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Abstract
The distance d(u,v) from a vertex u of G to a vertex v is the length of a shortest u to v path. The distance
degree sequence (dds) of a vertex v in a graph G is a list of the number of vertices at distance 1, 2, . . . . , e(v);
in that order, where e(v) denotes the eccentricity of v in G. Thus, the sequence (di0 ,di1 ,di2 , . . . , di j , . . .) is the
distance degree sequence of the vertex vi in G where, di j denotes the number of vertices at distance j from vi.
In this article we present results to find distance degree sequences of some of the derived graphs viz., the line
graph, the sub-division graph, the total graph, the powers of a graph, the Mycieleskian of a graph etc.
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1. Introduction and Preliminaries
A sequence for a graph is an invariant consisting of a list of
numbers rather than a single number or invariant or index
pertaining to the graph. The major advantage of considering
a sequence is the ease of handling the sequences to calculate
as a single numerical invariant yet the weight or information
carried by it is much higher compared to a single invariant.
There are many sequences representing a graph available in

literature viz., degree sequence, eccentric sequence, distance
degree sequence, status sequence, path degree sequence, etc.

First sequence introduced onto a graph was its degree
sequence [6]. The realizability of a degree sequence was
addressed by Havel [11] and Hakimi [10] independently. The
eccentric sequences were the first distance related sequences
introduced for undirected graphs. Major contributions are
due to Lesniak [19], Ostrand [21], Behzad and Simpson
[1], Nandakumar [20]. Next distance based sequences were
the path degree sequences and distance degree sequences
studied by Randic [23]. Initially these sequences were defined
to model a chemical structure by its molecular graph and
study them to distinguish isomers. Kennedy and Quintas
[18] examined how the distance degree sequences relate to
embedding trees in lattice-graphs and other spaces. Such
interplay has enriched the study of distance based sequences
with the introduction of new ones. Bloom et al. [3], [2]
continued the study of distance degree sequences by defining
two classes of graphs namely distance degree regular graphs
(DDR) and distance degree injective (DDI) graphs. Many
researchers have contributed to the study of these graphs as
they have peculiar properties and are extremes in terms of
their structures. On one hand, DDI graphs are highly irregular,
as in these graphs each vertex has a different distance degree
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sequence and on the other, DDR graphs are highly regular,
as all the vertices have the same distance degree sequence.
These two classes of graphs have numerous properties and
are related to many graph parameters. Extensive research has
been done in this area by Bloom et al.[3], [2], Kennedy et al.
[18], Gargano et al. [7], Bussemaker et al. [5], Itagi Huilgol
et al. [12], [16], [17], [15], [14], [13], Volf [25], Halberstam
et al. [9], Martinez et al. [7], Quintas et al. [22], Slater [24],
etc.
With such a rich history, the study of distance degree
sequences for graphs has many persisting open problems.
For many classes of graphs finding such sequences itself is
challenging. In this paper we have found distance degree
sequences of some of the derived graphs such as the line
graph, the sub-division graph, the total graph, the powers of a
graph, the Mycieleskian of a graph of a given graph with its
distance degree sequence.
We will now define all the terms required. For all undefined
terms we refer Buckley and Harary [4]. Let G = (V,E) denote
a graph with set of vertices V, whose cardinality is the order
p and two element subsets of V, known as the edges forming
E, whose cardinality is the size q of G.
Unless mentioned otherwise, in this article, by a graph we
mean an undirected, finite graph without multiple edges and
self-loops.

The distance d(u,v) from a vertex u of G to a vertex v is
the length of a shortest u to v path. The degree of the vertex u
is the number of vertices at distance one.

The sequence of numbers of vertices having 0,1,2,3, . . .
is called the degree sequence, which is the list of degrees of
vertices of G arranged in non-decreasing order.

The eccentricity e(v) of v is the distance of a farthest
vertex from v.

The minimum of the eccentricities is the radius, rad(G)
and the maximum is the diameter, diam(G) of G.

A graph is said to be self centered if all the vertices have
the same eccentricity.

If d(u,v) = e(u),(u 6= v), we say that v is an eccentric
vertex of u.

The eccentric sequence of a connected graph G is a list
of the eccentricities of its vertices arranged in non-decreasing
order.

