

https://doi.org/10.26637/MJM0702/0021

Fixed point theorem of a set valued map on Cone metric space

Jigmi Dorjee Bhutia¹* and Kalishankar Tiwary²

Abstract

This paper presents some extensions of the result that has been proved in [5]. We obtain a result on common fixed point theorem in cone metric space for two set valued maps.

Keywords

Cone metric space, H-cone metric, Fixed point.

AMS Subject Classification

47H10, 54H25, 54C60.

¹Department of Mathematics, Cooch Behar College, Cooch Behar-736101, India.

²Department of Mathematics, Raiganj University, Raiganj-733134, India.

*Corresponding author: ¹ jigmibhutia@gmail.com;

Article History: Received 18 November 2018; Accepted 25 April 2019

Contents

1	Introduction	287
2	Preliminaries	287
3	Main Results	289
	References	293

1. Introduction

In the year 1969, S.B.Nadler [1] gave a generalisation of Banach contraction principle in case of set-valued maps in metric space. In 1968 [2] Kannan established a fixed point theorem for mapping satisfying: $d(Tx,Ty) \leq \alpha \{d(x,Tx) + d(y,Ty)\}$, where $\alpha \in [0, \frac{1}{2})$. Kannan's paper was extended by many authors during the period of time, one of which came in the year 1971, by S. Riech in his paper [3]. Where a map satisfies the contraction condition: $d(Tx,Ty) \leq \{a_1d(x,Tx) + a_2d(y,Ty) + a_3d(x,y)\}$, where $a_i \geq 0$, $\forall i = 1,2,3$ and $\sum_{i=1}^{3} a_i$ < 1. Then in 1972, Chatterjea [23] established a fixed point theorem for mapping satisfying: $d(Tx,Ty) \leq \alpha \{d(x,Ty) + d(y,Tx)\}$, where $\alpha \in [0, \frac{1}{2})$.

It is during the year 2007 when Huang and Zhang [4] introduced the concept of cone metric space by replacing the range set of non negative real numbers of the metric d by the ordered Banach space. Since then many other authors in [12]-[19] and the references therein, have obtained the fixed point theorems on single valued maps.In [5], the existence of a fixed point in cone metric space for set valued mappings has been obtained by the concept of H-Cone metric. For more recent fixed point theorems in cone metric spaces for multivalued mappings we refer [[5]-[11]] and references therein.

©2019 MJM.

2. Preliminaries

Let *E* be a real Banach space $P \subset E$. Then P is said to a cone if it satisfies the following conditions:

- 1. *P* is a nonempty closed subset and $P \neq \emptyset$.
- 2. $x, y \in P$ and $a, b \in R$ where $a \ge 0$ and $b \ge 0$ then $ax + by \in P$.
- 3. *If* $x \in P$ and $-x \in P$, then $x = \theta$.

Cone induces a Partial order relation We can define a partial order relation \preceq on *E* with respect to the cone *P* in the following way: $x \preceq y$ if and only if $y - x \in P$. Also $x \ll y$ if and only if $y \preceq x \in IntP$ and $x \ll y$ implies $x \preceq y$ but $x \neq y$. If $IntP \neq \theta$ then the cone is a solid cone.

Definition 2.1. [4] Let X be a non empty set and $d: X \times X \rightarrow E$ satisfying

- 1. $\theta \leq d(x, y)$ and $d(x, y) = \theta$ if and only if x = y.
- 2. d(x, y) = d(y, x).
- 3. $d(x,y) \leq d(x,z) + d(z,y), \forall x, y \in X.$

Then *d* is called the cone metric and the pair (X,d) is called the cone metric space.

Example 1 [5]: Let $E = R^2$ and $P=\{(x,y) \in R^2 : x \ge 0 \text{ and } y \ge 0\}$, $X = R^2$ and $d(x,y) = (|x-y|, \alpha|x-y|)$, $\forall x, y \in X$ and $\alpha \ge 0$. Then (X,d) is a cone metric space and *P* is a normal cone with normal constant 1.

There are two different kinds of cones: Normal (with a normal constant) and Non-Normal cones. Let *E* be a real Banach space, $P \subset E$ be a cone and \preceq be the partial ordering defined by *P*. Then *P* is said to be normal if there exist positive real number $\mathcal{K} > 0$ such that, for all $x, y \in E$, $\theta \leq x \leq y$ $\Rightarrow ||x|| \leq \mathcal{K} ||y||$. Or, equivalently if $x_n \leq y_n \leq z_n$ and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = x$, then $\lim_{n\to\infty} y_n = n$. The least of all such constant \mathcal{K} is known as normal constant.

Definition 2.2. [4]: Let (X,d) be a cone metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $\varepsilon \in E$ with $\varepsilon >> \theta$ there is N such that for all n > N, $d(x_n, x) << \varepsilon$. Then $\{x_n\}$ is said to be convergent and x is the limit of $\{x_n\}$. We denote this by, $\lim_{n\to\infty} x_n = x$ as $n \to \infty$.

Definition 2.3. *:* Let (X,d) be a metric space. Let $\{x_n\}$ be a sequence in X. If for any $\varepsilon \in E$ with $\varepsilon >> \theta$ there is a positive integer N such that for all n, m > N, $d(x_n, x_m) << \varepsilon$. Then $\{x_n\}$ is said to be a Cauchy sequence in X.

Definition 2.4. : If every Cauchy sequence $\{x_n\} \subset M$ is convergent in $x \in M$, then (M,d) is called a complete cone metric space.

Lemma 2.5. [21] Let E be a Banach space. (i) If $a, b, c \in E$ and $a \leq b \ll c$, then $a \ll c$. (ii) If $\theta \leq a \ll c$ for each $c \gg \theta$, then $a = \theta$. (iii) If E is a real Banach space with cone P and if $a \leq \lambda a$ where $a \in P$ and $\lambda \in (0, 1)$, then $a = \theta$.

Remark 2.6. [21]: If $c \gg \theta$, $\theta \ll a_n$ and $a_n \rightarrow \theta$, then there exists N, such that for all n > N, we have $a_n \ll c$.

A set $A \subset M$ is closed if for any sequence $\{x_n\} \subset A$ convergent to x, then $x \in A$.

We denote N(M) as the collection fo all nonempty subsets of M and C(M) as collection of all nonempty closed subsets of M.

Definition 2.7. An element $x \in M$ is said to be a fixed point of a set-valued mapping $T: M \to N(M)$ if $x \in Tx$. Denote $Fix(T) = \{x \in M : x \in Tx\}.$

The following is the definition of H-cone metric as given by Wardowski in [6] came in the year 2011.

