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Abstract
This paper investigates the iterative solution of linear and nonlinear fractional partial differential equations using
fractional Adomian decomposition method (ADM). We also establish uniqueness and convergence criteria for
obtaining approximate solution. To illustrate applicability of present technique, solutions of some test problems
and their graphical representation are done by Mathematica software.
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1. Introduction
In the last three decades, the topic of Fractional calculus has
attracted researchers from various fields of science and engi-
neering. The theory of derivatives of non-integer order was
discovered by Leibniz in 1695 [17]. Leibniz’s note led to
the theory of fractional calculus, which was developed by
Liouville, Grunwald, Letnikov and Riemann in 19th century
[7, 20, 23, 25, 26]. Fractional derivatives provide an excel-
lent instrument for the description of memory and hereditary
properties of various materials and processes. The benefits
of fractional derivative become deceptive in demonstrating
mechanical and electrical properties of real materials, elaborat-
ing theory of fractals, theory of control of dynamical systems
etc. On account of confounded nature the exact analytical
solutions of most of fractional differential equations does not

exist, accordingly prominent consideration is given to get ap-
proximate solutions of these equations. The most commonly
used methods to solve these equations are the Variational it-
eration method [15], Finite-difference method [32], Laplace
transform method [28], Homotopy analysis method [18, 27],
Homotopy-perturbation method [16], Laplace homotopy anal-
ysis method [21], Homotopy perturbation transform method
[13], Fractional complex transformtion [29–31], Feng’s first
integral method [33], the (G’/G)-expansion method [34]. etc.
In recent years one of the most effective and accurate algo-
rithm to obtain solution in terms of rapidly convergent series
of nonlinear partial differential equations is suggested known
as Adomian decomposition method [4]. Over the last 25
years the Adomian Decomposition Method is used to obtain
a approximate solution of a wide class of partial differential
equations. Nowadays, this method is an alternative tool for
obtaining solution of several mathematical models involving
higher order linear or nonlinear partial differential equations.
Also ADM is most desirable method to obtain realistic so-
lutions of highly complex real life problems such as delay
differential equations [8, 12, 24] The main advantage of the
method is that without linearization, perturbation or discretiza-
tion it gives approximate or analytical solution to a large class
of nonlinear equations [3, 9–11, 22].

The nonlinear evolution equations are mostly used as
models to describe complex physical phenomenon in sev-
eral branches of science and engineering. Qaseem and Kashif
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have studied analytical solutions of fractional Walter’s B fluid
with applications [19]. Atangana and Baleanu [5] presented a
heat transfer model by implementing Caputo-Fabrizio space-
fractional derivative. Hristov [14] has traced out the analyt-
ical solution for steady-state heat conduction using Caputo-
Fabrizio space-fractional derivative with nonsingular fading
memory. Kashif and Ilyas analysed the heat and mass transfer
in the MHD flow of a generalized Casson fluid using Caputo-
Fabrizio time-fractional derivative [1]

One of the fundamental problems for these models is
to obtain their traveling wave solutions as well as solitary
wave solutions. The first observation of a solitary wave was
made in 1834 by the Scotish scientist and engineer John Scott
Russell. Solitary wave is localized wave that propagates along
one space direction only, which conserves speed and shape.
Classically, the solitary wave solutions of nonlinear evolution
equations are determined by analytical formulae and serve as
prototypical solutions that model physical localized waves.
For many examples, localized initial data ultimately breaks
up into a finite collection of solitary wave solutions [2]. This
fact has been proved analytically by certain equations such
as Korteweg-de-Vries equation (KdV), Schrodinger equation,
Boussinesq equation etc. We will make an attempt to solve
time fractional KdV equation.

We organize this paper as follows: In section 2, we define
some basic preliminaries and properties of fractional calcu-
lus. Section 3, is developed for detailed analysis of fractional
Adomian Decomposition Method. Section 4, we discuss con-
vergence of fractional Adomian decomposition method. In
Section 5, we present some examples to show the applicabil-
ity and efficiency of the method and also their solutions are
demonstrated with the help of Mathematica. Finally, we give
our conclusions in Section 6.

