\frac{\lambda^2}{(1-\lambda)^3}$ $\varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2}$ $\varepsilon_{n-1} + \frac{1}{(1-\lambda)}$ ε_n . $\preceq (\frac{\lambda}{1-\lambda})^n d(x_0, x_1) + \frac{\lambda^{n-1}}{(1-\lambda)}$ $\frac{\lambda^{n-1}}{(1-\lambda)^n}$ $\varepsilon_1 + \frac{\lambda^{n-2}}{(1-\lambda)^n}$ $\frac{\lambda^{n-2}}{(1-\lambda)^{n-1}}$ $\varepsilon_2 + \frac{\lambda^{n-3}}{(1-\lambda)^n}$ $\frac{\lambda^{n+1}}{(1-\lambda)^{n-2}}$ ε_3 +.................+ $\frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n$. 2 Therefore, we have, $d(x_n, x_{n+1}) \leq \alpha^n d(x_0, x_1) + \sum_{r=1}^n \frac{\lambda^{n-r}}{(1-\lambda)^{n+r}}$ $\frac{\lambda^{n}}{(1-\lambda)^{n+1-r}}$ ε_r . Where $\alpha =$ $\frac{\lambda}{1-\lambda} < 1.$ For $m \geq n$, we have, $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} d(x_j, x_{j+1}).$ $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} [\alpha^j d(x_0, x_1) + \sum_{r}^{j}]$ $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j}}{(1-\lambda)^{j+1-r}}$ ε_r]. $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) + \sum_{j=n}^{m-1} \sum_{r}^{j}$ $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j}}{(1-\lambda)^{j+1-r}}$ ε_r . Taking limit n $\rightarrow \infty$, we get, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \rightarrow \theta$ and $\sum_{j=n}^{m-1}$ Σ_r^j $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r \to \theta.$ Let $c \in Int P$, then there exist a natural number *N* such that, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \ll \frac{c}{2}$ and $\sum_{j=n}^{m-1} \sum_{r=1}^{j}$ $j = \frac{\lambda^{j-r}}{(1-\lambda)^{j+r}}$ $\frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \; \mathcal{E}_r \ll \frac{c}{2},$ for all $n > N$. Therefore, we have $d(x_n, x_m) \ll c$ for all $n > N$. Hence, $\{x_n\}$ is a Cauchy sequence. Since, (M, d) is complete, $\{x_n\}$ is convergent. Let us suppose that $x_n \to x^*$ in *M*. We claim that x^* is the fixed point of *T* i.e., x^* ∈ Tx^* . Now since $x_n \to x^*$ as $n \to \infty$, we get, $||d(x_n, x^*)||$ → 0 as $n \to \infty$, again since $x_n \in Tx_{n-1}$, therefore $S(x^*, Tx_{n-1}) = \theta.$ Suppose that, $x_1 \in Tx^*$, such that, $||d(x_{n-1}, x_1)|| = inf {||d(x_{n-1}, z)||}$: *z* ∈ *T x*∗}. So, $S(x_{n-1}, Tx^*)=d(x_{n-1},x_1)$. Now, for $x_n \in Tx_{n-1}, \exists x_1$ $\in Tx^*$, such that, $d(x_n, x_1) \preceq \mathscr{H}(Tx_{n-1}, Tx^*) + \varepsilon_n.$ $\leq \lambda \left[S(x_{n-1}, Tx^*) + S(x^*, Tx_{n-1}) \right] + \varepsilon_n.$ $\preceq \lambda$ *d*(x_{n-1}, x_1)+ ε_n . Taking $n \rightarrow \infty$, we get, $d(x^*, x_1) \leq \lambda \ d(x^*, x_1)$. Since, $\lambda < 1$. $d(x^*, x_1) = \theta$. $x^* = x_1 \in Tx^*$. Hence, $x^* \in Tx^*$. Example 3.6. *Consider the Example 2.15. There we take the*

following mapping $T((1,0)) = \{(0,0)\}, T((0,0)) = \{(0,1)\},\$ $T((0,1)) = \{(0,1)\}.$