Definition 2.8. Let (M,d) be a cone metric space and \mathscr{A} be the collection of all nonempty subsets of M. A map \mathscr{H} : $\mathscr{A} \times \mathscr{A} \to E$ is called an H-cone metric with respect to d if for any $A_1, A_2 \in \mathscr{A}$ the following conditions hold:

- 1. $\mathscr{H}(A_1, A_2) = 0 \Rightarrow A_1 = A_2.$
- 2. $\mathscr{H}(A_1,A_2) = \mathscr{H}(A_2,A_1).$

- 3. $\forall \varepsilon \in E \text{ with } \theta \ll \varepsilon, \forall x \in A_1, \exists at \text{ least one } y \in A_2, \text{ such that } d(x,y) \preceq \mathscr{H}(A_1,A_2) + \varepsilon$.
- 4. anyone of the following holds there exist

(a) $\forall \varepsilon \in E$ with $\theta \ll \varepsilon$, \exists at least one $x \in A_1$, such that $\mathscr{H}(A_1, A_2) \preceq d(x, y) + \varepsilon$. $\forall y \in A_2$. (b) $\forall \varepsilon \in E$ and $\theta \ll \varepsilon$, \exists at least one $x \in A_2$, such

that $\mathscr{H}(A_1, A_2) \preceq d(x, y) + \varepsilon$. $\forall y \in A_1$.

For examples we refer [6] to the readers. The author in [6] have proved that if (M,d) is a cone metric space and \mathcal{H} : $\mathscr{A} \times \mathscr{A} \to E$ is H-cone metric with respect to d then the pair $(\mathscr{A}, \mathcal{H})$ is a cone metric space.

In [6], the author have proved the following result.

Theorem 2.9. Let (M, d) be a complete cone metric space with a normal cone P with a normal constant \mathcal{H} . Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of M and let $\mathcal{H} : \mathscr{A} \times \mathscr{A} \to E$ be an H-cone metric with respect to d. If for a map $T : M \to \mathscr{A} \exists \lambda \in (0,1)$ such that $\forall x, y \in M$, $\mathcal{H}(Tx,Ty) \preceq \lambda d(x,y)$, then $FixT \neq \phi$.

In the year 2013, H-cone metric in the sense of Arshad and Ahmad [11] was defined in the following way to make it more comparable with a standard metric.

Definition 2.10. [11]: Let (M,d) be a cone metric space and \mathscr{A} be a collection of all nonempty subsets of M. A map $\mathscr{H} : \mathscr{A} \times \mathscr{A} \to E$ is called an H-cone metric in the sense of Arshad and Ahmad if the following conditions hold:

- 1. $\theta \leq H(A,B)$ for all $A, B \not A$ and $\mathcal{H}(A,B) = \theta$ if and only if A = B;
- 2. $\mathcal{H}(A,B) = \mathcal{H}(B,A), \forall A,B \in \mathcal{A};$
- 3. $\mathscr{H}(A,B) \preceq \mathscr{H}(A,C) + \mathscr{H}(C,B), \forall A,B,C \in \mathscr{A};$
- 4. if $A, B \in \mathcal{A}$, $\theta < \varepsilon \in E$ with $\mathcal{H}(A, B) < \varepsilon$, then for each $a \in A$ there exists $b \in B$ such that $d(a, b) < \varepsilon$.

Using this H-cone metric the following result [[11], Th.3] was proved

Theorem 2.11. [11] Let (M,d) be a complete cone metric space. Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of M and let $\mathscr{H} : \mathscr{A} \times \mathscr{A} \to E$ be an H-cone metric induced by d. If for a map $T : M \to \mathscr{A} \exists \lambda \in (0,1)$ such that $\forall x, y \in M \mathscr{H} (Tx,Ty) \preceq \lambda d(x,y)$, then Fix $T \neq \phi$.

The following example has been shown in [[14], Eg 1.10] which indicates that Definition 2.10 is different from Definition 2.8.

Example 2.12. Let $X = \{a, b, c\}$ and $d: X \times X \rightarrow [0, +\infty)$ be defined by

$$\begin{split} &d(a,b) = d(b,a) = \frac{1}{2}, \, d(a,c) = d(c,a) = d(b,c) = d(c,b) = \\ &1, \, d(a,a) = d(b,b) = d(c,c) = 0. \ Let \, A = \{\{a\}, \{b\}, \{c\}\}, \\ &\mathcal{H}: \ A \times A \to [0, +\infty) \ as \\ &\mathcal{H}(\{a\}, \{b\}) = \mathcal{H}(\{b\}, \{a\}) = I, \end{split}$$

 $\mathscr{H}(\{a\},\{c\}) = \mathscr{H}(\{c\},\{a\}) = \mathscr{H}(\{b\},\{c\}) = \mathscr{H}(\{c\},\{b\}) \quad d \text{ by the formulae}$ = 2,

 $\mathscr{H}\left(\{a\},\{a\}\right)=\mathscr{H}\left(\{b\},\{b\}\right)=\mathscr{H}\left(\{c\},\{c\}\right)=0.$ Then \mathcal{H} is an H-cone metric which satisfies Definition 2.10

but not Definition 2.8. In fact, (iv) of Definition 2.8 does not hold.

Doric in the paper [[13], Th 2.3], have used the H-cone metric due to Arshad and Ahmad to prove the following result.

Theorem 2.13. Let E be a Banach space, let P be a solid not necessarily normal cone of E and let (X,d) be a cone metric space over E. Let \mathscr{A} be a family of nonempty closed, and bounded subsets of X and let there exist H-cone metric \mathscr{H} : $\mathscr{A} \times \mathscr{A} \to E$ induced by d. Suppose that $T, S: X \to \mathscr{A}$ be two cone multivalued mappings and suppose that there is $\lambda \in (0,1)$ such that $\forall x, y \in X$ at least one of the following is holds:

- 1. $\mathscr{H}(Tx, Sy) \preceq d(x, y);$
- 2. $\mathscr{H}(Tx, Sy) \prec d(x, u)$ for each fixed $u \in Tx$;
- 3. $\mathscr{H}(Tx, Sy) \preceq d(y, v)$ for each fixed $v \in Sy$;
- 4. $\mathscr{H}(Tx, Sy) \preceq \lambda \frac{d(x, v) + d(y, u)}{2}$ for each fixed $v \in Sy$ and $u \in Tx$.

Then T and S have a common fixed point.

The following example is given by Wardowski [[6], Ex. 3.3] which satisfies Defn. 2.8.

Example 2.14. Let M = [0, 1], $E = R^2$ be a Banach space with the standard norm, $P = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$ be a normal cone and let $d: M \times M \to E$ be of the form $d(x,y) = (|x-y|, \frac{1}{2}|x-y|)$. Let \mathscr{A} be a family of subsets of M of the form $\mathscr{A} = \{[0,x] : x \in M\} \cup \{\{x\} : x \in M\}.$ We define an H-cone metric \mathscr{H} : $\mathscr{A} \times \mathscr{A} \to \mathscr{E}$ with respect to d by the formulae

	ſ	$(x-y , \frac{1}{2} x-y),$ $(x-y , \frac{1}{2} x-y),$	for $A = [0, x], B = [0, y],$ for $A = \{x\}, B = \{y\},$
H(A,B) = -	ĺ	$\begin{array}{l} (x-y ,\frac{1}{2} x-y),\\ (x-y ,\frac{1}{2} x-y),\\ (max\{y, x-y \},\frac{1}{2}max\{y, x-y \}),\\ (max\{x, x-y \},\frac{1}{2}max\{x, x-y \}), \end{array}$	for $A = [0, x], B = \{y\},$ for $A = \{x\}, B = [0, y],$

In [5], the author have given the following example that satisfies defn 2.8.

