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Convergence, data dependence and T-stability of AK
iteration procedure for contractive like operators
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Abstract

In this paper, we prove the strong convergence of AK iteration procedure to a fixed point of a contractive like
operator defined on an arbitrary nonempty closed convex subset of a normed linear space. Further, we study
data dependence and T-stability of this procedure. Our results generalize the results that are available in the

existing literature.
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1. Introduction

Throughout this paper, let (X,]|.||) be a normed linear
space and we denote it by X. Let K be a nonempty closed
convex subset of X and T : K — K be a selfmap of K. We
denote the set of all fixed points of T by F(T).

Harder and Hicks [2] initiated the stability of general fixed
point iteration procedure with respect to a selfmap 7' : K — K
is as follows.

Definition 1.1. [2] Let K be a nonempty closed convex subset
of X and T : K — K be a selfmap. Let xy € K. Assume
that the iteration procedure is defined by x,, .1 = f(T,x,) for
n=0,1,.... Suppose that the sequence {x,}; _, converges to
a fixed point p of T. Let {t, };_, be an arbitrary sequence in
K and set &, =d(ty41,f(T,t,)) forn=0,1,.... Then the fixed
point iteration procedure is said to be T-stable if y}l_r)rgo & =0

if and only if lim ¢, = p.
n—oo

Definition 1.2. Let T,T : K — K be two selfmaps. If there
exists 1) > 0 such that ||Tx — Tx|| < n for all x € K then we
say that T is an approximate operator of T with 1 > 0.

In 2016, Ullah and Arshad [4] introduced AK iteration
procedure as follows:

xo €K

zn =T ((1 = Bn)xn + BnTxn)
Yn = T((l - an)Zn + anTZn)
Xn+1 = Tyn

ey

where {a, }7_, and {B,};_, are real sequences in [0,1].
Ullah and Arshad [4] proved the convergence, data depen-

dence and T -stability of AK iteration procedure under certain

assumptions on ¢, s for contraction maps as follows.

Theorem 1.3. [4] Let K be a nonempty closed convex subset
of a Banach space X and T : K — K be a contraction mapping.
For xo € K, let {x,};_, be an iterative sequence generated
by AK iteration procedure with real sequences {0, }5r_, and

{Bn}7_ in [0,1] satisfying ¥ o, = co. Then {x,};_, con-
n=0

verges strongly to a fixed point of 7.

Theorem 1.4. [4] Let X,K,T be as in Theorem 1.3. Let

xo € K and {x, }7"_, be an iterative sequence generated by AK
iteration procedure with real sequences {0, };_, and {B;> (}
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in [0, 1] satisfying Y. @, = . Then the AK iteration proce-
n=0

dure is T-stable.
Theorem 1.5. [4] Let X, K,T be as in Theorem 1.3. Let T be
an approximate operator of a contraction map 7" with n > 0.

For xg in K, let {x,} 7, be an iterative sequence generated by
(1) for T and define an iterative sequence {X, };;_ as follows.

¥oe K

= T:((l = Bn)%n "‘Bn]ifn)
yn = T(gl - an)zn + anTZn)
Tn+1 =Ty

@)

where {0} and {B,};_, are real sequences in [0,1] such

that (i) @, > § forn=0,1,2... and (i) ¥ @, = co.
n=0
If Tp=p,Tp=pand lim %, = j then ||p — p|| < 2.
n—oo

Ertiirk [1] proved that convergence and data dependence
for AK iteration procedure with certain assumptions on o,s
and B s for the mapping T : K — K that satisfies the condition

I Tx =Tyl < &]x —yl| 4 28]|x — Tx|| ()
for all x,y € K and for some 0 < & < 1.

Theorem 1.6. [1] Let 7 : K — K be an operator that satisfies
the inequality (3). For any xo € K, let {x,};"_, be the itera-
tive sequence defined by (1) where {0, };7_ and {B,};_ are

real sequences in [0,1] such that }. B, = c. Then {x,}7,
n=0

converges strongly to the unique fixed point p of T'.

