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Convergence, data dependence and T -stability of AK
iteration procedure for contractive like operators
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Abstract
In this paper, we prove the strong convergence of AK iteration procedure to a fixed point of a contractive like
operator defined on an arbitrary nonempty closed convex subset of a normed linear space. Further, we study
data dependence and T -stability of this procedure. Our results generalize the results that are available in the
existing literature.
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1. Introduction
Throughout this paper, let (X , ||.||) be a normed linear

space and we denote it by X . Let K be a nonempty closed
convex subset of X and T : K → K be a selfmap of K. We
denote the set of all fixed points of T by F(T ).

Harder and Hicks [2] initiated the stability of general fixed
point iteration procedure with respect to a selfmap T : K→ K
is as follows.

Definition 1.1. [2] Let K be a nonempty closed convex subset
of X and T : K → K be a selfmap. Let x0 ∈ K. Assume
that the iteration procedure is defined by xn+1 = f (T,xn) for
n = 0,1, ... . Suppose that the sequence {xn}∞

n=0 converges to
a fixed point p of T . Let {tn}∞

n=0 be an arbitrary sequence in
K and set εn = d(tn+1, f (T, tn)) for n= 0,1, ... . Then the fixed
point iteration procedure is said to be T -stable if lim

n→∞
εn = 0

if and only if lim
n→∞

tn = p.

Definition 1.2. Let T, T̃ : K → K be two selfmaps. If there
exists η > 0 such that ||T x− T̃ x|| ≤ η for all x ∈ K then we
say that T̃ is an approximate operator of T with η > 0.

In 2016, Ullah and Arshad [4] introduced AK iteration
procedure as follows:

x0 ∈ K
zn = T ((1−βn)xn +βnT xn)
yn = T ((1−αn)zn +αnT zn)
xn+1 = Tyn

(1)

where {αn}∞
n=0 and {βn}∞

n=0 are real sequences in [0,1].
Ullah and Arshad [4] proved the convergence, data depen-

dence and T -stability of AK iteration procedure under certain
assumptions on α ′ns for contraction maps as follows.

Theorem 1.3. [4] Let K be a nonempty closed convex subset
of a Banach space X and T : K→ K be a contraction mapping.
For x0 ∈ K, let {xn}∞

n=0 be an iterative sequence generated
by AK iteration procedure with real sequences {αn}∞

n=0 and

{βn}∞
n=0 in [0,1] satisfying

∞

∑
n=0

αn = ∞. Then {xn}∞
n=0 con-

verges strongly to a fixed point of T .

Theorem 1.4. [4] Let X ,K,T be as in Theorem 1.3. Let
x0 ∈ K and {xn}∞

n=0 be an iterative sequence generated by AK
iteration procedure with real sequences {αn}∞

n=0 and {β ∞
n=0}
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in [0,1] satisfying
∞

∑
n=0

αn = ∞. Then the AK iteration proce-

dure is T -stable.

Theorem 1.5. [4] Let X ,K,T be as in Theorem 1.3. Let T̃ be
an approximate operator of a contraction map T with η > 0.
For x0 in K, let {xn}∞

n=0 be an iterative sequence generated by
(1) for T and define an iterative sequence {x̃n}∞

n=0 as follows.
x̃0 ∈ K
z̃n = T̃ ((1−βn)x̃n +βnT̃ x̃n)
ỹn = T̃ ((1−αn)z̃n +αnT̃ z̃n)
x̃n+1 = T̃ ỹn

(2)

where {αn}∞
n=0 and {βn}∞

n=0 are real sequences in [0,1] such

that (i) αn ≥ 1
2 for n = 0,1,2... and (ii)

∞

∑
n=0

αn = ∞.

If T p = p, T̃ p̃ = p̃ and lim
n→∞

x̃n = p̃ then ||p− p̃|| ≤ 9η

1−δ
.