2. Fractional operator with properties
This section is devoted to studying some basic definitions of
fractional calculus.

Definition 2.1. For a real number p > α , a function f (t),
t > 0 , is belong to the space Cα , α ∈ R, if f (t) = t p f1(t),
where f1(x) ∈C[0,∞) and it is said to be in the space Cm

α if
and only if f (m)(t) ∈Cα , m ∈ N.

Definition 2.2. The Caputo derivative of fractional order α

of a function f (t), f (t) ∈Cm
−1 is defined as follows

Dα
t f (t) =

1
Γ(m−α)

∫ x

0

f (m)(τ)

(t− τ)(1−m+α)
dτ,

for m−1 < α ≤ m,, m ∈ N,x > 0,

Definition 2.3. The Riemann - Liouville fractional integral
operator of a function f ∈Cµ , µ ≥−1, is defined for α ≥ 0
by

Jα f (x) =
1

Γ(α)

∫ x

0

f (t)
(x− t)1−α

dt, α > 0, x > 0

J0 f (x) = f (x).

Properties:
It is simple to prove the following properties of fractional
derivatives and integrals that will be used in the analysis [23]

(i) Dα Jα f (t) = f (t),

(ii) Jα tγ = Γ(γ+1)
Γ(α+γ+1) t

(γ+α).

(iii) Dα tγ = Γ(γ+1)
Γ(γ−α+1) t

(γ−α)

In the next section, we develop the Adomain decomposition
method for fractional partial differential equation.

3. Analysis of Adomian Decomposition
Method

We consider the following general fractional partial differen-
tial equation

Lα u(x, t)+Ru(x, t)+Nu(x, t) = g(x, t), (3.1)

m−1 < α ≤ m, x > 0, t > 0.

where L is fractional order derivative, R is a linear differential
operator, N is a nonlinear operator and g is source term. Let

Lα =
∂ nα

∂ tnα
(3.2)

be the (nα)th order fractional derivative then the correspond-
ing L−α operator will be written in the following form

Jα = L−α =
1

Γn(α +1)

∫ t

0

∫
τn

0

∫
τ(n−1)

0
· · ·∫

τ2

0
(dτ1)

α(dτ2)
α(dτ3)

α ......(dτn)
α (3.3)

and
1

Γ(α +1)

∫ t

0
(dτn)

α

is the Caputo integration.
Operating with the operator Jα on both sides of equation (3.1),
we have

Jα [Lα u(x, t)+Ru(x, t)+Nu(x, t)] = Jα g(x, t)

Jα Lα u(x, t) =−Jα [Ru(x, t)+Nu(x, t)]+Jα g(x, t) (3.4)

Using property (ii) in equation (3.4), we get

u(x, t)=
m−1

∑
k=0

∂ ku(x,0)
∂ tk

tk

k!
−Jα [Ru(x, t)+Nu(x, t)]+Jα g(x, t),

(3.5)

for m−1 < α ≤ m. Now, we decompose the unknown func-
tion u(x, t) into sum of an infinite number of components
given by the decomposition series

u(x, t) =
∞

∑
n=0

un(x, t) (3.6)
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The nonlinear terms Nu(x, t) are decomposed in the following
form:

Nu(x, t) =
∞

∑
n=0

An (3.7)

where the Adomian polynomial can be determined as follows:

An =
1
n!

[
dnN
dλ n (

n

∑
k=0

λ
kuk)

]
λ=0

(3.8)

where An is called Adomian polynomial [6] and that can be
easily calculated by Mathematica software.
Substituting the decomposition series (3.6) and(3.7) into both
sides of equation (3.5) gives

∞

∑
n=0

un(x, t) =
m−1

∑
k=0

∂ ku(x,0)
∂ tk

tk

k!
+ Jα g(x, t)

∞

∑
n=0

un(x, t)+
∞

∑
n=0

An

]
, x > 0. (3.9)

The components un(x, t), n≥ 0 of the solution u(x, t) can be
recursively determined by using the relation as follows:

u0(x, t) =
m−1

∑
k=0

∂ ku(x,0)
∂ tk

tk

k!
+ Jα g(x, t), (3.10)

u1(x, t) =−Jα(Ru0 +A0)

u2(x, t) =−Jα(Ru1 +A1)

u3(x, t) =−Jα(Ru2 +A2)

...
un+1(x, t) =−Jα(Run +An)

where each component can be determined by using the pre-
ceding components and we can obtain the solution in a series
form by calculating the components un(x, t), n ≥ 0. Finally,
we approximate the solution u(x, t) by the truncated series.