Theorem 1.7. [1] Let T : K — K be an operator that satisfies

the inequality (3), T : K — K be an approximate operator of
T with n > 0. Let {o,};_ and {B,};_, be the sequences

in [0,1] such that lim o, = lim 3, =0 and ¥, o, = oo or
n—yo0 n—o0 n=0
Y By =oo. Forxg € K, let {x,}_, and {%,}_, be the se-
n=0
quences generated by (1) and (2) respectively. If Tp = p,
Tp=pand lim %, = p then ||p— p|| < 5.
n—yo0

Based on the inequality (3), Imoru and Olatinwo [3] de-
fined contractive like operator as follows:

Definition 1.8. An operator T : K — K is called a contrac-
tive like operator if there exist a constant 6 € (0,1) and a
strictly increasing continuous function @ : [0,00) — [0, ) with
©(0) = 0 satisfying

1 Tx—Tyl| < 8llx =yl + (| lx—Tx]]) ()
forall x,y € K.

We note that every contraction mapping is a contractive
like operator. But a contractive like operator is not a contrac-
tion mapping (Example 2.5).
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Remark 1.9. The operator T that satisfies the inequality (3)
is a contractive like operator with ¢(t) = 20t fort > 0.

In section 2, we prove the strong convergence of AK it-
eration procedure for contractive like operators defined on
a nonempty closed convex subset of X and its convergence
is independent of the choices of the sequences { o, };_, and
{Bn}5r_ in [0,1] and provide an example in support of our
result. In Section 3, we prove data dependence of AK itera-
tion procedure for a contractive like operator for any choices
of {a,}7°_ and {B,};r_ in [0, 1]. Further, we show that the
conditions on {a;, }7>_, and { B, };_, of Theorem 1.5 and The-
orem 1.7 are redundant. In Section 4, we prove that the AK
iteration procedure is T -stable for contractive like operators
for any choices of {a, }5>_ and {B,};r_ in [0, 1]. Our results
generalize the results of Ullah and Arshad [4].

2. Convergence of AK iteration procedure

Theorem 2.1. Let K be a nonempty closed convex subset
of a normed linear space X and 7 : K — K be a contractive
like operator. Assume that F(T) # 0. For xy € K, let the
sequence {x,},_, be generated by AK iteration procedure
with real sequences {0}, {Bn}iro in [0, 1]. Then {x,};7_,
converges to a unique fixed point of 7.

Proof. Proof. Since a contractive like operator has at most
one fixed point and F(T') # @, we suppose that F(T) = {p}.
We consider
[Xn1 = pll = [|Tyn = Tpl|

< 8llyn—pll+o(llp—Tpll)

= 0||yn — p|| forn=0,1,2... (since ¢(0) =0) .
Therefore

[Pent1 = plI < 8lyn = pl|- )

We now consider
[yn = pll = IT (1 = )z + 04 Tz0) = Tp|
< S|[(1 = an)zn+ 0 Tza — pll+o(|lp —Tpl])
(1= 0t)|zn — p[+ O[T 20 — Tpl|]
(1= aw)llza — pl| + € 8[8]|zn — pl|
+o(llp—Tpl|)]
= 8[1 = 04,1 = 8)][|zn — p|
so that

<8
<5

[[yn =PIl < |20 — pl- (6)

Now we consider
||Zﬂ_pH = ||T((1 _ﬁn)xn+ﬁnTxn) —Tp||
< 8”(1 _ﬁn)xn +ﬁnTxn —PH —|-(p(\|p—Tp||)
< S[(1 = Bu)lxn — pl| + Bal|Txn — T pl[]
< 5[(1 = Bu)llxn — pll + Bud| |20 — pl|
+ B¢ (llp—Tpl])]
= 6[1 = Bu(1=68)]|lxn — pll.

Hence

|‘Zn_l7||§6”xn_l7”- @)
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From (5), (6) and (7) we have

(i1 = pll < 812, — pl|
< 831 — pll.
On continuing this process, it follows that

—pll <&l

[[26n+1 —pll-

As0< 6 <1, wehave lim x, = p. Thus the sequence {x,}
n—oo

generated by AK iteration procedure converges to the unique
fixed point p of T'. O

Note 2.2. In the proof of Theorem 2.1, we did not use any
conditions on the sequences {0} _o and {B,}7_ in [0,1].

Remark 2.3. As ||[Tx—p|| < 8||x—p|| forall x € K, T is
continuous at the fixed point.

Remark 2.4. From (5), (6) and (7), we have

lim x,, = hm V= hm 0 Zp = P.
n—soo —oo

In the following example we show that Theorem 2.1 is
independent of the choices of the sequences {o,}; , and

{Ba}izo of [0,11.