Ertürk [1] proved that convergence and data dependence
for AK iteration procedure with certain assumptions on α ′ns
and β ′ns for the mapping T : K→K that satisfies the condition

||T x−Ty|| ≤ δ ||x− y||+2δ ||x−T x|| (3)

for all x,y ∈ K and for some 0 < δ < 1.

Theorem 1.6. [1] Let T : K→ K be an operator that satisfies
the inequality (3). For any x0 ∈ K, let {xn}∞

n=0 be the itera-
tive sequence defined by (1) where {αn}∞

n=0 and {βn}∞
n=0 are

real sequences in [0,1] such that
∞

∑
n=0

βn = ∞. Then {xn}∞
n=0

converges strongly to the unique fixed point p of T .

Theorem 1.7. [1] Let T : K→ K be an operator that satisfies
the inequality (3), T̃ : K→ K be an approximate operator of
T with η > 0. Let {αn}∞

n=0 and {βn}∞
n=0 be the sequences

in [0,1] such that lim
n→∞

αn = lim
n→∞

βn = 0 and
∞

∑
n=0

αn = ∞ or
∞

∑
n=0

βn = ∞. For x0 ∈ K, let {xn}∞
n=0 and {x̃n}∞

n=0 be the se-

quences generated by (1) and (2) respectively. If T p = p,
T̃ p̃ = p̃ and lim

n→∞
x̃n = p̃ then ||p− p̃|| ≤ η

1−δ
.

Based on the inequality (3), Imoru and Olatinwo [3] de-
fined contractive like operator as follows:

Definition 1.8. An operator T : K→ K is called a contrac-
tive like operator if there exist a constant δ ∈ (0,1) and a
strictly increasing continuous function ϕ : [0,∞)→ [0,∞) with
ϕ(0) = 0 satisfying

||T x−Ty|| ≤ δ ||x− y||+ϕ(||x−T x||) (4)

for all x,y ∈ K.

We note that every contraction mapping is a contractive
like operator. But a contractive like operator is not a contrac-
tion mapping (Example 2.5).

Remark 1.9. The operator T that satisfies the inequality (3)
is a contractive like operator with ϕ(t) = 2δ t for t ≥ 0.

In section 2, we prove the strong convergence of AK it-
eration procedure for contractive like operators defined on
a nonempty closed convex subset of X and its convergence
is independent of the choices of the sequences {αn}∞

n=0 and
{βn}∞

n=0 in [0,1] and provide an example in support of our
result. In Section 3, we prove data dependence of AK itera-
tion procedure for a contractive like operator for any choices
of {αn}∞

n=0 and {βn}∞
n=0 in [0,1]. Further, we show that the

conditions on {αn}∞
n=0 and {βn}∞

n=0 of Theorem 1.5 and The-
orem 1.7 are redundant. In Section 4, we prove that the AK
iteration procedure is T -stable for contractive like operators
for any choices of {αn}∞

n=0 and {βn}∞
n=0 in [0,1]. Our results

generalize the results of Ullah and Arshad [4].

2. Convergence of AK iteration procedure
Theorem 2.1. Let K be a nonempty closed convex subset
of a normed linear space X and T : K→ K be a contractive
like operator. Assume that F(T ) 6= /0. For x0 ∈ K, let the
sequence {xn}∞

n=0 be generated by AK iteration procedure
with real sequences {αn}∞

n=0, {βn}∞
n=0 in [0,1]. Then {xn}∞

n=0
converges to a unique fixed point of T .

Proof. Proof. Since a contractive like operator has at most
one fixed point and F(T ) 6= /0, we suppose that F(T ) = {p}.
We consider
||xn+1− p||= ||Tyn−T p||

≤ δ ||yn− p||+ϕ(||p−T p||)
= δ ||yn− p|| for n = 0,1,2... (since ϕ(0) = 0) .