φN(x, t)∼=
N−1

∑
n=0

un(x, t)

lim
N→∞

φN = u(x, t)

In the next section, we develop convergence of the fractional
Adomain decomposition method.

4. Convergence
The practical solution by fractional Adomain decomposition
method is given by-

φN(x, t) =
N−1

∑
n=0

un(x, t)

lim
N→∞

φN = u(x, t)

The sufficient condition that guarantees existence of a unique
solution is introduced in theorem (4.1) and convergence of
the series solution is proved in theorem (4.2).

Theorem 4.1. (Uniqueness Theorem) We consider the fol-
lowing general time fractional partial differential equation

Lα u(x, t)+Ru(x, t)+Nu(x, t) = g(x, t), (4.1)

m−1 < α ≤ m, x > 0, t > 0. where L is fractional order
derivative, R is linear differential operator, N is nonlinear op-
erator and g is source term, where R(u) and N(u) satisfy Lips-
chitz condition with constants L1 and L2. Then equation (4.1)
has a unique solution whenever 0 < k < 1 for k = (L1+L2)tα

Γ(α+1) .

Proof: Let X be the Banach space of all continuous func-
tions on I = [0,T ] with the norm
‖u(t)‖= max|u(t)|.
We define a mapping F : X → X , where

F(u(t))= φ(t)+Jα g(x, t)−Jα [Ru(x, t)]− [Jα Nu(x, t)] (4.2)

Let u, ū ∈ X

‖Fu−Fū‖= max|Fu−Fū|

‖Fu−Fū‖=
∣∣∣φ(t)+ Jα g(x, t)− Jα [Ru(x, t)]

− [Jα Nu(x, t)]−φ(t)− Jα g(x, t)

+ Jα [Rū(x, t)]+ [Jα Nū(x, t)]
∣∣∣

‖Fu−Fū‖=
∣∣∣Jα [Ru(x, t)−Rū(x, t)]

+ Jα [Nu(x, t)−Nū(x, t)]
∣∣∣

Now suppose R(u) and N(u) satisfy Lipschitz condition with
constants L1 and L2.
Therefore

‖Fu−Fū‖ ≤ max
[
Jα |Ru(x, t)−Rū(x, t)|

+ Jα |Nu(x, t)−Nū(x, t)|
]

‖Fu−Fū‖ ≤ max
[
L1Jα |u(x, t)− ū(x, t)|

+L2Jα |u(x, t)− ū(x, t)|
]

‖Fu−Fū‖ ≤ (L1 +L2)‖u(x, t)− ū(x, t)‖ tα

Γ(α +1)

‖Fu−Fū‖ ≤ k‖u(x, t)− ū(x, t)‖ wherek =
(L1 +L2)tα

Γ(α +1)

Theorem 4.2. (Convergence Theorem) The solution u =

∑
∞
i=0 ui(x, t) of equation (4.1) using ADM converges if 0 <

k < 1 and ‖ui‖< ∞ where k = (L1+L2)tα

Γ(α+1) .

Proof: Let Sn be the partial sum of series.