Example 2.15. Let $M = \{(1,0), (0,1), (0,0)\}, E = R^2$ be a Banach space with the standard norm, $P = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$ and $y \ge 0$ be a normal cone and let $d: M \times M \rightarrow E$ be defined by $d((0,0),(0,1)) = d((0,1),(0,0)) = (1, \frac{2}{3}).$

 $d((1,0),(0,0)) = d((0,0),(1,0)) = (\frac{4}{3},1).$ $d((1,0),(0,1)) = d((0,1),(1,0)) = (\frac{7}{3},\frac{5}{3}).$ d((1,0),(1,0)) = d((0,1),(0,1)) = (0,0) = d((0,0),(0,0)).

Then the pair (M,d) is a complete cone metric space. Let $\mathscr{A} = \{\{(0,0)\}, \{(0,1)\}, \{(1,0)\}\}\$ be a family of subsets of *M* of the form

Define an H-cone metric \mathscr{H} : $\mathscr{A} \times \mathscr{A} \to E$ with respect to

 $\mathscr{H}(\{(0,0)\},\{(0,1)\})=\mathscr{H}(\{(0,1)\},\{(0,0)\})=(1,\frac{2}{3}).$ $\mathscr{H}(\{(1,0)\},\{(0,0)\}) = \mathscr{H}(\{(0,0)\},\{(1,0)\}) = (\frac{4}{3},1).$ $\mathscr{H}(\{(1,0)\},\{(0,1)\}) = \mathscr{H}(\{(0,1)\},\{(1,0)\}) = (\frac{7}{3},\frac{5}{3}).$ $\mathscr{H}(\{(1,0)\},\{(1,0)\}) = \mathscr{H}(\{(0,1)\},\{(0,1)\}) = \mathscr{H}(\{(0,0)\},\{(0,0)\})$ =(0,0).

Here we present the result by considering H-cone metric as defined by Wardowski.

3. Main Results

Theorem 3.1. Let (M,d) be a complete cone metric space. Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of M and $T_1, T_2: M \to \mathscr{A}$ be the set valued maps. Consider an *H-cone metric with respect to d,* $\mathcal{H} : \mathcal{A} \times \mathcal{A} \to E$ satisfying Defn. 2.8. Then if T_1 and T_2 satisfies the contraction condition $\mathscr{H}(T_1x,T_2y) \preceq \lambda d(x,y), \forall x,y \in M, \lambda \in (0,1).$ Then T_1 and T_2 has a common fixed point.

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, $\forall n$ and $\varepsilon_n \rightarrow \theta$. as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T_1(x_0) \in \mathscr{A}$. Let $x_1 \in T_1(x_0)$ and $x_2 \in T_2(x_1)$, then by the definition of \mathscr{H} we have $d(x_1, x_2) \preceq \mathscr{H}(T_1(x_0), T_2(x_1)) + \varepsilon_1$. Now for $x_1 \in M$. We have $x_2 \in T_2(x_1)$, there exist $x_3 \in T_1(x_2)$ such that $d(x_2, x_3) \preceq \mathscr{H}(T_2(x_1), T_1(x_2)) + \varepsilon_2$. For $x_2 \in M$ and $x_3 \in T_1(x_2)$, $\exists x_4 \in T_2(x_3)$ such that $d(x_3, x_4)$ $\leq \mathscr{H}(T_1(x_2), T_2(x_3)) + \varepsilon_3.$ So now for $x_3 \in M$ and $x_4 \in T_2(x_3)$, $\exists x_5 \in T_1(x_4)$ such that $d(x_4, x_5) \preceq \mathscr{H}(T_2(x_3), T_1(x_4)) + \varepsilon_4.$ So, for $n \ge 1$ we have, $x_{2n-1} \in T_1(x_{2n-2})$ and $x_{2n} \in T_2(x_{2n-1})$. Now $d(x_{2n-1}, x_{2n}) \preceq \mathscr{H}(T_1(x_{2n-2}), T_2(x_{2n-1})) + \varepsilon_{2n-1}$. $\leq \lambda d(x_{2n-2}, x_{2n-1}) + \varepsilon_{2n-1}.$ $\leq \lambda d(x_{2n-1}, x_{2n-2}) + \varepsilon_{2n-1}.$ $\leq \lambda (\mathscr{H} (T_1(x_{2n-2}), T_2(x_{2n-3})) + \varepsilon_{2n-2}) + \varepsilon_{2n-1}.$ $\leq \lambda^2 d(x_{2n-2}, x_{2n-3}) + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\leq \lambda^2 d(x_{2n-3}, x_{2n-2}) + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}$ $\leq \lambda^2 \left(\mathscr{H} \left(T_1(x_{2n-4}), T_2(x_{2n-3}) \right) + \varepsilon_{2n-3} \right) + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\stackrel{\scriptstyle \sim}{\leq} \lambda^3 (d(x_{2n-4}, x_{2n-3})) + \lambda^2 \varepsilon_{2n-3} + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\stackrel{\scriptstyle \sim}{\leq} \lambda^4 (d(x_{2n-5}, x_{2n-4})) + \lambda^3 \varepsilon_{2n-4} + \lambda^2 \varepsilon_{2n-3} + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ $\stackrel{\scriptstyle \sim}{\leq} \lambda^{2n-1} d(x_0, x_1) + \lambda^{2n-2} \varepsilon_1 + \lambda^{2n-3} \varepsilon_2 + \lambda^{2n-4} \varepsilon_3 + \dots + \\ \lambda^3 \varepsilon_{2n-4} + \lambda^2 \varepsilon_{2n-3} + \lambda \varepsilon_{2n-2} + \varepsilon_{2n-1}.$ That is $d(x_{2n}, x_{2n-1}) \preceq \lambda^{2n-1} d(x_0, x_1) + \sum_{i=1}^{2n-1} \lambda^{2n-1-i} \varepsilon_i.$ suppose $m \ge n$, $d(x_{2n}, x_{2m}) \leq \sum_{j=n+1}^{m} d(x_{2j}, x_{2j+1}).$ $\leq \sum_{i=n+1}^{m} [\lambda^{2j-1} d(x_0, x_1) + \sum_{i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i].$ $\leq d(x_0, x_1) \sum_{j=n+1}^m \lambda^{2j-1} + \sum_{j=n+1}^m \sum_{i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i.$ $d(x_{2n}, x_{2m}) \preceq d(x_0, x_1) \sum_{j=n+1}^{m} \lambda^{2j-1} + \sum_{j=n+1}^{m} \sum_{i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i.$ Taking limit $n \rightarrow \infty$ we get, $d(x_0, x_1) \sum_{j=n+1}^m \lambda^{2j-1} \to \theta$ and $\sum_{j=n+1}^m \sum_{i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i \to$ θ.