Therefore

||xn+1− p|| ≤ δ ||yn− p||. (5)

We now consider
||yn− p||= ||T ((1−αn)zn +αnT zn)−T p||

≤ δ ||(1−αn)zn +αnT zn− p||+ϕ(||p−T p||)
≤ δ [(1−αn)||zn− p||+αn||T zn−T p||]
≤ δ (1−αn)||zn− p||+αnδ [δ ||zn− p||

+ϕ(||p−T p||)]
= δ [1−αn(1−δ )]||zn− p||

so that

||yn− p|| ≤ δ ||zn− p||. (6)

Now we consider
||zn− p||= ||T ((1−βn)xn +βnT xn)−T p||

≤ δ ||(1−βn)xn +βnT xn− p||+ϕ(||p−T p||)
≤ δ [(1−βn)||xn− p||+βn||T xn−T p||]
≤ δ [(1−βn)||xn− p||+βnδ ||xn− p||

+βnϕ(||p−T p||)]
= δ [1−βn(1−δ )]||xn− p||.

Hence

||zn− p|| ≤ δ ||xn− p||. (7)
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From (5), (6) and (7) we have
||xn+1− p|| ≤ δ 3||xn− p||

≤ δ 3+3||xn−1− p||.
On continuing this process, it follows that

||xn+1− p|| ≤ δ
3n+3||x0− p||.

As 0< δ < 1, we have lim
n→∞

xn = p. Thus the sequence {xn}∞
n=0

generated by AK iteration procedure converges to the unique
fixed point p of T .

Note 2.2. In the proof of Theorem 2.1, we did not use any
conditions on the sequences {αn}∞

n=0 and {βn}∞
n=0 in [0,1].

Remark 2.3. As ||T x− p|| ≤ δ ||x− p|| for all x ∈ K, T is
continuous at the fixed point.

Remark 2.4. From (5), (6) and (7), we have
lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = p.

In the following example we show that Theorem 2.1 is
independent of the choices of the sequences {αn}∞

n=0 and
{βn}∞

n=0 of [0,1].

Example 2.5. Let X = R with the usual norm. Let K = [1,3].
Let x0 ∈ K be arbitrary. We define ϕ : [0,∞)→ [0,∞) by
ϕ(t)= 3t2

4 for t ≥ 0 so that ϕ is a strictly increasing continuous
function with ϕ(0) = 0. Now we define T : [1,3]→ [1,3] by
T x = 2+ 1

x so that T satisfies
||T x−Ty|| ≤ 2

3 ||x− y||+ϕ(||x−T x||) for all x,y ∈ K. Here
we observe that T is not a contraction map.

We show that in all the possible cases of {αn} and {βn},
the AK iteration procedure converges to the unique fixed point
1+
√

2 of T .
Case (i): We take αn =

n+1
n+2 and βn =

1
n2+1 so that

∞

∑
n=0

αn = ∞,
∞

∑
n=0

βn < ∞ and
∞

∑
n=0

αnβn < ∞.

So for any x0 ∈ [1,3], zn = T ((1−βn)xn +βnT xn)
= T ((1− 1

n2+1 )xn +
1

n2+1 (2+
1
xn
))

= (2x2
n+xn)n2+5xn+2
n2x2

n+(2xn+1) .
Therefore yn = T ((1−αn)zn +αnT zn)

= T ((1− n+1
n+2 )zn +

n+1
n+2 (2+

1
zn
))

= T ( z2
n+n(2zn+1)+2zn+1

(n+2)zn
)

= (5zn+2)n+2z2
n+6zn+2

(2zn+1)n+z2
n+2zn+1 .

Therefore xn+1 = Tyn =
(12zn+5)n+5z2

n+14zn+5
(5zn+2)n+2z2

n+6zn+2

= 5z2
n+(12n+14)zn+5n+5

2z2
n+(5n+6)zn+2n+2 = N

D ,

where N = (29x4
n +12x3

n)n
5 +(53x4

n +34x3
n +5x2

n)n
4 +

(128x3
n+82x2

n+12xn)n3+(246x3
n+184x2

n+34xn)n2+(140x2
n+

128xn+29)n+(285x2
n+246xn+53) and D=(12x4

n+5x3
n)n

5+
(22x4

n +14x3
n +2x2

n)n
4 +(53x3

n +34x2
n +5xn)n3 +

(102x3
n + 76x2

n + 14xn)n2 + (58x2
n + 53xn + 12)n + (118x2

n +
102xn +22).
Therefore xn+1 =

29xn+12
12xn+5 +An where

An =
(−2x5

n+3x4
n+4x3

n+x2
n)n

4+(−x4
n+2x3

n+x2
n)n

3+(−6x4
n+10x3

n+10x2
n+2xn)n2

(12xn+5)D

+ (−2x3
n+3x2

n+4xn+1)n+(−2x3
n+3x2

n+4xn+1)
(12xn+5)D .