The distance degree sequence of a vertex is a
generalization of its degree sequence. The distance degree
sequence (dds) of a vertex v in a graph G is a list of the number
of vertices at distance 1,2, . . . ,e(v) in that order, where
e(v) denotes the eccentricity of v in G. Thus the sequence
(di0 ,di1 ,di2 , . . . ,di j , . . .) is the distance degree sequence of a
vertex vi in G where di j denotes the number of vertices at
distance j from vi. The p−tuple of distance degree sequences
of the vertices of G with entries arranged in lexicographic
order is the distance degree sequence (DDS) of G.

As an illustration consider the graph G as shown in Figure
1.

DDS(G) = ((1,1,1,2),(1,2,2),(1,3,1),(1,2,1,1)2).

Figure 1. G

If we consider the 3-dimensional cube Q3 as an example, we
will get DDS(Q3) = (1,3,3,1)8).

A graph G is said to be a Distance degree regular (DDR)
graph if all the vertices of G have the same distance degree
sequence. That is, for all vertices v of G, the distance degree
sequence is (di0 ,di1 ,di2 , . . . , di j , . . .).
Note that a DDR graph has a single sequence with multiplicity
p.
For example, the three dimensional cube Q3 is a DDR graph
having (1,3,3,1) as the distance degree sequence of each of
its vertex. Likewise, cycles, complete graphs are all DDR
graphs.

In contrast to distance degree regular (DDR) graphs the
Distance Degree Injective (DDI) graphs are the graphs with
no two vertices having the same distance degree sequence
(dds). These were also defined by Bloom et al. [3].
Note that the DDS of a DDI graph has multiplicity one for
each of its sequence.

2. Powers of a graph
Here we give the distance degree sequences of powers of a
graph and prove that powers of DDR graphs to be DDR.

Lemma 2.1. In a graph G, for any vertex v, with distance
degree sequence
ddsG(v) = (d0(v),d1(v),d2(v), . . . ,de(v)(v)),
the distance degree sequence of v in the kth power of G, Gk,
is given by ddsGk(v) =
(d0(v),∑k

i=1 di(v),∑2k
i=k+1 di(v),∑3k

i=2k+1 di(v), . . . ,∑
e(v)
i=e(v)−(k−1) di(v)).

Proof: Let G be a graph with a vertex v having distance
degree sequence (d0(v),d1(v),d2(v), . . . ,de(v)(v)). Let us
denote the set of vertices at distance i from v as Ai, in G.
So the distance degree sequence can be rewritten as follows:
ddsG(v) = (|A0(v)|, |A1(v)|, |A2(v)|, . . . , |Ap(v)|). In the kth

power of G, Gk, we know that all the vertices which are
at distance less that or equal to k are adjacent to v. So,
A1Gk (v) = ∑

k
i=1 di(v). It is clear that the vertices which are

at distance k+ 1,k+ 2, . . . ,k+ k = 2k in G, are at distance
two from v in Gk. Hence A2Gk (v) = ∑

2k
i=k+1 di(v). Similarly,

we can get A3Gk (v) = ∑
3k
i=2k+1 di(v). Continuing in this way,

the last entry in the distance degree sequence of v in Gk is
∑

e(v)
i=e(v)−(k−1) di(v) = ∑

e(v)
i=e(v)−(k−1) di(v).
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Corollary 2.2. Powers of distance degree regular graphs are
distance degree regular.

Remark 2.3. If the eccentricity of a vertex v with distance
degree sequence
ddsG(v) = (d0(v),d1(v),d2(v), . . . ,de(v)(v)) is m, then the
eccentricity of v in Gk is m− k+1.

3. Distance degree sequences of line
graph of a graph

In this section, we consider line graphs of graphs and give
their explicit distance degree sequences. First we consider
line graph of a hypercube.

Theorem 3.1. The line graph of the n−dimensional
hypercube Qn is a distance degree regular graph with distance
degree sequence (1,2(n− 1),(n−1)C1[2n− 3],(n−1)C2[2n−
5], . . . ,(n−1)Ck−1[2n−2k+1], . . . ,3(n−1),1).

Proof: Consider the hypercube graph of dimension n.
Since Qn is a distance transitive graph, its line graph is vertex
transitive and hence is distance degree regular graph. The
distance degree sequence is given as follows:
Let a and b be two adjacent vertices of Qn then (a− b) is
a vertex in L(Qn). By distance transitivity of Qn, we know
that there are nCd vertices at distance d from every vertex
u of Qn. Hence at each distance d in the line graph of
Qn, L(Qn), there are (n−1)C(d−1)[(n− d + 1) + (n− d)] =
(n−1)C(d−1)[2n− 2d + 1] for each vertex (a− b) in L(Qn).

Next we consider line graphs of trees. For this we use the
definition of edge degree ed(e) as defined in [4].