Let $c \in IntP$. Then there exist a natural number N such that we have,

 $d(x_0, x_1) \sum_{j=n+1}^m \lambda^{2j-1} \ll \frac{c}{2}$ and $\sum_{j=n+1}^m \sum_{i=1}^{2j-1} \lambda^{2j-1-i} \varepsilon_i \ll$ $\frac{c}{2}$, for all n > N. Therefore, $d(x_{2n}, x_{2m}) \ll c$, for all n > N. which gives that $\{x_{2n}\}$ is a cauchy sequence. Since (M,d)is complete $\{x_{2n}\}$ is convergent in *M*. Let $x_{2n} \to x_0$. Now $x_{2n} \in T_2(x_{2n-1}) \exists x^* \in T_1(x_0)$ such that $d(x_{2n}, x^*) \preceq \mathscr{H}(T_2(x_{2n-1}), T_1(x_0)) + \varepsilon_n.$ $d(x_{2n}, x^*) \preceq \lambda \ d(x_{2n-1}, x_0) + \varepsilon_n.$ Taking limit $n \to \infty$ we get, $d(x_0, x^*) \preceq \varepsilon_n$. Therefore, $x_0 = x^*$. But $x^* \in T_1(x_0)$. So, we have $x_0 \in T_1(x_0)$. That is x_0 is a fixed point of T_1 . Similarly, $x_{2n-1} \in T_1(x_{2n-2})$ then $\exists x^{**} \in T_2(x_0)$ such that, $d(x_{2n-1},x^{**}) \preceq \mathscr{H}(T_1(x_{2n-2}),T_2(x_0)) + \varepsilon_n.$ $d(x_{2n-1},x^{**}) \preceq \lambda \ d(x_{2n-2},x_0) + \varepsilon_n.$ Taking limit $n \rightarrow \infty$ we get, $d(x_0, x^{**}) \preceq \varepsilon_n$. Therefore, $x_0 = x^{**}$. But $x^{**} \in T_2(x_0)$. So we have $x_0 \in T_2(x_0)$. That is x_0 is a fixed point of T_2 .

If we take $T_1 = T_2$, in the above theorem we get the following result due to Wardowski [[6], Th 3.1].

Corollary 3.2. Let (M,d) be a complete cone metric space with a normal coen P with a normal constant \mathcal{K} . Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of Mand $\mathcal{H} : \mathscr{A} \times \mathscr{A} \to E$ an be H-cone metric with respect to d. If for a map $T : M \to \mathscr{A}$ there exists $\lambda \in [0,1)$ such that \mathcal{H} $(Tx,Ty) \leq \lambda d(x,y), \forall x, y \in M$. then $FixT \neq \phi$.

Definition [5]: Suppose $D(x, Tx) = \{d(x, z) : z \in Tx\}$ and $S(x, Tx) = \{u \in D(x, Tx) : ||u|| = inf\{||v|| : v \in D(x, Tx)\}.$

Theorem 3.3. Let (M,d) be a complete cone metric space. Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of M and $T: M \to \mathscr{A}$ be the set valued map. Consider an H-cone metric with respect to $d \mathscr{H}: \mathscr{A} \times \mathscr{A} \to E$ satisfying Defn. 2.8

Then if T satisfies the contraction condition $\mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Tx) + S(y,Ty)), \forall x, y \in M. \ \lambda \in [0, \frac{1}{2})$ then T has a fixed point.

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \to \theta$, as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T(x_0) \in \mathscr{A}$. Let $x_1 \in T(x_0)$, be such that $||d(x_0, x_1)|| = inf\{||d(x_0, z)||, \forall z \in Tx_0\}$. Then $S(x_0, Tx_0) = d(x_0, x_1)$. Let $x_2 \in T(x_1)$, such that $||d(x_1, x_2)|| = \inf\{||d(x_1, z)||, \forall z \in Tx_1\}$. Then we have $S(x_1, Tx_1) = d(x_1, x_2)$. Inductively we have for $x_{n+1} \in Tx_n$, $S(x_n, Tx_n) = d(x_n, x_{n+1})$. Therefore, $d(x_n, x_{n+1}) \preceq \mathscr{H}(Tx_{n-1}, Tx_n) + \varepsilon_n$. $\preceq \lambda \{S(x_{n-1}, Tx_{n-1}) + S(x_n, Tx_n)\} + \varepsilon_n$. $\leq \lambda \{d(x_{n-1}, x_n) + d(x_n, x_{n+1})\} + \varepsilon_n$. $d(x_n, x_{n+1}) \preceq (\frac{\lambda}{1-\lambda})d(x_{n-1}, x_n) + \frac{\varepsilon_{n-1}}{(1-\lambda)}$. So we have, $\leq (\frac{\lambda}{1-\lambda})[(\frac{\lambda}{1-\lambda}) d(x_{n-2}, x_{n-1}) + \frac{\varepsilon_{n-1}}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n$. $\leq (\frac{\lambda}{1-\lambda})^3 d(x_{n-3}, x_{n-2}) + \frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n$.

 $\leq (\frac{\lambda}{1-\lambda})^n d(x_0, x_1) + \frac{\lambda^{n-1}}{(1-\lambda)^n} \varepsilon_1 + \frac{\lambda^{n-2}}{(1-\lambda)^{n-1}} \varepsilon_2 + \frac{\lambda^{n-3}}{(1-\lambda)^{n-2}} \varepsilon_3$ +....+ $\frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n$. Therefore, we have $d(x_n, x_{n+1}) \preceq \alpha^n d(x_0, x_1) + \sum_{r=1}^n \frac{\lambda^{n-r}}{(1-\lambda)^{n+1-r}} \varepsilon_r$. Where $\alpha =$ $\frac{\lambda}{1-\lambda} < 1.$ For $m \ge n$, we have, $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} d(x_j, x_{j+1}).$ $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} [\alpha^j d(x_0, x_1) + \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r].$ $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) + \sum_{j=n}^{m-1} \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r.$ Taking limit $n \rightarrow \infty$ we get, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \to \theta$ and $\sum_{j=n}^{m-1} \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r \to \theta$ Let $c \in IntP$, then there exist a natural number N such that, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \ll \frac{c}{2}$ and $\sum_{j=n}^{m-1} \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r \ll \frac{c}{2}$, for all n > N. Therefore, $d(x_n, x_m) \ll c$ That is, $\{x_n\}$ is a Cauchy sequence. Since, (M,d) is complete, $\{x_n\}$ is convergent. Let us suppose that $x_n \to x^*$ in M. We claim that x^* is the fixed point of T i.e., $x^* \in Tx^*$. suppose that, $x_1 \in Tx^*$, such that, $||d(x^*, x_1)|| = \inf \{ ||d(x^*, z)| :$ $z \in Tx^*$. Now, for $x_n \in Tx_{n-1}$, $\exists x_1 \in Tx^*$, such that, $d(x_n, x_1) \preceq \mathscr{H}(Tx_{n-1}, Tx^*) + \varepsilon_n.$ $\leq \lambda [S(x_{n-1}, Tx_{n-1}) + S(x^*, Tx^*)] + \varepsilon_n.$ $\leq \lambda \left[d(x_{n-1}, x_n) + d(x^*, x_1) \right] + \varepsilon_n.$ Taking $n \to \infty$, we get,

 $d(x^*, x_1) \leq \lambda \ d(x^*, x_1)$. Since, $\lambda < 1 \ d(x^*, x_1) = \theta$. $x^* = x_1 \in Tx^*$. Hence, $x^* \in Tx^*$.