Case 1: If $x \in \{(0,0)\}$ and $y \in \{(0,0)\}$, then $x = (0,0)$ $y = (0,0)$. $Tx = T(0,0) = \{(0,1)\}$ *and* $Ty = T(0,0) = \{(0,1)\}.$ *So,* $\mathcal{H}(Tx, Ty) = \mathcal{H}(\{(0,1)\}, \{(0,1)\}) = (0,0).$ $D(x,Ty) = D((0,0),T(0,0)) = d((0,0),(0,1)) = (1,\frac{2}{3}).$ *Hence,* $S(x,Ty) = ((1, \frac{2}{3}))$. $D(y, Tx) = D((0,0), T(0,0)) = d((0,0), (0,1)) = (1, \frac{2}{3}).$ *Hence,* $S(y,Tx) = ((1, \frac{2}{3}))$.

 $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(2, \frac{4}{3}).$ $\lambda(S(x,Ty) + S(y,Tx)) - \mathcal{H}(Tx,Ty) = \lambda(2,\frac{4}{3}) \in P$., for any $\lambda \in [0, \frac{1}{2}).$ *Hence,* $\mathcal{H} (Tx, Ty) \preceq \lambda (S(x, Ty) + S(y, Tx))$ *, for any* $\lambda \in$ $[0, \frac{1}{2}).$

Case 2: If $x \in \{(0,0)\}$ and $y \in \{(0,1)\}$, then $x = (0,0)$ $y = (0,1)$. $Tx = T(0,0) = \{(0,1)\}$ *and* $Ty = T(0,1) = \{(0,1)\}.$ *So,* $\mathcal{H}(Tx, Ty) = \mathcal{H}((0,1), \{(0,1)\}) = (0,0).$ $D(x, Ty) = D((0,0), T(0,1)) = d((0,0), (0,1)) = (1, \frac{2}{3}).$ *Hence,* $S(x,Ty) = ((1, \frac{2}{3}))$. $D(y,Tx) = D((0,1),T(0,0)) = d((0,1),(0,1)) = (0,0).$ *Hence,* $S(y, Tx) = ((0,0))$. $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(1, \frac{2}{3}).$ $\lambda(S(x,Ty) + S(y,Tx)) - \mathcal{H} (Tx,Ty) = \lambda(1,\frac{2}{3}), \lambda \in [0,\frac{1}{2}).$

Case 3: If $x \in \{(0,0)\}$ and $y \in \{(1,0)\}$, then $x = (0,0)$ $y = (1,0)$. $Tx = T(0,0) = \{(0,1)\}$ *and* $Ty = T(1,0) = \{(0,0)\}.$ *So,* $\mathcal{H}(Tx, Ty) = \mathcal{H}(\{(0,1)\}, \{(0,0)\}) = (1, \frac{2}{3}).$ $D(x,Ty) = D((0,0),T(1,0)) = d((0,0),(0,0)) = (0,0).$ *Hence,* $S(x, Ty) = (0,0)$. $D(y,Tx) = D((1,0),T(0,0)) = d((1,0),(0,1)) = (\frac{7}{3},\frac{5}{3}).$ *Hence,* $S(y, Tx) = (\frac{7}{3}, \frac{5}{3})$ *.* $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{7}{3}, \frac{5}{3}).$ $\lambda(S(x,Ty) + S(y,Tx)) - \mathcal{H} (Tx,Ty) = (\lambda \frac{7}{3} - 1, \lambda \frac{5}{3} - \frac{2}{3}) \in P.$ *If* $\lambda \frac{7}{3} - 1 \ge 0$ *if* $\lambda \frac{7}{3} \ge 1$ *that is* $\lambda \ge \frac{3}{7}$ *and also if* $\lambda \frac{5}{3} - \frac{2}{3} \geq 0$ if $\lambda \frac{5}{3} \geq \frac{2}{3}$ that is $\lambda \geq \frac{2}{5}$. *So if we take* $\lambda = \frac{1}{4}$ *, we get,* $\lambda(S(x,Ty) + S(y,Tx))$ *-* H $(Tx,Ty) \in P$, for any $\lambda = \frac{1}{4}$. $\mathscr{H}(Tx,Ty) \preceq \lambda (S(x,Ty) + S(y,Tx)), \forall x, y \in M, with \lambda = \frac{1}{4}.$