It is easy to see that |An| ≤ 846n4+144n3+852n2+94n+94
289n5+646n4+1564n3+3264n2+2091n+4114

so that lim
n→∞

An = 0. Therefore

xn+1− (1+
√

2) = 29xn+12
12xn+5 − (1+

√
2)+An

= (17−12
√

2)xn+(7−5
√

2)
12xn+5 +An

= (17−12
√

2)
12xn+5 [xn +

7−5
√

2
17−12

√
2
]+An.

Hence |xn+1− (1+
√

2)| ≤ 17−2
√

2
17 |xn− (1+

√
2)|+ |An| for

n = 0,1,2... so that
limsup |xn+1 − (1+

√
2)| ≤ 17−12

√
2

17 limsup |xn − (1+
√

2)|
and hence limsup |xn− (1+

√
2)| ≤ 0, i.e., lim

n→∞
xn = 1+

√
2.

Case (ii) : We take αn =
1
2n and βn =

1
3n so that

∞

∑
n=0

αn < ∞,
∞

∑
n=0

βn < ∞ and
∞

∑
n=0

αnβn < ∞.

Therefore for any x0 ∈ [1,3], we have

zn =
3n(2x2

n+xn)+2(−x2
n+2xn+1)

3nx2
n+(−x2

n+2xn+1) , yn =
2n(2z2

n+zn)+2(−z2
n+2zn+1)

2nz2
n+(−z2

n+2zn+1) and

xn+1 =
2n(5z2

n+2zn)+5(−z2
n+2zn+1)

2n(2z2
n+zn)+2(−z2

n+2zn+1) .

It is easy to write xn+1 = 12xn+5
5xn+2 + Bn where lim

n→∞
Bn = 0.

Therefore (xn+1− (1+
√

2)) = 7−5
√

2
5xn+2 (xn +

3−2
√

2
7−5
√

2
)+Bn so

that |xn+1− (1+
√

2)| ≤ 7−5
√

2
7 |xn− (1+

√
2)|+ |Bn| for n =

0,1,2... . By applying limit superior on both sides, we have
limsup |xn+1 − (1+

√
2)| ≤ 7−5

√
2

7 limsup |xn − (1+
√

2)|+
limsup |Bn|. Hence limsup |xn− (1+

√
2)| ≤ 0, i.e., lim

n→∞
xn =

1+
√

2.
Case (iii) : We take α0 = β0 = 0, αn = 1√

n βn = 1√
n for

n = 1,2, ... so that
∞

∑
n=0

αn = ∞,
∞

∑
n=0

βn = ∞,
∞

∑
n=0

αnβn = ∞. For

any x0 ∈ [1,3], zn =
√

n(2x2
n+xn)+2(−x2

n+2xn+1)√
nx2

n+(−x2
n+2xn+1) ,

yn =
√

n(2z2
n+zn)+2(−z2

n+2zn+1)√
nz2

n+(−z2
n+2zn+1) and xn+1 =

z2
n(5
√

n−5)+zn(2
√

n+10)+5
z2
n(2
√

n−2)+zn(
√

n+4)+2 .

It is easy to write xn+1 =
12xn+5
5xn+2 +Cn where lim

n→∞
Cn = 0 and

by proceeding as in Case (ii), the sequence {xn}∞
n=0 converges

to the fixed point 1+
√

2 of T .