Example 3.4. Consider the H-cone metric defined in Ex. 2.14. Let us define a mapping $T : M \to \mathcal{A}$ as follows:

$$Tx = \begin{cases} \{0\}, & \text{for } x \in [0, \frac{1}{2}] \\ \left[0, \frac{x}{2}(x - \frac{1}{2})^2\right], & \text{for } x \in (\frac{1}{2}, 1] \end{cases}$$

Then T satisfies the contraction condition:

 $\mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Tx) + S(y,Ty)), \forall x,y \in M \ \lambda \in [0,\frac{1}{2}).$

Soln: Case 1: Let $x \in [0, \frac{1}{2}]$ and $y \in [0, \frac{1}{2}]$, then $Tx = \{0\}$ and $Ty = \{0\}$ so $D(x, Tx) = d(x, 0) = (x, \frac{x}{2})$. $S(x, Tx) = (x, \frac{x}{2})$ and $D(y, Ty) = d(y, 0) = (y, \frac{y}{2})$, $S(y, Ty) = (y, \frac{y}{2})$. $\mathscr{H}(A, B) = (\{0\}, \{0\}) = (0, 0)$, hence we have, $\frac{1}{3} [S(x, Tx) + S(y, Ty)] - \mathscr{H}(Tx, Ty) = (\alpha(x+y), \frac{\alpha}{2}(x+y)) \in P$, that is $\mathscr{H}(Tx, Ty) \preceq \frac{1}{3} [S(x, Tx) + S(y, Ty)], \forall x \in [0, \frac{1}{2}]$ and $y \in [0, \frac{1}{2}]$.

Case 2: Let $x \in [0, \frac{1}{2}]$ and $y \in (\frac{1}{2}, 1]$, then $Tx = \{0\}$ and $Ty = [0, \frac{1}{2}(y - \frac{1}{2})^2]$ so $D(x, Tx) = d(x, 0) = (x, \frac{x}{2})$. $S(x, Tx) = (x, \frac{x}{2})$ and $D(y, Ty) = \{d(y, z) : z \in Ty\} = \{d(y, z) : z \in [0, \frac{1}{2}(y - \frac{1}{2})^2]\}$ Now, $y \in (\frac{1}{2}, 1]$ and $z \in [0, \frac{1}{2}(y - \frac{1}{2})^2]$. Now $y \in (\frac{1}{2}, 1]$ implies $z \in (0, \frac{1}{8}]$. Then it is clear that $inf\{||d(y, z)|| : z \in Ty\} = d(\frac{1}{2}, \frac{1}{8})$. So, $S(y, Ty) = d(\frac{1}{2}, \frac{1}{8}) = (\frac{3}{8}, \frac{3}{16}).$ Also, $\mathscr{H}(Tx, Ty) = (max\{0, |0 - \frac{1}{2}(y - \frac{1}{2})^2|\}, \frac{1}{2}max\{0, |0 - \frac{1}{2}(y - \frac{1}{2})^2|\}$ $\frac{1}{2}(y-\frac{1}{2})^2|$ = $(\frac{1}{2}(y-\frac{1}{2})^2, \frac{1}{4}(y-\frac{1}{2})^2)$. Hence we have, $\alpha \left[S(x,Tx) + S(y,Ty) \right] - \mathcal{H} \left(Tx,Ty \right) = \left(\alpha \left(x + \frac{3}{8} \right), \frac{\alpha}{2} \left(x + \frac{3}{8} \right) \right)$ $-(\frac{1}{2}(y-\frac{1}{2})^2,\frac{1}{4}(y-\frac{1}{2})^2)$, that is $\alpha \left[S(x, \bar{T}x) + S(y, \bar{T}y)\right] - \mathcal{H} (Tx, Ty) = (\alpha(x + \frac{3}{8}) - \frac{1}{2}(y - y))$ $(\frac{1}{2})^2, \frac{\alpha}{2}(x+\frac{3}{8})-\frac{1}{4}(y-\frac{1}{2})^2)).$ We now find what could be the minimum value of $\alpha(x+\frac{3}{8})$ – $\frac{1}{2}(y-\frac{1}{2})^2$ for $x \in [0,\frac{1}{2}]$ and $y \in (\frac{1}{2},1]$. Observe that $\alpha(x+\frac{3}{8})-\frac{1}{2}(y-\frac{1}{2})^2$ is minimum. If $\frac{1}{2}(y-\frac{1}{2})^2$ is maximum and $\alpha(x+\frac{3}{8})$ is minimum. But, $\frac{1}{2}(y-\frac{1}{2})^2$ is maximum if y is maximum i.e., y = 1, so $\frac{1}{2}(y-\frac{1}{2})^2 = \frac{1}{8}.$ and $\alpha(x+\frac{3}{8})$ is minimum if x is minimum i.e., x=0, so $\alpha(x+\frac{3}{8})=\alpha\frac{3}{8}.$ So, we have, $\alpha \frac{3}{8} - \frac{1}{8} \ge 0.$ $\alpha \frac{3}{8} \geq \frac{1}{8}$. $\alpha \geq \frac{1}{3}$. Taking $\alpha = \frac{1}{3}$, we get. $\mathscr{H}(Tx,Ty) \leq \frac{1}{3} [S(x,Tx) + S(y,Ty)], \forall x \in [0,\frac{1}{2}] \text{ and } y \in$ $(\frac{1}{2}, 1].$ Hence, $\mathscr{H}(Tx, Ty) \preceq \alpha [S(x, Tx) + S(y, Ty)], \forall x, y \in M$ where $\alpha = \frac{1}{3}$.

Theorem 3.5. Let (M,d) be a complete cone metric space. Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of M and $T: M \to \mathscr{A}$ be the set valued map. Consider an H-cone metric with respect to $d \mathscr{H} : \mathscr{A} \times \mathscr{A} \to E$ satisfying Defn. 2.8.

Then if *T* satisfies the contraction condition

 $\mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Ty) + S(y,Tx)), \forall x,y \in M. \lambda \in [0,\frac{1}{2}).$ then T has a fixed point.

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \rightarrow \theta$ θ as $n \to \infty$. Let $x_0 \in M$ be arbitrary and fixed. Then $T(x_0) \in \mathscr{A}$. Let $x_1 \in T(x_0)$, then $S(x_1, Tx_0) = \theta$. Let $x_2 \in T(x_1)$, such that $||d(x_0, x_2)|| = \inf \{ ||d(x_0, z)||, \forall z \in$ Tx_1 . Then we have $S(x_0, Tx_1) = d(x_0, x_2)$. Hence, we have, $d(x_1, x_2) = \mathscr{H}(Tx_0, Tx_1) + \varepsilon_1$. $\leq \lambda(S(x_0,Tx_1)+S(x_1,Tx_0))+\varepsilon_1.$ $\leq \lambda d(x_0, x_2) + \varepsilon_1.$ $\leq \lambda(d(x_0,x_1)+d(x_1,x_2))+\varepsilon_1.$ $\overline{d}(x_1, x_2) \preceq \frac{\lambda}{1-\lambda} (d(x_0, x_1) + \frac{1}{1-\lambda} \varepsilon_1.$ Again, since $x_2 \in T(x_1)$, which implies that $S(x_2, Tx_1) = \theta$. Let $x_3 \in T(x_2)$, such that $||d(x_1, x_3)|| = \inf \{||d(x_1, z)||, \forall z \in$ Tx_2 . Then we have $S(x_1, Tx_2) = d(x_1, x_3)$. Hence, we have, $d(x_2, x_3) = \mathscr{H}(Tx_1, Tx_2) + \varepsilon_1$. $\leq \lambda(S(x_1,Tx_2)+S(x_2,Tx_1))+\varepsilon_2.$ $\leq \lambda d(x_1, x_3) + \varepsilon_2.$ $\leq \lambda(d(x_1,x_2) + d(x_2,x_3)) + \varepsilon_2.$ $\overline{d}(x_2, x_3) \preceq \frac{\lambda}{1-\lambda} (d(x_1, x_2) + \frac{1}{1-\lambda}\varepsilon_2)$ Inductively we have for $x_{n+1} \in Tx_n$,