Sn =
n

∑
i=0

ui(x, t)
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We shall prove that {Sn} is a Cauchy sequence in Banach
space X. Consider

‖Sn+p−Sn‖= max
∣∣∣∣ n+p

∑
i=n+1

ui(x, t)
∣∣∣∣

‖Sn+p−Sn‖= max
∣∣∣Jα(R(Sn+p−1)−R(Sn−1))

+ Jα(N(Sn+p−1−NSn−1))
∣∣∣

‖Sn+p−Sn‖ ≤ max
∣∣∣Jα(R(Sn+p−1)−R(Sn−1)|

+max|Jα(N(Sn+p−1)−N(Sn−1)
∣∣∣

Again by Lipschitz condition

‖Sn+p−Sn‖ ≤ L1‖Jα(Sn+p−1−Sn−1)‖
+L2‖Jα(Sn+p−1−Sn−1)‖

‖Sn+p−Sn‖ ≤ (L1 +L2)‖(Sn+p−1−Sn−1)‖
tα

Γ(α +1)

Therefore

‖Sn+p−Sn‖≤ k‖(Sn+p−1−Sn−1)‖ where k =
(L1 +L2)tα

Γ(α +1)

Similarly we have

‖Sn+p−1−Sn−1‖ ≤ k‖(Sn+p−2−Sn−2)‖

So

‖Sn+p−Sn‖ ≤ k2‖(Sn+p−2−Sn−2)‖

‖Sn+p−Sn‖ ≤ kn‖(Sp−S0)‖

Now for n > m, we have

‖Sn−Sm‖ ≤ ‖(Sm+1−Sm)‖+ .......+‖(Sn−Sn−1)‖

‖Sn−Sm‖ ≤
km‖u1‖
1− k

.

Since u(x, t) is bounded. So as n→ ∞,‖Sn−Sm‖→ 0.
Hence Sn is a Cauchy sequence in X. Therefore the series is
convergent.
In the next section, we illustrate some examples and their so-
lutions are represented graphically by mathematica software.

5. Applications
FADM for Time Fractional Nonlinear Kortweg- deVries
(KdV)Equations

Consider the following time fractional nonlinear Kortweg-
deVries (KdV) equation

∂ α u(x, t)
∂ tα

+au(x, t)
∂u(x, t)

∂x
+b

∂ 3u(x, t)
∂x3 = 0,u(x,0)= f (x).

(5.1)

Where a, b are constants. In the operator form , KdV equation
becomes

Lα
t u(x, t) =−buxxx−auux (5.2)

Therefore, by FADM from equation (3.9) we can write

∞

∑
n=0

un(x, t) = u(x,0)−bJα

[
∞

∑
n=0

un(x, t)
]

xxx
−aJα

[
∞

∑
n=0

An

]
The typical approach of Adomian Decomposition Method is
the introduction of the recursive relation

u0(x, t) = u(x,0)

uk+1(x, t) =−bJα

[
uk(x, t)

]
xxx
−aJα

[
Ak

]
,k ≥ 0.

(5.3)

The remaining components un, n ≥ 1 is successively deter-
mined and the series solution is obtained.

Example 5.1. Consider the following time fractional partial
differential equation

uα
t −6uux +uxxx = 0, 0 < x < π, 0 < α ≤ 1, t > 0

u(x,0) = 6x

Therefore , by FADM we can write

∞

∑
n=0

un(x, t) = 6x− Jα

[
∞

∑
n=0

un(x, t)
]

xxx
+6Jα

[
∞

∑
n=0

An

]
By using ADM, we have following recursive relation

u0(x, t) = 6x

uk+1(x, t) =−Jα

[
uk(x, t)

]
xxx

+6Jα

[
Ak

]
,k ≥ 0.

Using equation(5.3) , we have

u0(x, t) = u(x,0)
= 6x

u1(x, t) =−Jα

[
u0(x, t)

]
xxx

+6Jα A0,

A0 = u0Dxu0,

= 6xDx6x,

= 62x,

u1(x, t) = 6Jα 62x

u1(x, t) = 63x
tα

Γ(α +1)
,
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Figure 1. The exact solution of Ex.5.1

u2(x, t) =−Jα

[
u1(x, t)

]
xxx

+6Jα A1,

A1 = u1Dxu0 +u0Dxu1,

= 63x
tα

Γ(α +1)
6+6x63 tα

Γ(α +1)
,

= 264x
tα

Γ(α +1)
,

u2(x, t) = 2x65 t2α

Γ(2α +1)
,

u3(x, t) =−Jα

[
u2(x, t)

]
xxx

+6Jα A2

A2 = u2Dxu0 +u1Dxu1 +u0Dxu2

A2 = 4(65)x
t2α

Γ(2α +1)
+66x

t3α

Γ(3α +1)
Γ(2α +1)
Γ(α +1)2

u3(x, t) = 4(67)x
t3α

Γ(3α +1)
+(67)x

t3α

Γ(3α +1)
Γ(2α +1)
Γ(α +1)2

Therefore, the series solution for the IBVP is given by

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ ....