Example 2.5. Let X = R with the usual norm. Let K =
Let xo € K be arbitrary. We define ¢ : [0,00) — [0,

1,3].
) by

ot)= 32—2 fort > 0 so that ¢ is a strictly increasing continuous
function with ¢(0) = 0. Now we define T : [1,3] — [1,3] by
Tx=2+ % so that T satisfies

||Tx—Ty|| < 3|]x—y||+ @(||x— Tx||) for all x,y € K. Here
we observe that T is not a contraction map.

We show that in all the possible cases of {¢,} and {8, },
the AK iteration procedure converges to the unique fixed point
14+V20f T.

Case (i): We take o, = "+1

T nt2

2[3,,<ooand Z 0B < oo.

n=0

and 3, = 2+1 so that Z o = o,

So for any xq € [1 3] z=T((1- ﬁ,,l)xn + ﬁ,,T)lcn) 1
- T(<1 - n2+1)xl’l + n2+1 (2+ ;n))
o (2x%+x,,)112+5xn+2
n2x2+(2x,+1)
Therefore y,, = T ((1 — 0t;)z, + @, Tzp)
=T((1-15)m+ 25502+ 1))
_ 24122+ 1) 422,41
T( (n+2)zn )
_ (5za+2)n4222 462,42
T Qazpt)nt+zE 2z, +1
o . (12z,,+5)n+51n+14zn+5
Therefore x,11 = Ty, = ot Dt 20 6o 2
_ SZ2+(I2n+14)z, 45045 _ N
T 22+4(5n+6)z,4+2n+2 T~ D
where N = (29x% 4+ 12x3)n° + (53x% + 3453 + 5x2)n* +

(128x3 4 82x2 4 12x,, )1 + (246x3 + 184x2 4 34x,, )n” + (140x2 +
128x, +29)n+ (285x2 4246x, +53) and D = (12x} +5x3 )n?
(22x% + 14x3 4+ 2x2)n* + (53x3 + 34x2 + Sx,)n° +

(102x] + 76x2 + 14x,)n® + (58x2 + 53x, + 12)n + (118x2 +
102x, +22).

Therefore x,, | = 22ut12

12xp+5

+ A, where
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— X203 2213 - (—6x +10x3 4+ 1062+ 2x, )n?
(124, +5)D
—203 4302445+ 1) (=200 +3x2 44y + 1 )

(
+ (12x,+5)D

: 846n*+144n3 +852n% +94n+94
Itis easy to see that [An| <S55 6t 1564w 1 326802 1 2091n TATTA
so that hm A,, = 0. Therefore

A — (=20 43 4o a2 ) 4 (
n=

Xn1 — (1+\f) Zutl2 (1+\f)+A
_ (17-12v2)x+(7— 5{)
12x,+5
_ (17-12v2) 7— s\f
T 12x+5 [x +17 12I]+A
Hence |x,1 — (14++/2)| < ”T\xn—(1+\[)|+|An| for
n=0,1,2... so that

limsup |x,41 — (1 +v2)| < %limsup by — (14+/2)]

and hence limsup |x, — (1 ++v/2)| <0, i.e., 1211 Xy =1+V2.
n—roo

Case (ii) : We take o, = % and 3, = % so that Y o, < o,
n

):,B,,<c><>and ):(xnﬁn<oo
n=0

Therefore for any xo € [1,3], we have
(2024 )+2(—xE 4+ 2,4+ 1) 2222 4zn)+2(—2 42z, +1)
ne 3"x%+(7x%+2xn+1) PO ng oy (—z242z,+1)
X — 2”(5234’22)1)“!’5(*2%4’21}14’1)
L T G N M) (e T PR

It is easy to write X, = 12’“’”’5
5 32
(1 _|_\/’)) - éx"g(xn—i— = 5?) +B,

that [x,1 — (14 v2)| < 52 |x, — (14 V2)| + |B,| for n =

0,1,2... . By applying limit superior on both sides, we have

limsuplx,s1 — (14 v2)] < =32 limsup v, — (1 +v/2)] +

(1+v2)| <0,i.e., lim x, =
n—oo

and

+ B,, where 11m B,l =0.

Therefore (x,+1 —

limsup |B,|. Hence limsup |x, —

14++2.
Case (iii) : We take o9 = By =0, o, = ﬁ Bn = Ln for
n=1,2,... so that Z Oy = oo, Z B = oo, Z 03, = 0. For
n=0
_ f(ZX +x,,)+2(7x +2xn+1)
any X0 € [173]’ \/ﬁx2+( X2+2)Cn+l) )
_ V23 4z) 2= 422 +1) and xo .1 — 2(5\/n—5)+2a(2y/n+10)+5
Y= T g (R 2zt ) ntl = T a0 2, (Vatd)+2
125,45

It is easy to write x,+1 = T + C,, where lim Cn =0and

by proceeding as in Case (if), the sequence {xn}
to the fixed point 1+ \/5 of T.