 $d(x_n, x_{n+1}) \preceq (\frac{\lambda}{1-\lambda}) d(x_{n-1}, x_n) + \frac{\varepsilon_n}{(1-\lambda)}$ So we have, $\leq \left(\frac{\lambda}{1-\lambda}\right)\left[\left(\frac{\lambda}{1-\lambda}\right) d(x_{n-2}, x_{n-1}) + \frac{\varepsilon_{n-1}}{(1-\lambda)}\right] + \frac{\varepsilon_n}{(1-\lambda)}.$ $\leq (\frac{\lambda}{1-\lambda})^2 d(x_{n-2}, x_{n-1}) + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n.$ $\leq \left(\frac{\lambda}{1-\lambda}\right)^3 d(x_{n-3}, x_{n-2}) + \frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n.$ $\leq \left(\frac{\lambda}{1-\lambda}\right)^n d(x_0, x_1) + \frac{\lambda^{n-1}}{(1-\lambda)^n} \varepsilon_1 + \frac{\lambda^{n-2}}{(1-\lambda)^{n-1}} \varepsilon_2 + \frac{\lambda^{n-3}}{(1-\lambda)^{n-2}} \varepsilon_3$ +....+ $\frac{\lambda^2}{(1-\lambda)^3} \varepsilon_{n-2} + \frac{\lambda}{(1-\lambda)^2} \varepsilon_{n-1} + \frac{1}{(1-\lambda)} \varepsilon_n$ Therefore, we have, $d(x_n, x_{n+1}) \preceq \alpha^n d(x_0, x_1) + \sum_{r=1}^n \frac{\lambda^{n-r}}{(1-\lambda)^{n+1-r}} \varepsilon_r$. Where $\alpha =$ $\frac{\lambda}{1-\lambda} < 1.$ For $m \ge n$, we have, $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} d(x_j, x_{j+1}).$ $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} \left[\alpha^j d(x_0, x_1) + \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r \right].$ $d(x_n, x_m) \preceq \sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) + \sum_{j=n}^{m-1} \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r.$ Taking limit $n \to \infty$, we get, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \to \theta$ and $\sum_{j=n}^{m-1} \sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \to \theta$ $\sum_{r=1}^{j} rac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r o heta.$ Let $c \in IntP$, then there exist a natural number N such that, $\sum_{j=n}^{m-1} \alpha^j d(x_0, x_1) \ll \frac{c}{2}$ and $\sum_{j=n}^{m-1} \sum_{r=1}^j \frac{\lambda^{j-r}}{(1-\lambda)^{j+1-r}} \varepsilon_r \ll \frac{c}{2}$, for all n > N. Therefore, we have $d(x_n, x_m) \ll c$ for all n > N. Hence, $\{x_n\}$ is a Cauchy sequence. Since, (M,d) is complete, $\{x_n\}$ is convergent. Let us suppose that $x_n \to x^*$ in *M*. We claim that x^* is the fixed point of *T* i.e., $x^* \in Tx^*$. Now since $x_n \to x^*$ as $n \to \infty$, we get, $||d(x_n, x^*)|| \to 0$ as $n \to \infty$, again since $x_n \in Tx_{n-1}$, therefore $S(x^*, Tx_{n-1}) = \theta.$ Suppose that, $x_1 \in Tx^*$, such that, $||d(x_{n-1}, x_1)|| = \inf \{ ||d(x_{n-1}, z)|| :$ $z \in Tx^*$. So, $S(x_{n-1}, Tx^*) = d(x_{n-1}, x_1)$. Now, for $x_n \in Tx_{n-1}$, $\exists x_1$ $\in Tx^*$, such that, $d(x_n, x_1) \preceq \mathscr{H}(Tx_{n-1}, Tx^*) + \varepsilon_n.$ $\leq \lambda [S(x_{n-1}, Tx^*) + S(x^*, Tx_{n-1})] + \varepsilon_n.$ $\leq \lambda d(x_{n-1}, x_1) + \varepsilon_n.$ Taking $n \to \infty$, we get, $d(x^*, x_1) \leq \lambda \ d(x^*, x_1)$. Since, $\lambda < 1$. $d(x^*, x_1) = \theta$. $x^* = x_1 \in Tx^*$. Hence, $x^* \in Tx^*$. Example 3.6. Consider the Example 2.15. There we take the

 $T((0,1)) = \{(0,1)\}.$ **Case 1:** If $x \in \{(0,0)\}$ and $y \in \{(0,0)\}$, then x = (0,0) y = (0,0). $Tx = T(0,0) = \{(0,1)\}$ and $Ty = T(0,0) = \{(0,1)\}.$ So, $\mathscr{H}(Tx,Ty) = \mathscr{H}(\{(0,1)\},\{(0,1)\}) = (0,0).$ $D(x,Ty) = D((0,0),T(0,0)) = d((0,0),(0,1)) = (1,\frac{2}{3}).$ Hence, $S(x,Ty) = ((1,\frac{2}{3})).$ $D(y,Tx) = D((0,0),T(0,0)) = d((0,0),(0,1)) = (1,\frac{2}{3}).$ Hence, $S(y,Tx) = ((1,\frac{2}{3})).$

following mapping $T((1,0)) = \{(0,0)\}, T((0,0)) = \{(0,1)\},\$

$$\begin{split} \lambda(S(x,Ty)+S(y,Tx)) &= \lambda(2,\frac{4}{3}).\\ \lambda(S(x,Ty)+S(y,Tx)) - \mathscr{H}(Tx,Ty) &= \lambda(2,\frac{4}{3}) \in P, \text{ for any }\\ \lambda &\in [0,\frac{1}{2}).\\ \text{Hence, } \mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Ty)+S(y,Tx)), \text{ for any } \lambda \in [0,\frac{1}{2}). \end{split}$$

Case 2: If $x \in \{(0,0)\}$ and $y \in \{(0,1)\}$, then x = (0,0) y = (0,1). $Tx = T(0,0) = \{(0,1)\}$ and $Ty = T(0,1) = \{(0,1)\}$. So, $\mathscr{H}(Tx,Ty) = \mathscr{H}(\{(0,1)\},\{(0,1)\}) = (0,0)$. $D(x,Ty) = D((0,0),T(0,1)) = d((0,0),(0,1)) = (1,\frac{2}{3})$. Hence, $S(x,Ty) = ((1,\frac{2}{3}))$. D(y,Tx) = D((0,1),T(0,0)) = d((0,1),(0,1)) = (0,0). Hence, S(y,Tx) = ((0,0)). $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(1,\frac{2}{3})$. $\lambda(S(x,Ty) + S(y,Tx)) - \mathscr{H}(Tx,Ty) = \lambda(1,\frac{2}{3})$., $\lambda \in [0,\frac{1}{2})$.