Remark 2.6. It is easy to see that Theorem 1.3 follows as a
corollary to Theorem 2.1. Since the map T that is defined in
Example 2.5 is a contractive like operator but not a contraction
map, it follows that Theorem 2.1 generalizes Theorem 1.3.

Also, we note that the assumption
∞

∑
n=0

αn = ∞ of Theorem 1.3

is redundant.

Remark 2.7. By Remark 1.9, Theorem 1.6 follows as a corol-

lary to Theorem 2.1 and the condition
∞

∑
n=0

βn = ∞ of Theorem

1.6 is redundant.
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3. Data dependence

Theorem 3.1. Let X ,K,T be as in Theorem 2.1 and T̃ be an
approximate operator of T with η > 0. Let x0, x̃0 ∈ K. Let
{xn}∞

n=0 be the iterative sequence generated by AK iteration
procedure (1) with respect to T and and {x̃n}∞

n=0 be the se-
quence defined by (2). If T p = p, T̃ p̃ = p̃ and lim

n→∞
x̃n = p̃

then ||p− p̃|| ≤ δ 3η+2δ 2η+δη+η

1−δ 3 .

Proof. Proof. By Theorem 2.1, we have lim
n→∞

xn = p with
T p = p.
We consider
||xn+1− x̃n+1||= ||Tyn− T̃ ỹn||

≤ ||Tyn−T ỹn||+ ||T ỹn− T̃ ỹn||
≤ δ ||yn− ỹn||+ϕ(||yn−Tyn||)+η .

We now consider
||yn− ỹn||= ||T ((1−αn)zn+αnT zn)−T̃ ((1−αn)z̃n+αnT̃ z̃n)||

≤ ||T ((1−αn)zn+αnT zn)−T ((1−αn)z̃n+αnT̃ z̃n)||
+||T ((1−αn)z̃n+αnT̃ z̃n)−T̃ ((1−αn)z̃n+αnT̃ z̃n)||
≤ δ ||(1−αn)(zn− z̃n)+αn(T zn− T̃ z̃n)||

+ϕ(||(1−αn)zn +αnT zn− yn||)+η

≤ δ [(1−αn)||zn− z̃n||+αn||T zn− T̃ z̃n||]
+ϕ(||(1−αn)zn +αnT zn− yn||)+η

≤ δ [(1−αn)||zn− z̃n||+αn(δ ||zn− z̃n||
+ϕ(||zn−T zn||)+η)]+ϕ(||(1−αn)zn

+αnT zn− yn||)+η

≤ δ [(1−αn(1−δ ))||zn− z̃n||
+αnϕ(||zn−T zn||)+αnη ]

+ϕ(||(1−αn)zn +αnT zn− yn||)+η

≤ δ ||zn− z̃n||+δαnϕ(||zn−T zn||)+δαnη

+ϕ(||(1−αn)zn +αnT zn− yn||)+η

= δ ||zn− z̃n||+αnδη +An +η , where
An = δαnϕ(||zn−T zn||)+ϕ(||(1−αn)zn +αnT zn− yn||).
Now, we have
||zn− z̃n||= ||T ((1−βn)xn+βnT xn)−T̃ ((1−βn)x̃n+βnT̃ x̃n)||

≤ ||T ((1−βn)xn+βnT xn)−T ((1−βn)x̃n+βnT̃ x̃n)||
+||T ((1−βn)x̃n+βnT̃ x̃n)−T̃ ((1−βn)x̃n+βnT̃ x̃n)||
≤ δ ||(1−βn)(xn− x̃n)+βn(T xn− T̃ x̃n)||

+ϕ(||(1−βn)xn +βnT xn− zn||)+η

≤ δ [(1−βn)||xn− x̃n||+βn(δ ||xn− x̃n||
+ϕ(||xn−T xn||)+η)]

+ϕ(||(1−βn)xn +βnT xn− zn||)+η

≤ (1−βn)δ ||xn− x̃n||+βnδ 2||xn− x̃n||
+βnδϕ(||xn−T xn||)+βnηδ +

ϕ(||(1−βn)xn +βnT xn− zn||)+η

= (1−βn(1−δ ))δ ||xn− x̃n||+βnδϕ(||xn−T xn||)
+βnδη +ϕ(||(1−βn)xn +βnT xn− zn||)+η