Theorem 3.2. Let T be a tree and let u and v be any
two adjacent vertices in T with respective distance degree
sequences ddsT (u) = (d0(u),d1(u),d2(u), . . . ,decc(u)(u)),
ddsT (v) = (d0(v),d1(v),d2(v), . . . ,decc(v)(v)), where ecc(u)
and ecc(v) represent the eccentricity of u and v respectively.
Then the distance degree sequence of the vertex e = uv in the
line graph of T, L(T ), is
ddsL(T )(e) = (d

′
0(e),d

′
1(e),d

′
2(e), . . . ,d

′
ecc(e)(e)),

where ecc(e) is the eccentricity of e in L(T ) is
min(eccT (u),eccT (v)), with each entry given as d

′
0(e) = 1,

d
′
1(e) = d1(u) + d1(v)− 2, d

′
2(e) = d2(u) + d2(v)− d

′
1(e),

d
′
3(e) = d3(u) + d3(v) − d

′
2(e), . . . d

′
k+1(e) = dk+1(u) +

dk+1(v)−d
′
k(e), for 2≤ e≤ ecc(e).

Proof: Let T be a tree with two adjacent vertices u and v,
with respective distance degree sequences given as
ddsT (u) = (d0(u),d1(u),d2(u), . . . ,decc(u)(u)),
ddsT (v) = (d0(v),d1(v),d2(v), . . . ,decc(v)(v)).
Here ecc(u) and ecc(v) are the eccentricities of u and v
respectively. Then e = uv is a vertex in the line graph of
T, L(T ). Let the distance degree sequence of e in L(T ) be
written as

ddsL(T )(e) = (d
′
0(e),d

′
1(e),d

′
2(e), . . . ,d

′
ecc(e)(e)). It is clear

that the eccentricity of e in L(T ) is the minimum of the
eccentricities of its end vertices, that is,
eccL(T )(e) = min{eccT (u),eccT (v)}. Here we find the values
of each entry of the ddsL(T )(e). Since, T is simple, undirected,
we get d

′
0(e) = 1. In the line graph of T, e = uv has

degL(T )(e) = ed(e) = degT (u) + degT (v)− 2, as the edge
is incident with neighbours of both u and v. At distance two
from e in L(T ) are the edges incident with the neighbours of
e, that is, d

′
2(e) is the distinct number of second neighbors

of u and v. Hence, d
′
2(e) in L(T ) = d2(u)+d2(v)− ed(e) as

the number of second neighbours of v are neighbors of u and
vice-versa. But d1(u)+ d1(v)− 2 = d

′
1(e). Hence d

′
2(e) =

d2(u)+d2(v)−d
′
1(e). Now for any k, 2≤ k ≤ eccL(T )(e)−1

we can write d
′
k+1(e) = dk+1(u) + dk+1(v)− d

′
k(e), as the

(k+1)th neighbors of e in L(T ) are (k+1)th distinct neighbors
of both u and v.

Corollary 3.3. For two trees G and H having the same
distance degree sequence, and L(G) and L(H) having the
same distance degree sequence, then there exists a one-to-one
mapping corresponding to the distance degree sequences of
adjacent vertices of G and H.

Proof:
Let G and H be two trees with the same distance degree

sequence. That is, DDS(G) = DDS(H). Let e = uv be an
edge in G with its end vertices having
ddsG(u) = (d0(u),d1(u),d2(u), . . . ,decc(u)(u)), and
ddsG(v) = (d0(v),d1(v),d2(v), . . . ,decc(v)(v)), where ecc(u)
and ecc(v) represent the eccentricity of u and v respectively.
Then by by the Theorem 3.2 the ddsL(G)(e) is given by
(d
′
0(e),d

′
1(e),d

′
2(e), . . . ,d

′
ecc(e)(e)), where ecc(e) is the

eccentricity of e in L(G) is min(eccG(u),eccG(v)), with each
entry given as d

′
0(e) = 1, d

′
1(e) = d1(u)+d1(v)−2, d

′
2(e) =

d2(u)+d2(v)−d
′
1(e), d

′
3(e) = d3(u)+d3(v)−d

′
2(e),

. . . d
′
k+1(e) = dk+1(u) + dk+1(v) − d

′
k(e), for 2 ≤ e ≤

eccL(G)(e)
where eccL(G)(e) = min{eccG(u),eccG(v)}.
Let f = st be an edge in H with respective distance degree
sequences ddsH(s) = (d0(s),d1(s),d2(s), . . . ,decc(s)(s)),
ddsH(t) = (d0(t),d1(t),d2(t), . . . ,decc(t)(t)), where ecc(s)
and ecc(t) represent the eccentricity of s and t respectively.
Similarly, the ddsL(H)( f ) is given by
(d
′
0( f ),d