" converges

Remark 2.6. It is easy to see that Theorem 1.3 follows as a
corollary to Theorem 2.1. Since the map T that is defined in
Example 2.5 is a contractive like operator but not a contraction
mayp, it follows that Theorem 2.1 generalizes Theorem 1.3.
Also, we note that the assumption Y, o, = oo of Theorem 1.3

. n=0
is redundant.

Remark 2.7. By Remark 1.9, Theorem 1.6 follows as a corol-
lary to Theorem 2.1 and the condition Y, 3, = oo of Theorem

n=0
1.6 is redundant.
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3. Data dependence

Theorem 3.1. Let X, K, T be as in Theorem 2.1 and T be an
approximate operator of 7 with n > 0. Let xo,%) € K. Let
{xn}5r_, be the iterative sequence generated by AK iteration
procedure (1) with respect to T and and {%,}_, be the se-
quence defined by (2). If Tp = p, Tp = p and r}l_r}lelofn =p

then ||p— p| < S12ELLANLN
Proof. Proof. By Theorem 2.1, we have r}l_r}r; X, = p with
Tp=p.
We consider
st — Tt = 1Ty — 5 )
< HTyn_T)’lnH—'_HT)ln_T)lnH
< 5||yn_yn||+(P(‘|yn_Tyn||)+n'
We now consider
[[yn =ull = [|1T((1 = Q) zn+ 0 Tzn) — ((1 an)Zn‘i‘O‘n]jZn)H
<|T((1=0tn)zn+ 0 Tzn) =T ((1 = 0)Zn+ 0T Z) ||
+|T((1=04) 20+ 0 TZ,) = T (1= 04) 20 + 0 TZ) ||
< 5”(1 —(Xn)( Zn _Zn)‘i‘an(TZn_TZn)H
+(p(|‘(1_an)zn‘i‘anTZn_yﬂH)j_n
< S[(1 = at)llzn = Znl| + 0| Tz — TZ[]
+o([|(1 = 0t)zn + 0 Tzu —yul|) +1
< O[(1—aw)llzn — Znl| + @ (8]|z0 — Zal|
+@([|zn = Tzl[) +m)]+ @(||(1 — &) zn
+anTZn_yn||)+n
< 5[(1 _an(l - 5>)||Zn_2n||
+ (|20 — Tzal]) + 0tum]
+o([|(1 = t)zn + 0 Tzu —yul|) +1

< 8l|zn — 20| |+ 80, 0(| |20 — Tznl|) + Stam
+o([[(1 = t)zn + 4 Tzy —yal|) +1

= 5HZn _ZnH +an5n +An +T], where
Ap = 80,0(||zn — Tznl|) + @([[(1 — n)zn + & Tzn — yul])-
Now, we have
|[2n = Znl| = ||T ((1 = Bn)xn+ BaTxn) — ((1*ﬁn)in+ﬁnT:fn)||
ST ((1 = Bu)xn+ BaTxn) — ((1—ﬁn)fn+ﬁnT3?n)\|
+IT((1 ﬁn)xn"’ﬁnTxn) T((1=Bu)%n+ BT %)

< 81(1 = Bu) (xn — Fu) + Bu(Ton — T

+o([|(1 = Bn)xn + BT X0 —zal|) +1
< S[(1 = Bu)llxn —Fnll + B (8|20 — Xl
+o(||x0 = Tx4l|) +1)]
+@([(1 = Ba)xn + BuTXn — znl|) + 1

< (1= Bn) 6] |xn — % +ﬁn52i|xn_fn”
+Bnb@(|xn — Txu||) + Bum 6 +

OI[(1 = Bu)xn + BuTxn — zal]) +1
= (1= Pu(1=8))8||xa — %[ + Bu b @(|[xn — Txa|)
+Bun +@(|[(1 = Bu)xn + BuTxn — zal|) + 1

< 8||xy — %n|| + Bn + BnON + 1, where

By = B0 o(||xn — Txul]) + @(|[(1 — Bu)xn + BuTxn — zn) sO
that ||y, — 3| | < 82[120 — %ul| + B2 S + B.6* N + M+ 0,1 & +
Ap+1.