≤ δ ||xn− x̃n||+Bn +βnδη +η , where
Bn = βnδϕ(||xn−T xn||)+ϕ(||(1−βn)xn +βnT xn− zn||) so
that ||yn− ỹn|| ≤ δ 2||xn− x̃n||+Bnδ +βnδ 2η +ηδ +αnηδ +
An +η .
Therefore
||xn+1− x̃n+1|| ≤ δ 3||xn− x̃n||+Bnδ 2 +βnδ 3η +αnδ 2η

+δ
2
η +δAn +δη +ϕ(||yn−Tyn||)+η . (8)

By Remark 2.3, Remark 2.4 and by using continuty of ϕ , we
have lim

n→∞
An = lim

n→∞
Bn = 0 and lim

n→∞
ϕ(||yn−Tyn||) = 0.

By applying limit superior on both sides of (8), we have
limsup ||xn+1− x̃n+1|| ≤ δ 3 limsup ||xn− x̃n||+δ 3η +δ 2η +
δη +ηδ 2 +η so that
limsup ||xn− x̃n|| ≤ δ 3η+2δ 2η+δη+η

1−δ 3 .

Since lim
n→∞

x̃n = p̃, we have ||p− p̃|| ≤ δ 3η+2δ 2η+δη+η

1−δ 3 .

Remark 3.2. Here we note that Theorem 1.5 follows as a
corollary to Theorem 3.1 and the conditions (i) αn ≥ 1

2 and (ii)
∞

∑
n=0

αn = ∞ of Theorem 1.5 are redundant. Also, we observe

that the estimate δ 3η+2δ 2η+δη+η

1−δ 3 of Theorem 3.1 is much

more sharper than the estimate 9η

1−δ
of Theorem 1.5.

Corollary 3.3. In addition to the hypotheses of Theorem 3.1,
if lim

n→∞
αn = lim

n→∞
βn = 0 then ||p− p̃|| ≤ η

1−δ
.

Proof. Proof. From inequality (8) of Theorem 3.1, we have
limsup ||xn+1− x̃n+1|| ≤ δ 3 limsup ||xn− x̃n||+δ 2η+δη+η

so that limsup ||xn− x̃n|| ≤ η(δ 2+δ+1)
1−δ 3 = η

1−δ
.

Hence ||p− p̃|| ≤ η

1−δ
.

Note 3.4. By Remark 1.9, clearly Theorem 1.7 follows as a
corollary to Corollary 3.3. From Corollary 3.3, We observe

that the assumption
∞

∑
n=0

αn = ∞ or
∞

∑
n=0

βn = ∞ of Theorem 1.7

is redundant.

The following is an example in support of Theorem 3.1.

Example 3.5. Let X , K and T be as in Example 2.5.
We define T̃ : [1,3]→ [1,3] by T̃ (x) = 5x+3

3x for x ∈ [1,3].
Then T̃ is an approximate operator of T with η = 1

3 .
We take αn =

1
2n and βn =

1
3n for n = 0,1,2... so that

lim
n→∞

αn = lim
n→∞

βn = 0.

Let x̃0 ∈ K be arbitrary. Then z̃n =
(15x̃2

n+9x̃n)3n−15x̃2
n+25x̃n+15

9x̃2
n3n−9x̃2

n+15x̃n+9 ,

ỹn =
(15z̃2

n+9z̃n)2n−15z̃2
n+25z̃n+15

9z̃2
n2n−9z̃2

n+15z̃n+9 and

x̃n+1 =
102(2n−1)z̃2

n+(45×2n+170)z̃n+102
45(2n−1)z̃2

n+(27×2n+75)z̃n+45 .
By substituting the values of z̃n in x̃n+1,
we write x̃n+1 =