Case 3: If $x \in \{(0,0)\}$ and $y \in \{(1,0)\}$, then x = (0,0) y = (1,0). $Tx = T(0,0) = \{(0,1)\}$ and $Ty = T(1,0) = \{(0,0)\}$. So, $\mathscr{H}(Tx,Ty) = \mathscr{H}(\{(0,1)\},\{(0,0)\}) = (1,\frac{2}{3})$. D(x,Ty) = D((0,0),T(1,0)) = d((0,0),(0,0)) = (0,0). Hence, S(x,Ty) = (0,0). $D(y,Tx) = D((1,0),T(0,0)) = d((1,0),(0,1)) = (\frac{7}{3},\frac{5}{3})$. Hence, $S(y,Tx) = (\frac{7}{3},\frac{5}{3})$. $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{7}{3},\frac{5}{3})$. $\lambda(S(x,Ty) + S(y,Tx)) - \mathscr{H}(Tx,Ty) = (\lambda\frac{7}{3} - 1,\lambda\frac{5}{3} - \frac{2}{3}) \in P$. If $\lambda\frac{7}{3} - 1 \ge 0$ if $\lambda\frac{7}{3} \ge 1$ that is $\lambda \ge \frac{3}{7}$ and also if $\lambda\frac{5}{3} - \frac{2}{3} \ge 0$ if $\lambda\frac{5}{3} \ge \frac{2}{3}$ that is $\lambda \ge \frac{2}{5}$. So if we take $\lambda = \frac{1}{4}$, we get, $\lambda(S(x,Ty) + S(y,Tx)) - \mathscr{H}(Tx,Ty) \in P$, for any $\lambda = \frac{1}{4}$. $\mathscr{H}(Tx,Ty) \le \lambda(S(x,Ty) + S(y,Tx)), \forall x, y \in M$, with $\lambda = \frac{1}{4}$.

Case 4: If $x \in \{(1,0)\}$ and $y \in \{(0,1)\}$, then x = (1,0)y = (0, 1). $Tx = T(1,0) = \{(0,0)\}$ and $Ty = T(0,1) = \{(0,1)\}.$ So, $\mathscr{H}(Tx,Ty) = \mathscr{H}(\{(0,0)\},\{(0,1)\}) = (1,\frac{2}{3}).$ $D(x,Ty) = D((1,0),T(0,1)) = d((1,0),(0,1)) = (\frac{7}{3},\frac{5}{3}).$ *Hence*, $S(x, Ty) = (\frac{7}{3}, \frac{5}{3})$. $D(y,Tx) = D((0,1),T(1,0)) = d((0,1),(0,0)) = (1,\frac{2}{3}).$ *Hence*, $S(y, Tx) = (1, \frac{2}{3})$. $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{10}{3},\frac{7}{3}).$ $\lambda(S(x,Ty)+S(y,Tx)) - \mathscr{H}(Tx,Ty) = (\lambda \frac{10}{3}-1,\lambda \frac{7}{3}-\frac{2}{3}) \in$ Р. If $\lambda \frac{10}{3} - 1 \ge 0$ if $\lambda \frac{10}{3} \ge 1$ that is $\lambda \ge \frac{3}{10}$ and also if $\lambda \frac{7}{3} - \frac{2}{3} \ge 0$ if $\lambda \frac{7}{3} \ge \frac{2}{3}$ that is $\lambda \ge \frac{2}{7}$ So if we take $\lambda = \frac{1}{4}$, we get, $\lambda(S(x,Ty)+S(y,Tx)) - \mathscr{H}(Tx,Ty) \in P$, for any $\lambda = \frac{1}{4}$. $\mathscr{H}(Tx,Ty) \leq \lambda(S(x,Ty) + S(y,Tx)), \forall x, y \in M, with \lambda = \frac{1}{4}.$ **Case 5**: If $x \in \{(0,1)\}$ and $y \in \{(0,1)\}$, then x = (0,1)y = (0, 1).

 $Tx = T(0,0) = \{(0,1)\}$ and $Ty = T(0,1) = \{(0,1)\}.$

 $\begin{array}{l} So, \ \mathcal{H}\ (Tx,Ty) = \ \mathcal{H}\ (\{(0,1)\},\{(0,1)\}) = (0,0).\\ D(x,Ty) = D((0,1),T(0,1)) = d((0,1),(0,1)) = (0,0).\\ Hence, \ S(x,Ty) = (0,0).\\ D(y,Tx) = D((0,1),T(0,1)) = d((0,1),(0,1)) = (0,0).\\ Hence, \ S(y,Tx) = ((0,0)).\\ \lambda(S(x,Ty) + S(y,Tx)) = (0,0).\\ \lambda(S(x,Ty) + S(y,Tx)) - \ \mathcal{H}\ (Tx,Ty) = (0,0) \in P, \ for \ any \\ \lambda \in [0,\frac{1}{2}).\\ \mathcal{H}\ (Tx,Ty) \preceq \lambda(S(x,Ty) + S(y,Tx)), \ \forall \ x,y \in M, \ with \ \lambda \in [0,\frac{1}{2}). \end{array}$

Case 6: If $x \in \{(1,0)\}$ and $y \in \{(1,0)\}$, then x = (1,0) y = (1,0). $Tx = T(1,0) = \{(0,0)\}$ and $Ty = T(1,0) = \{(0,0)\}$. So, $\mathscr{H}(Tx,Ty) = \mathscr{H}(\{(0,0)\},\{(0,0)\}) = (0,0)$. $D(x,Ty) = D((1,0),T(1,0)) = d((1,0),(0,0)) = (\frac{4}{3},1)$. Hence, $S(x,Ty) = (\frac{4}{3},1)$. $D(y,Tx) = D((1,0),T(1,0)) = d((1,0),(0,0)) = (\frac{4}{3},1)$. Hence, $S(y,Tx) = (\frac{4}{3},1)$. $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{8}{3},1)$. $\lambda(S(x,Ty) + S(y,Tx)) = \lambda(\frac{8}{3},1)$. $\lambda(S(x,Ty) + S(y,Tx)) - \mathscr{H}(Tx,Ty) = \lambda(\frac{8}{3},1) \in P$, for any $\lambda \in [0, \frac{1}{2})$. $\mathscr{H}(Tx,Ty) \preceq \lambda(S(x,Ty) + S(y,Tx)), \forall x,y \in M$, with $\lambda \in [0, \frac{1}{2})$.