Case 4: If $x \in \{(1,0)\}$ and $y \in \{(0,1)\}$, then $x = (1,0)$ $y = (0,1)$. $Tx = T(1,0) = \{(0,0)\}$ *and* $Ty = T(0,1) = \{(0,1)\}.$ *So,* $\mathcal{H}(Tx, Ty) = \mathcal{H}((0,0), \{(0,1)\}) = (1, \frac{2}{3}).$ $D(x,Ty) = D((1,0),T(0,1)) = d((1,0),(0,1)) = (\frac{7}{3},\frac{5}{3}).$ *Hence,* $S(x,Ty) = (\frac{7}{3}, \frac{5}{3})$. $D(y, Tx) = D((0, 1), T(1, 0)) = d((0, 1), (0, 0)) = (1, \frac{2}{3}).$ *Hence,* $S(y,Tx) = (1, \frac{2}{3})$. $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{10}{3}, \frac{7}{3}).$ $\lambda(S(x,Ty) + S(y,Tx)) - \mathcal{H}(Tx,Ty) = (\lambda \frac{10}{3} - 1, \lambda \frac{7}{3} - \frac{2}{3}) \in$ *P. If* $\lambda \frac{10}{3} - 1 \ge 0$ *if* $\lambda \frac{10}{3} \ge 1$ *that is* $\lambda \ge \frac{3}{10}$ *and also if* $\lambda \frac{7}{3} - \frac{2}{3} \geq 0$ if $\lambda \frac{7}{3} \geq \frac{2}{3}$ that is $\lambda \geq \frac{2}{7}$ *So if we take* $\lambda = \frac{1}{4}$ *, we get,* $\lambda(S(x,Ty) + S(y,Tx))$ *-* H $(Tx,Ty) \in P$, for any $\lambda = \frac{1}{4}$. $\mathscr{H}(Tx,Ty) \preceq \lambda (S(x,Ty) + S(y,Tx)), \forall x, y \in M, \text{ with } \lambda = \frac{1}{4}.$ **Case 5:** If $x \in \{(0,1)\}\$ and $y \in \{(0,1)\}\$, then $x = (0,1)$ $y = (0,1)$.

 $Tx = T(0,0) = \{(0,1)\}$ *and* $Ty = T(0,1) = \{(0,1)\}.$

So, $\mathcal{H}(Tx, Ty) = \mathcal{H}((0,1), \{(0,1)\}) = (0,0).$ $D(x,Ty) = D((0,1),T(0,1)) = d((0,1),(0,1)) = (0,0).$ *Hence,* $S(x, Ty) = (0,0)$. $D(y,Tx) = D((0,1),T(0,1)) = d((0,1),(0,1)) = (0,0).$ *Hence,* $S(y, Tx) = ((0,0))$. $\lambda(S(x,Ty) + S(y,Tx)) = (0,0).$ $\lambda(S(x,Ty) + S(y,Tx)) - \mathcal{H}(Tx,Ty) = (0,0) \in P$, for any $\lambda \in [0, \frac{1}{2}).$ $\mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Ty) + S(y,Tx)), \forall x, y \in M, \text{ with } \lambda \in$ $[0, \frac{1}{2}).$