Substituting values of components in above equation, we get

u(x, t) = 63x
tα

Γ(α +1)
+2x65 t2α

Γ(2α +1)
+4(67)x

t3α

Γ(3α +1)

+(67)x
t3α

Γ(3α +1)
Γ(2α +1)
Γ(α +1)2 + · · ·

This solution can be written as follows For α = 1, the exact
solution of the original IBVP is given by

u(x, t) =
6x

1−36t
, |36t|< 1.

The graphical representation of the solution is given in Figure
1 and 2.

Figure 2. Apprx. soln. for α = 0.8 of Ex.5.1

Example 5.2. Consider the following time fractional partial
differential equation

uα
t −6uux +uxxx = 0, 0 < x < π, 0 < α ≤ 1, t > 0

u(x,0) =
1
6
(x−1).

Using equation(5.3) , we have

u0(x, t) = u(x,0)

=
1
6
(x−1),

u1(x, t) =−Jα

[
u0(x, t)

]
xxx

+6Jα A0,

A0 = u0Dxu0

=
1
6
(x−1)Dx

1
6
(x−1),

=
1
62 (x−1),

u1(x, t) = 6Jα 1
62 (x−1),

u1(x, t) =
1
6
(x−1)

tα

Γ(α +1)
,

u2(x, t) =−Jα

[
u1(x, t)

]
xxx

+6Jα A1

A1 = u1Dxu0 +u0Dxu1

A1 =
tα

Γ(α +1)
1
6
(x−1)

1
6
+

1
6
(x−1)

1
6

tα

Γ(α +1)

=
2
62 (x−1)

tα

Γ(α +1)

u2(x, t) =
2
6
(x−1)

t2α

Γ(2α +1)
,
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Figure 3. The exact solution of Ex.5.2

u3(x, t) =−Jα

[
u2(x, t)

]
xxx

+6Jα A2

A2 = u2Dxu0 +u1Dxu1 +u0Dxu2

A2 =
4
62 (x−1)

t2α

Γ(2α +1)
+

t2α

Γ(α +1)
1
62 (x−1)

Γ(2α +1)
Γ(2α +1)

tα

Γ(α +1)

u3(x, t) =
4(x−1)

6
t3α

Γ(3α +1)
+

t3α

Γ(3α +1)
(x−1)

6
Γ(2α +1)
Γ(2α +1)

tα

Γ(α +1)2 .

Therefore, the series solution for the IBVP is given by

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ ....

Substituting values of components in above equation, we get

u(x, t) =
1
6
(x−1)

tα

Γ(α +1)
+

2
6
(x−1)

t2α

Γ(2α +1)

+
4(x−1)

6
t3α

Γ(3α +1)
+ · · ·

This solution can be written as follows For α = 1, the exact
solution of the original IBVP of is given by

u(x, t) =
x−1

6(1− t)
, |t|< 1.

The graphical representation of the solution is given in Figure
3 and 4.

6. Conclusions:
In this paper ADM has been successfully applied to find the so-
lution of time fractional partial differential equations. We have
also developed the algorithm for convergence of ADM. The
applicability and efficiency of ADM is illustrated by obtaining
the solutions of several examples. It is worth mentioning that

Figure 4. Apprx. soln. for α = 0.8 of Ex.5.2

the proposed technique is capable of reducing the volume of
the computational work as compared to the classical methods.
Hence ADM is very powerful and efficient in finding solu-
tions for wide class of nonlinear fractional partial differential
equations.
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