215x̃n+102
102x̃n+45 +An for some sequence {An} con-

verges to 0. Therefore
x̃n+1− 5+

√
61

6 = 130−17
√

61
102x̃n+45 (x̃n +

129−15
√

61
260−34

√
61
)+An

= 130−17
√

61
102x̃n+45 (x̃n− 5+

√
61

6 )+An.
Hence
|x̃n+1− 5+

√
61

6 | ≤ 130−17
√

61
147 |x̃n− 5+

√
61

6 |+ |An|
for n = 0,1,2... .
Now by applying limit superior on both sides, we have
lim
n→∞

x̃n =
5+
√

61
6 .

Here we observe that p = 1+
√

2 and p̃ = 5+
√

61
6 are the fixed

points of T and T̃ respectively and
|p− p̃|= 1+6

√
2−
√

61
6 < 77

57 = δ 3η+2δ 2η+δη+η

1−δ 3 .
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In the following, we give justification for the assumption
T̃ p̃ = p̃, lim

n→∞
x̃n = p̃ of Theorem 3.1. For this purpose, we

show that the sequence {x̃n}∞
n=0 of Theorem 3.1 need not be

convergent. Further, we show that even if it is convergent its
limit need not be a fixed point of T̃ .

Example 3.6. Let X ,K and T be as in Example 2.5.
We define T̃ : [1,3]→ [1,3] by

T̃ x =
{ 5

2 if x ∈ [1,1+
√

2]
23
10 if x ∈ (1+

√
2,3]

so that T̃ is an approximate operator of T with η = 1
2 .

Case (i) : In this case, we show that for any x̃0 ∈ [1,3] the
sequence {x̃n}∞

n=0 of Theorem 3.1 does not converges.
Let x̃0 be an arbitrary point in [1,3], and let αn =

1
2n and

βn =
1
3n for n = 0,1,2... .

Sub case(i) : We show that x̃n =
5
2 for some n≥ 1 implies that

x̃n+1 =
23
10 .

Let x̃n =
5
2 for some n≥ 1 so that

z̃n = T̃ ((1− 1
3n )

5
2 +

1
3n

23
10 ) = T̃ ( 5

2 −
1

5(3n) ).

Since 5
2 −

1
5(3n) > 1+

√
2, we have z̃n =

23
10 ,

ỹn = T̃ ((1− 1
2n )

23
10 +

1
2n

5
2 ) = T̃ ( 23

10 +
1

5(2n) ).

Since 23
10 +

1
5(2n) < 1+

√
2, we have ỹn =

5
2 and hence

x̃n+1 =
23
10 .

Sub case (ii) : We show that x̃n =
23
10 for some n≥ 2 implies

that x̃n+1 =
5
2 .

Let x̃n =
23
10 for some n≥ 2 so that

z̃n = T̃ ((1− 1
3n )

23
10 +

1
3n

5
2 ) = T̃ ( 23

10 +
1

5(3n) ).

Since 23
10 +

1
5(3n) < 1+

√
2 for n≥ 2, we have z̃n =

5
2 and

ỹn = T̃ ((1− 1
2n )

5
2 +

1
2n

23
10 ) = T̃ ( 5

2 −
1

5(2n) ).

Since 5
2 −

1
5(2n) > 1+

√
2 for n ≥ 2, we have ỹn = 23

10 and

hence x̃n+1 = T̃ ỹn =
5
2 .

Here, we observe that x̃2 =
23
10 . Hence, for n≥ 2

x̃n =

{ 23
10 if n is even
5
2 if n is odd

which is an oscillating sequence and hence {x̃n}∞
n=0 is not

convergent.
Case (ii) : In this case, we show that the sequence {x̃n}∞

n=0 of
Theorem 3.1 converges but its limit need not be a fixed point
of T̃ .
Here we take αn = βn =

1
2 for n = 0,1,2... and x̃0 =

5
2 .

We show that x̃n =
23
10 for n = 1,2,3... by induction on n.