Case 6: If $x \in \{(1,0)\}$ and $y \in \{(1,0)\}$, then $x = (1,0)$ *y* = (1,0)*.* $Tx = T(1,0) = \{(0,0)\}\$ and $Ty = T(1,0) = \{(0,0)\}\$. *So,* $\mathcal{H} (Tx, Ty) = \mathcal{H} ({(0,0)}, {(0,0)}) = (0,0).$ $D(x,Ty) = D((1,0),T(1,0)) = d((1,0),(0,0)) = (\frac{4}{3},1).$ *Hence,* $S(x,Ty) = (\frac{4}{3},1)$. $D(y, Tx) = D((1,0), T(1,0)) = d((1,0), (0,0)) = (\frac{4}{3}, 1).$ *Hence,* $S(y, Tx) = (\frac{4}{3}, 1)$ *.* $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{8}{3},1).$ $\lambda(S(x,Ty) + S(y,Tx))$ *-* $\mathcal{H}(Tx,Ty) = \lambda(\frac{8}{3},1) \in P$, for any $\lambda \in [0, \frac{1}{2}).$ $\mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Ty) + S(y,Tx)), \forall x, y \in M, \text{ with } \lambda \in$ $[0, \frac{1}{2}).$

Theorem 3.7. *Let* (*M*,*d*) *be a complete cone metric space. Let* A *be a nonempty collection of all nonempty closed subsets of M* and $T: M \to \mathcal{A}$ be the set valued map. Consider an *H*-cone metric with respect to $d \mathcal{H} : \mathcal{A} \times \mathcal{A} \rightarrow E$ satisfying *Defn.* 2.8. Then if T satisfies the contraction condition H $(Tx, Ty) \preceq {a_1S(x, Tx) + a_2S(y, Ty) + a_3d(x, y)}$, $\forall x, y \in M$. *a*_{*i*} ≥ 0 \forall , *i* = 1, 2, 3 *and a*₁ + *a*₂ + *a*₃ < 1*. Then T has a fixed point.*

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \to$ θ as $n \to \infty$.

Let $x_0 \in M$ be arbitrary and fixed.

Then $T(x_0) \in \mathcal{A}$. Let $x_1 \in T(x_0)$, be such that $||d(x_0, x_1)|| =$ *in f* { $||d(x_0, z)||$, ∀ $z \in Tx_0$ }. Then $S(x_0, Tx_0) = d(x_0, x_1)$. Let *x*₂ ∈ *T*(*x*₁), such that $||d(x_1, x_2)||=$ inf { $||d(x_1, z)||, ∀z ∈$ Tx_1 . Then we have $S(x_1, Tx_1) = d(x_1, x_2)$. Inductively we have for $x_{n+1} \in Tx_n$, $S(x_n, Tx_n) = d(x_n, x_{n+1})$. Therefore, $d(x_n, x_{n+1}) \preceq \mathcal{H}(Tx_{n-1}, Tx_n)+\varepsilon_n$. $\leq \{a_1S(x_{n-1},Tx_{n-1}) + a_2S(x_n,Tx_n) + a_3d(x_{n-1},x_n)\}+\varepsilon_n.$ \leq { $a_1d(x_{n-1},x_n)+a_2d(x_n,x_{n+1})+a_3d(x_{n-1},x_n)$ }+ ε_n . $(1-a_2) d(x_n,x_{n+1}) \preceq (a_1+a_3)d(x_{n-1},x_n)+\varepsilon_n.$ $d(x_n, x_{n+1}) \preceq \frac{(a_1 + a_3)}{(1 - a_2)}$ $\frac{a_1+a_3)}{(1-a_2)} d(x_{n-1},x_n)+\frac{\varepsilon_n}{(1-a_2)}.$ So we have, $\leq \frac{(a_1+a_3)}{(1-a_2)}$ $\frac{(a_1+a_3)}{(1-a_2)}$ $\frac{(a_1+a_3)}{(1-a_2)}$ $\frac{a_1+a_3)}{(1-a_2)} d(x_{n-2},x_{n-1})+\frac{\varepsilon_{n-1}}{(1-a_2)} + \frac{\varepsilon_n}{(1-a_2)}.$ $\leq (\frac{a_1+a_3}{1-a_2})^2 d(x_{n-2},x_{n-1})+\frac{a_1+a_3}{(1-a_2)}$ $\frac{a_1+a_3}{(1-a_2)^2} \mathcal{E}_{n-1} + \frac{1}{(1-a_2)} \mathcal{E}_n$. $\leq (\frac{a_1+a_3}{1-a_2})^3 d(x_{n-3},x_{n-2})+(\frac{(a_1+a_3)^2}{(1-a_2)^3})$ $\frac{(a_1+a_3)^2}{(1-a_2)^3}$ $\varepsilon_{n-2}+\frac{(a_1+a_3)}{(1-a_2)^2}$ $\frac{(a_1+a_3)}{(1-a_2)^2}$ $\varepsilon_{n-1} + \frac{1}{(1-a_2)}$ ε*n*.