Theorem 3.7. Let (M,d) be a complete cone metric space. Let \mathscr{A} be a nonempty collection of all nonempty closed subsets of M and $T: M \to \mathscr{A}$ be the set valued map. Consider an H-cone metric with respect to $d \mathscr{H}: \mathscr{A} \times \mathscr{A} \to E$ satisfying Defn. 2.8. Then if T satisfies the contraction condition \mathscr{H} $(Tx,Ty) \preceq \{a_1S(x,Tx) + a_2S(y,Ty) + a_3d(x,y)\}, \forall x,y \in M.$ $a_i \ge 0 \forall, i = 1,2,3$ and $a_1 + a_2 + a_3 < 1$. Then T has a fixed point.

Proof : Suppose that $\varepsilon_n \in E$ and $\varepsilon_n \gg \theta$, such that $\varepsilon_n \rightarrow \theta$ as $n \rightarrow \infty$.

Let $x_0 \in M$ be arbitrary and fixed.

Then $T(x_0) \in \mathscr{A}$. Let $x_1 \in T(x_0)$, be such that $||d(x_0, x_1)|| = inf\{||d(x_0, z)||, \forall z \in Tx_0\}$. Then $S(x_0, Tx_0) = d(x_0, x_1)$. Let $x_2 \in T(x_1)$, such that $||d(x_1, x_2)|| = \inf \{||d(x_1, z)||, \forall z \in Tx_1\}$. Then we have $S(x_1, Tx_1) = d(x_1, x_2)$. Inductively we have for $x_{n+1} \in Tx_n$, $S(x_n, Tx_n) = d(x_n, x_{n+1})$. Therefore, $d(x_n, x_{n+1}) \preceq \mathscr{H}(Tx_{n-1}, Tx_n) + \varepsilon_n$. $\leq \{a_1S(x_{n-1}, Tx_{n-1}) + a_2S(x_n, Tx_n) + a_3d(x_{n-1}, x_n)\} + \varepsilon_n$. $(1 - a_2) d(x_n, x_{n+1}) \preceq (a_1 + a_3)d(x_{n-1}, x_n) + \varepsilon_n$. $d(x_n, x_{n+1}) \preceq \frac{(a_1 + a_3)}{(1 - a_2)} d(x_{n-1}, x_n) + \frac{\varepsilon_n}{(1 - a_2)}$. So we have, $\preceq \frac{(a_1 + a_3)}{(1 - a_2)} [\frac{(a_1 + a_3)}{(1 - a_2)^2} c_{n-1} + \frac{1}{(1 - a_2)^2} \varepsilon_n$. $\preceq (\frac{a_1 + a_3}{1 - a_2})^3 d(x_{n-3}, x_{n-2}) + \frac{(a_1 + a_3)^2}{(1 - a_2)^3} \varepsilon_{n-2} + \frac{(a_1 + a_3)}{(1 - a_2)^2} \varepsilon_{n-1} + \frac{1}{(1 - a_2)}} \varepsilon_n$.

 $d(x^*, x_1) \preceq a_2 d(x^*, x_1)$. Since, $a_2 < 1$. $d(x^*, x_1) = \theta$. $x^* = x_1 \in Tx^*$. Hence, $x^* \in Tx^*$.

References

- S. B. Nadler, Multi-valued contraction mappings, *Pacific J. Math.*, 30(1969), 475-478.
- [2] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60(1968),71-76.
- [3] S. Reich, Kannan's fixed point theorem, Bull. Univ. Mat. Italiana., 4(4) (1971), 1-11.
- [4] Huang Long-Guang and Zhang Xian, Cone metric spaces and fixed point theorems of contractive mappings, *J. Comput. Anal. Appl.*, 332(2007), 1468-1476.
- D. Wardowski, End points and fixed points of set-valued contracions in cone metric spaces, *Nonlinear Analysis.*, 71(2009), 512-516.
- [6] D. Wardowski, On set-valued contraction of Nadler type in Cone metric spaces, *Applied Mathematics letters.*, 24(3)(2011), 275-278.
- [7] Arshad, M, Ahmad, J: On multivalued contractions in cone metric spaces without normality, *Sci. World J.* 2013, Article ID 481601 (2013).
- ^[8] D. Klim, D. Wardowski, Dynamic processes and fixed

points of set-valued nonlinear contraction in cone metric spaces, *Nonlinear analysis*, 71(2009), 5170-5175.

- [9] Z. Kadelburg, S. Radenovic, Some results on set-valued contractions in abstract metric spaces, *Comput. Math. Appl.*, 62(2011), 342-350.
- [10] S.H. Cho, J.S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, *Fixed Point Theory and Applications.*, 87 (2011).
- [11] M. Arshad, J. Ahmad, On Multivalued contractions in Cone Metric Spaces without normality, *The Scientific World J.*, (2013).Article ID 481601.
- [12] M. Asadi, H. Soleimani, S. M. Vaezpour, An order on subsets of Cone Metric Spaces and Fixed Points of Set-Valued Contractions, *Fixed Point Theory Appl.*, volume 2009, Article ID 723203, 8 pages.
- [13] D. Doric, Common fixed point theorems for generalized multivalued contractions oncone metric spaces over a nonnormal solid cone, *Fixed Point Theory and Applications.*, (2014), 2014:159.
- [14] H. Huang, S. Radenovic and D. Doric, A note on the equivalence of some metric and H-cone metric fixed point theorems for multivalued contractions, *Fixed Point Theory and Applications* (2015) 2015:43.
- [15] Sh. Rezapour and R. Hamlbarani, Some notes on the paper cone meric spaces and fixed point theorems of contractive mmapings, *J. Math. Anal. Appl.*, 345(2) (2008), pp. 719-724.
- [16] M. Abbas, B.E. Rhoades, Fixed and periodic point results in cone metric spaces, *Appl. Math. Lett.*, 22 (2009), 511-515.
- [17] M. Abbas, G. Jungck, Common fixed point results for non cummuting mappings without continuity in cone metric space, *J. Math. Anal. Appl.*, 341 (2008) pp. 416-420.
- [18] J.R.Morales, E. Rojas, Cone metric spaces and fixed pointe theorems of T-kannan contractive mappings, *Int. J. Math, Anal.*, 4(4) 2010, pp 175-184.
- [19] M. Filipovi'c, L. Paunovi'c, S. Radenovi'c, M. Rajovi'c, Remarks on cone metric spaces and Fixed Point theorems of T-kannan and T-Chatterjea contractive mappings, *Math. Comput.Modelling.*,(54)(2011), pp 1467-1472.
- [20] Gh. Soleimani Rad., New fixed and periodic point results on cone metric spaces, *Journal of Linear and Topological Algebra*, 01(01), (2012), 33-40.
- [21] G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, *Fixed Point Theory Appl.*, (2009) 2009: 643840. https://doi.org/10.1155/2009/643840.
- [22] S. Jankovic, Z. Kadelburg, S. Radenovic, and B.E. Rhoades, Assad-fixed-type point theorems for a pair of nonself mappings on cone metric spaces, *Fixed Point Theory Appl.*, Volume 2009, Article ID 761086, 16 pages doi:10.1155/2009/761086
- [23] Chatterjea, S. K: Fixed point theorem. C. R. Acad. Bulgare Sci. (25), (1972), 727-730.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