Since x̃0 =
5
2 , we have z̃0 = T̃ ( x̃0+T̃ x̃0

2 ) = T̃ ( 12
5 ) = 5

2 ,

ỹ0 = T̃ ( z̃0+T̃ z̃0
2 ) = T̃ ( 12

5 ) = 5
2 and x̃1 = T̃ ỹ0 =

23
10 .

We assume that x̃n =
23
10 for some n≥ 1 so that

z̃n = T̃ ( x̃n+T̃ x̃n
2 ) = T̃ ( 12

5 ) = 5
2 ,

ỹn = T̃ ( z̃n+T̃ z̃n
2 ) = T̃ ( 12

5 ) = 5
2 and x̃n+1 = T̃ ỹn =

23
10 .

Therefore by induction hypothesis x̃n =
23
10 for n = 1,2, ... and

hence lim
n→∞

x̃n =
23
10 which is not a fixed point T̃ .

4. T-Stability
Theorem 4.1. Let X ,K,T be as in Theorem 2.1, and let
{αn}∞

n=0 and {βn}∞
n=0 be arbitrary sequences in [0,1]. Then

the AK iteration procedure is T−stable.

Proof. Proof. By Theorem 2.1 for any x0 ∈ K, the AK itera-
tion procedure {xn}∞

n=0 converges to a fixed point p (say) of
T in K and it is unique.

Let {sn}∞
n=0 be an arbitrary sequence in K and

εn = ||sn+1− f (T,sn)|| where f (T,sn) = T vn,
vn = T ((1−αn)un+αnTun) and un = T ((1−βn)sn+βnT sn)
for n = 0,1,2... .
First we consider
|| f (T,sn)− p||= ||T vn−T p||

≤ δ ||vn− p||+ϕ(||p−T p||)
= δ ||vn− p||
= δ ||T ((1−αn)un +αnTun)−T p||
≤ δ 2||(1−αn)un +αnTun− p||

+δϕ(||p−T p||)
≤ δ 2[(1−αn)||un− p||+αn||Tun−T p||]
≤ δ 2[(1−αn)||un− p||+αnδ ||un− p||

+αnϕ(||p−T p||)]
= δ 2[1−αn(1−δ )]||un− p||
≤ δ 2||un− p||
= δ 2||T ((1−βn)sn +βnT sn)−T p||
≤ δ 3||(1−βn)sn +βnT sn− p||

+δ 2ϕ(||p−T p||)
≤ δ 3[(1−βn)||sn− p||+βn||T sn−T p||]
≤ δ 3[(1−βn)||sn− p||

+βn(δ ||sn− p||+ϕ(||p−T p||))]
= δ 3(1−βn(1−δ ))||sn− p||
≤ δ 3||sn− p||.

Therefore

|| f (T,sn)− p|| ≤ δ
3||sn− p|| (9)

We assume that lim
n→∞

εn = 0.
From the inequality (9), we have
||sn+1− p|| ≤ ||sn+1− f (T,sn)||+ || f (T,sn)− p||

≤ εn +δ 3||sn− p|| for n = 0,1,2... .
By applying limit superior on both sides, we have
limsup ||sn+1− p|| ≤ limsupεn +δ 3 limsup ||sn− p||

= δ 3 limsup ||sn− p|| so that
limsup ||sn− p|| ≤ 0 and hence lim

n→∞
sn = p.

Conversely, we assume that lim
n→∞

sn = p.
From (9), we have
εn = ||sn+1− f (T,sn)|| ≤ ||sn+1− p||+ || f (T,sn)− p||
≤ ||sn+1− p||+δ 3||sn− p|| for n = 0,1,2... .

By applying limit superior on both sides, we have
limsupεn ≤ limsup ||sn+1− p||+ δ 3 limsup ||sn− p|| = 0 so
that lim

n→∞
εn = 0.

Thus the AK iteration procedure is T−stable.

Remark 4.2. Here we note that Theorem 1.4 follows as a
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corollary to Theorem 4.1 and the condition
∞

∑
n=0

αn = ∞ of

Theorem 1.4 is redundant.
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