′
1( f ),d

′
2( f ), . . . ,d

′
ecc( f )( f )), where ecc( f ) is the

eccentricity of e in L(H) is min(eccH(s),eccH(t)), with each
entry given as
d
′
0( f ) = 1, d

′
1( f ) = d1(s) + d1(t) − 2, d

′
2( f ) = d2(s) +

d2(t)−d
′
1( f ), d

′
3( f ) = d3(s)+d3(t)−d

′
2( f ), . . . d

′
k+1( f ) =

dk+1(s) + dk+1(t)− d
′
k( f ), for 2 ≤ e ≤ eccL(H)( f ) where

eccL(H)( f ) = min{eccH(s),eccH(t)}.
By hypothesis we know that L(G) and L(H) have the

same distance degree sequence. Hence for the edge e in G,
there will be an edge in H, say f , such that ddsL(G)(e) =
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ddsL(H)( f ). As DDS(G) = DDS(H), for every vertex u in G,
there exists a vertex in H having the same distance degree
sequence as of u. We pick this vertex to be s in H, that is
ddsG(u) = ddsH(s). Since ddsL(G)(e) = ddsL(H)( f ) we get
(d
′
0(e),d

′
1(e),d

′
2(e), . . . ,d

′
ecc(e)(e)) =

(d
′
0( f ),d

′
1( f ),d

′
2( f ), . . . ,d

′
ecc( f )( f )).

We have di(u) = di(s) for 1≤ i≤ decc(s)(s) = decc(u)(u)
as ddsG(u) = ddsH(s) by choice. Hence d

′
0(e) = d

′
0( f ) = 1

d
′
1(e) = d

′
1( f ) then d1(u)+d1(v)−2 = d1(s)+d1(t)−2.

But di(u) = di(s), for 1≤ i≤ decc(s)(s) = decc(u)(u)
as ddsG(u) = ddsH(s) implying that d1(v) = d1(t).
Similarly d

′
2(e) = d

′
2( f ) implies

d2(u)+d2(v)−d
′
1(e) = d2(s)+d2(t)−d

′
1( f )

implies d2(v) = d2(t).Therefore d
′
k(e) = d

′
k( f )

implying that
dk(u)+dk+1(v)−d

′
k−1(e) = dk(s)+dk(t)−d

′
k−1( f )

Hence, dk(v) = dk(t) for any
1≤ k ≤ decc(v)(v) = decc(t)(t) implying that
ddsG(v) = ddsH(t). Hence Proved.

Illustration: Now we consider two trees T1 and T2 having
the same distance degree sequences given below

Figure 2. T1 Figure 3. T2

The distance degree sequences of the vertices of T1 are a
given below.
dds(1) = (1,5,8,4), dds(2) = (1,5,8,4),
dds(3) = (1,2,4,7,4), dds(4) = (1,2,4,7,4),
dds(5) = (1,2,4,7,4), dds(6) = (1,2,4,7,4),
dds(7) = (1,1,1,4,7,4), dds(8) = (1,1,1,4,7,4),
dds(9) = (1,1,1,4,7,4), dds(10) = (1,1,1,4,7,4),
dds(11) = (1,1,4,8,4), dds(12) = (1,1,4,8,4),
dds(13) = (1,3,4,6,4), dds(14) = (1,3,4,6,4),
dds(15) = (1,1,2,4,6,4),dds(16) = (1,1,2,4,6,4),
dds(17) = (1,1,2,4,6,4), dds(18) = (1,1,2,4,6,4).

Note that the edge set of T1 is {(1,2),(1,3),(1,4),
(1,5),(1,6),(2,11),(2,12),(2,13),(2,14),(3,7),(4,8),
(5,9),(6,10),(13,15),(13,16),(14,17),(14,18)}
Hence the respective distance degree sequences of vertices
forming edges can be considered as adjacent sequences.

It is clear that T2 is not isomorphic to T1, but has the same
distance degree sequence as that of T1. Also note that L(T1)

and L(T2) have the same distance degree sequence. Now with
the labels of vertices we can see that the edge set of T2 is not
equal to that of T1, but the end vertices of each edge have the
same pair of distance degree sequences as in the case of edges
of T1.