Therefore

st = Fap1 || < 83060 — £al| + BaS? + B8 + 0,871

+8°1+ 84+ 80+ @(|[yn—Tyal) + 1. (8)
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By Remark 2.3, Remark 2.4 and by using continuty of (p, we
have lim A, = lim n B, = 0 and hm 0 Q(|[yn — Tyall) =

n—soo
By applying 11m1t superior on both sides of (8), we have
limsup |[x,41 — % 1]| < 8 limsup ||x, — %, || + 83 + 8%n +
81 +né8%+n so that

%l < W%'
= p, we have [|p - p|| <

limsup ||x,
. . 83n+282n+6n+n

Since r}gl; Xn — s - 4

Remark 3.2. Here we note that Theorem 1.5 follows as a

corollary to Theorem 3.1 and the conditions (i) ¢, > % and (ii)
Y @, = oo of Theorem 1.5 are redundant. Also, we observe

n=0

3 2
% of Theorem 3.1 is much

of Theorem 1.5.

that the estimate

more sharper than the estimate ]

Corollary 3.3. In addition to the hypotheses of Theorem 3.1,
if lim o, = lim B, =0 then ||p— p|| < 5.
n—oo n—oo

Proof. Proof. From inequality (8) of Theorem 3.1, we have

limsup ||x, 41 —%,11]| < 87 1imSUP||xn—fn||+52ﬂ +6n+1n

so that limsup ||x, — %, || < w =

-8 T 1-6°
Hence||p—p||_ﬁ. O

Note 3.4. By Remark 1.9, clearly Theorem 1.7 follows as a
corollary to Corollary 3.3. From Corollary 3.3, We observe
that the assumption Z oy = o or Z Bn = o of Theorem 1.7

n=0 n=0
is redundant.

The following is an example in support of Theorem 3.1.

Example 3.5. Let X, K and T be as in Example 2.5.

We define 7 : [1,3] — [1,3] by T'(x) = 5= forx € [1,3].
Then 7 is an approximate operator of T with = 3.
We take o, = 2n and B, = 3% forn=0,1,2... so that

lim o, = hm ﬁn =0.
n—oo

=2 = \_n__15:2 =
Let Xy € K be arbitrary. Then Z,, = (158 +9%)3" 155, +25%, 115

95237 —9%2+15%,+9 >

< (152249%,)2"—15224252,+15 nd
Yn = ""9zm— 15219 an

102(27" —1)22+ (452" +170),+102
Tl = TS B ) e
By substituting the values of Z, in &4 1,

we write X, = % + A, for some sequence {A,} con-

verges to 0. Therefore
5461 _ 130—17+/61 (= 129—15v61
1= = oz, 45 n+ 3e0- 34W)+A
_130—17v61 = 5461
= i s (o — 200 + A,

Hence
|)En+1 - 5+8/a| < 13071411;\/a|in - 5+%/6T| + |An‘

forn=0,1,2....

Now by applying limit superior on both sides, we have
5+v61
e

lim %, =
n—soo
Here we observe that p = 1 ++/2 and jp = %ﬂ are the fixed
points of 7 and T respectively and

S 146V2-61 77 _ 8n+28%n+dnin
lp—pl =" <g="""T1Tpm
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In the following, we give justification for the assumption
Tp=p, lgn Xn, = p of Theorem 3.1. For this purpose, we
Pared
show that the sequence {%, };_, of Theorem 3.1 need not be
convergent. Further, we show that even if it is convergent its
limit need not be a fixed point of 7.

Example 3.6. Let X, K and T be as in Example 2.5.
We define T : [1,3] — [1,3] by

oo 3 if xe[l,1+V2]
Tl B i xe(1+v2,3]
1

so that T is an approximate operator of T with n = 5
Case (i) : In this case, we show that for any % € [1,3] the
sequence {£,}>_, of Theorem 3.1 does not converges.

Let %) be an arbitrary point in [1,3], and let a;, = 5; and
B = 3'7 forn=0,1,2....