$$
\frac{1}{\leq} \left(\frac{a_1+a_3}{1-a_2}\right)^n d(x_0, x_1) + \frac{(a_1+a_3)^{n-1}}{(1-a_2)^n} \mathcal{E}_1 + \frac{(a_1+a_3)^{n-2}}{(1-a_2)^{n-1}} \mathcal{E}_2 + \frac{(a_1+a_3)^{n-3}}{(1-a_2)^{n-2}}
$$
\n
$$
\mathcal{E}_3
$$
\nTherefore, we have,
\n
$$
d(x_n, x_{n+1}) \leq \alpha^n d(x_0, x_1) + \sum_{r=1}^n \frac{(a_1+a_3)^{n-r}}{(1-a_2)^{n+1-r}} \mathcal{E}_r. \text{ Where } \alpha =
$$
\n
$$
\frac{a_1+a_3}{1-a_2} < 1.
$$
\nFor $m \geq n$, we have,
\n
$$
d(x_n, x_m) \leq \sum_{j=n}^{m-1} d(x_j, x_{j+1}).
$$
\n
$$
d(x_n, x_m) \leq \sum_{j=n}^{m-1} d(x_j, x_{j+1}).
$$
\n
$$
d(x_n, x_m) \leq \sum_{j=n}^{m-1} d(x_0, x_1) + \sum_{r=1}^j \frac{(a_1+a_3)^{j-r}}{(1-a_2)^{j+1-r}} \mathcal{E}_r.
$$
\nTaking limit $n \to \infty$, we have,
\n
$$
\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \to \theta
$$
 and $\sum_{j=n}^{m-1} \sum_{r=1}^j \frac{(a_1+a_3)^{j-r}}{(1-a_2)^{j+1-r}} \mathcal{E}_r \to \theta.$ \n
$$
\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \ll \frac{c}{2}
$$
 and $\sum_{j=n}^{m-1} \sum_{r=1}^j \frac{(a_1+a_3)^{j-r}}{(1-a_2)^{j+1-r}} \mathcal{E}_r \ll \frac{c}{2}$,
\nfor all $n > N$.
\nTherefore, we have,
\n
$$
d(x_n, x_m) \ll c
$$
. Hence, $\{x_n\}$ is a Cauchy sequence.
\nSince, (M, d) is complete,

 $d(x^*, x_1) \le a_2 d(x^*, x_1)$. Since, $a_2 < 1$. $d(x^*, x_1) = \theta$. $x^* = x_1 \in Tx^*$. Hence, $x^* \in Tx^*$.