Sub case(i) : We show that %, = 3 for some n > 1 implies that

~ _ 23

Xn+1 = 1o-

Letx, = § for some n > 1 so that
%=TW w>+§® T(3 - 5qm):
Since 2 5 — (3,,) > 1++/2, we have z, = %(3)

yn—T((1**)23+zn2) T(35 + smy)-

Since 2 Tb + 5(2 j <1+ \f we have j,, = % and hence

T = T3

Sub case (ii) : We show that %, = 32 for some n > 2 implies
that X, = %

Let %, = %g for some n > 2 so that

a=T(0- %)’f‘% t+373) =T (% + 53m)-

Since 2 % 3 4 5(3,1) < 1++/2forn>2, wehave 7, = % and

o= 71— 254 5 3) =TG- o).
Since %_W > 14 /2 for n > 2, we have j, = %—(3) and
hence %41 = T3, = 3.

Here, we observe that X, = %. Hence, forn > 2

5= {

which is an oscillating sequence and hence {%,};_, is not
convergent.

Case (if) : In this case, we show that the sequence {X,};_, of
Theorem 3.1 converges but its limit need not be a fixed point
of T.

Here we take oy, = 3, = % forn=0,1,2...
We show that ¥, = % for n =1,2,3... by induction on n.
T(*O*Tm) =T(®)=3

3

if niseven
if nisodd

I\)\Ul—‘l\)
el (O8]

and Xy = %
Since %y = g, we have Zy =
5o = (T2 12 di =T5,=2
Yo ( 5 ) ( 5 ) 2 and xp = L yp =
We assume that ¥, = 2 for some n >1so that
n T n p— 7 5

=T ) =T(§) = >
Vn = T(LBTZ”) = T(%) =3 2 and %, =
Therefore by 1nduct10n hypothesis &, = 2 5 forn= 1 2,...and
hence lim %, = ﬁ which is not a fixed pomt T.

n—soo

\S =l

T3, = 2.
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4. T-Stability

Theorem 4.1. Let X,K,T be as in Theorem 2.1, and let
{an}5 o and {B,};>_, be arbitrary sequences in [0, 1]. Then
the AK iteration procedure is 7 —stable.

Proof. Proof. By Theorem 2.1 for any x¢ € K, the AK itera-
tion procedure {x,},_, converges to a fixed point p (say) of
T in K and it is unique.

Let {s,};_, be an arbitrary sequence in K and

&= Hsn+1 —f(T,Sn)H where f(Tasn) =Ty,
v =T ((1 = oty)uy+ 04, Tuy) and uy, = T((1 = Bp)sn + BuT'sn)
forn=0,1,2....
First we consider
1£(T,52) = pll = | Tva = Tl|
< 8|lva—pll+o(lp—Tpl)
=6||va—pl|
=0||T((1 = o4)up+ 0, Tuy,) — Tpl|

< 8||(1 — oty + 04 Tuay — p||
+80(|lp—Tpl|)

< 82[(1— ) [|un — pl| + | Ty — T p|]

< 8%[(1— a)||un — pl| + 06| |un — p|
+ax¢(||p—Tpl|)]

=8%[1 — 04, (1= 8)]||un — pl|

< 82un — pl|

= 8||T((1 = Bu)sn+ BuT'sn) —

< 53”(1 _Bn)sn+ﬁnTsn_PH
+68%0(/[p—Tpl|)

< 8 [(1=Bu)llsn — pll + Bul|Tsn — Tpl|]

<8 [(1—Bu)llsn — pl|

Tp||

+Bu(S|lsn —pll+o([lp—Tpl]))]
=6(1—Bu(1—8))lls. — pl|
< 8||sn—pll.
Therefore
£ (T,50) — pl| < &|[50 — Pl ©9)

We assume that lim g, = 0.
n—soo

From the inequality (9), we have

lsns1 =PIl < [sns1 — F(Tos)l |+ IF(To50) = pl]
<& +8|s, —p|| forn=0,1,2....

By applying limit superior on both sides, we have

limsup ||s,+1 — p|| < limsupg, + 8 limsup||s, — p||
= §limsup||s, — p|| so that
limsup||s, — p|| < 0 and hence lim s, = p.
n—yoo

Conversely, we assume that lim s, = p.
n—soo

From (9), we have

& = l[sns1 = F(To5)|| < llswer — pll + L F(T,50) = pl]
< |sns1 — pl|+83||sn — pl| forn=0,1,2.....

By applying limit superior on both sides, we have

limsupg, < limsup||s,1 — p||+ 8> limsup||s, — p|| = 0 so
that hm g, =0.
Thus the AK iteration procedure is 7 —stable.

O

Remark 4.2. Here we note that Theorem 1.4 follows as a

009 nn,,
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corollary to Theorem 4.1 and the condition } o, = oo of
n=0
Theorem 1.4 is redundant.
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