References

- [1] S. B. Nadler, Multi-valued contraction mappings, *Pacific J. Math.,* 30(1969), 475-478.
- [2] R. Kannan, Some results on fixed points, *Bull. Calcutta Math. Soc.,* 60(1968),71-76.
- [3] S. Reich, Kannan's fixed point theorem,*Bull. Univ. Mat. Italiana.,* 4(4) (1971), 1-11.
- [4] Huang Long-Guang and Zhang Xian, Cone metric spaces and fixed point theorems of contractive mappings, *J. Comput. Anal. Appl.,* 332(2007), 1468-1476.
- [5] D. Wardowski, End points and fixed points of set-valued contracions in cone metric spaces, *Nonlinear Analysis.,* 71(2009), 512-516.
- [6] D. Wardowski, On set-valued contraction of Nadler type in Cone metric spaces, *Applied Mathematics letters.,* 24(3)(2011), 275-278. .
- [7] Arshad, M, Ahmad, J: On multivalued contractions in cone metric spaces without normality, *Sci. World J.* 2013, Article ID 481601 (2013).
- [8] D. Klim, D. Wardowski, Dynamic processes and fixed

points of set-valued nonlinear contraction in cone metric spaces, *Nonlinear analysis,* 71(2009), 5170-5175.

- Z. Kadelburg, S. Radenovic, Some results on set-valued contractions in abstract metric spaces, *Comput. Math. Appl.,* 62(2011), 342-350.
- S.H. Cho, J.S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, *Fixed Point Theory and Applications.,* 87 (2011).
- M. Arshad, J. Ahmad, On Multivalued contractions in Cone Metric Spaces without normality, *The Scientific World J.,* (2013).Article ID 481601.
- M. Asadi, H. Soleimani, S. M. Vaezpour, An order on subsets of Cone Metric Spaces and Fixed Points of Set-Valued Contractions, *Fixed Point Theory Appl.,* volume 2009, Article ID 723203, 8 pages.
- D. Doric, Common fixed point theorems for generalized multivalued contractions oncone metric spaces over a nonnormal solid cone, *Fixed Point Theory and Applications.,* (2014), 2014:159.
- H. Huang, S. Radenovic and D. Doric, A note on the equivalence of some metric and H-cone metric fixed point theorems for multivalued contractions, *Fixed Point Theory and Applications* (2015) 2015:43.
- Sh. Rezapour and R. Hamlbarani, Some notes on the paper cone meric spaces and fixed point theorems of contractive mmapings, *J. Math. Anal. Appl.,* 345(2) (2008), pp. 719-724.
- M. Abbas, B.E. Rhoades, Fixed and periodic point results in cone metric spaces, *Appl. Math. Lett.,* 22 (2009), 511- 515.
- M. Abbas, G. Jungck, Common fixed point results for non cummuting mappings without continuity in cone metric space, *J. Math. Anal. Appl.,*341 (2008) pp. 416-420.
- [18] J.R.Morales, E. Rojas, Cone metric spaces and fixed pointe theorems of T-kannan contractive mappings, *Int. J. Math, Anal.,* 4(4) 2010, pp 175-184.
- [19] M. Filipovi'c, L. Paunovi'c, S. Radenovi'c, M. Rajovi'c, Remarks on cone metric spaces and Fixed Point theorems of T-kannan and T-Chatterjea contractive mappings, *Math. Comput.Modelling.,*(54)(2011), pp 1467-1472.
- [20] Gh. Soleimani Rad., New fixed and periodic point results on cone metric spaces, *Journal of Linear and Topological Algebra,* 01(01), (2012), 33- 40.
- [21] G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, *Fixed Point Theory Appl.,* (2009) 2009: 643840. https://doi.org/10.1155/2009/643840.
- [22] S. Jankovic, Z. Kadelburg, S. Radenovic, and B.E. Rhoades, Assad-fixed-type point theorems for a pair of nonself mappings on cone metric spaces, *Fixed Point Theory Appl.,* Volume 2009, Article ID 761086, 16 pages doi:10.1155/2009/761086
- [23] Chatterjea, S. K: Fixed point theorem. *C. R. Acad. Bulgare Sci.* (25), (1972), 727-730.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