Note: If adjacent vertex distance degree sequences are
defined as the edge distance degree sequences (edds) then the
above corollary can be rephrased as follows.

Corollary 3.4. Two trees G and H with the same DDS and
LDDS have the same EDDS.

Next we consider a result to find the distance degree
sequences of a line graph of a graph. In this result we
use some of the notation as below: Let Ni(v) denote the ith

neighborhood of a vertex v in G. This can be viewed as
a spanning tree rooted at the vertex v. Let Ei(u) and Ei(v)
denote the edge set at distance i in the spanning tree rooted
at u and v respectively. Let E 〈Ai〉 and E 〈Bi〉 be the edges in
vertex induced subgraph containing the vertices at distance i
from the vertices u and v respectively. The edges induced in G
between (i−1)th neighborhood vertices and ith neighborhood
vertices without the respective spanning tree edges rooted at
that vertex is given by Ei−1,i = Ei−1,i(u)∪Ei−1,i(v).

Theorem 3.5. Let G be simple connected graph, let u and
v be any two adjacent vertices in G with respective distance
degree sequences
ddsG(u) = (d0(u),d1(u),d2(u), . . . ,decc(u)(u)),
ddsG(v) = (d0(v),d1(v),d2(v), . . . ,decc(v)(v)),
where ecc(u) and ecc(v) represent the eccentricity of u
and v respectively. Then the distance degree sequence
of the vertex e = uv in the line graph of G, L(G)

is ddsL(G)(e) = (d
′′
0(e),d

′′
1(e),d

′′
2(e), . . . ,d

′′
ecc(e)(e)), where

ecc(e) is the eccentricity of e in L(G), and d
′′
0(e) = 1,

d
′′
1(e) = |{E1(u)∪E1(v)}\ e| ,

d
′′
2(e) =∣∣∣∣ {{E2(u)∪E2(v)}∪{E 〈A1〉∪E 〈B1〉}∪E1,2}

\{E1(u)∪E1(v)}\ e

∣∣∣∣ ,
d
′′
3(e) =∣∣∣∣∣∣

{{E3(u)∪E3(v)}∪{E 〈A2〉∪E 〈B2〉∪E2,3}
\{E2(u)∪E2(v)}\{E1(u)∪E1(v)}\

{E 〈A1〉∪E 〈B1〉}\E1,2 \ e

∣∣∣∣∣∣ ,
...

d
′′
k+1(e) =∣∣∣∣∣∣
{{Ek+1(u)∪Ek+1(v)}∪E 〈Ak〉∪E 〈Bk〉∪E(k−1),k}

\∪k−1
i=1 {Ei(u)∪Ei(v)}\

∪k−1
i=1 {E 〈Ai〉∪E 〈Bi〉 \∪k−1

i=2 E(i−1),i}\ e

∣∣∣∣∣∣ ,
for 2≤ k ≤ ecc(e).

Proof: Let G be any simple connected graph with two
adjacent vertices u and v, with respective distance degree
sequences given as in the statement of the theorem. Then
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e = uv is a vertex in the line graph L(G) of G. We know that
distance degree sequence of any vertex can be obtained from
a spanning tree rooted at that vertex. If G is a tree then the
same degree sequence holds good, otherwise the only changes
will be in the respective kth neighborhood edges and the edges
induced in G between (k−1)th neighborhood vertices and kth

neighborhood vertices denoted by Ek−1,k, which can be given
as follows: ddsL(G)(e) = (d

′′
0(e),d

′′
1(e),d

′′
2(e), . . . ,d

′′
ecc(e)(e)).

Each entry is explicitly given as
d
′′
0(e) = 1,d

′′
1(e) = |{{E1(u)∪E1(v)}\ e}|

d
′′
2(e) =

∣∣∣∣ {{{E2(u)∪E2(v)}∪{E 〈A1〉∪E 〈B1〉}∪E1,2}
\{E1(u)∪E1(v)}\ e}

∣∣∣∣ ,
d
′′
3(e) =

∣∣∣∣∣∣
{{E3(u)∪E3(v)}∪{E 〈A2〉∪E 〈B2〉∪E2,3}
\{E2(u)∪E2(v)}\{E1(u)∪E1(v)}\

{E 〈A1〉∪E 〈B1〉}\E1,2 \ e

∣∣∣∣∣∣ ,
...
d
′′
k+1(e) =∣∣∣∣∣∣
{{Ek+1(u)∪Ek+1(v)}∪E 〈Ak〉∪E 〈Bk〉∪E(k−1),k}

\∪k−1
i=1 {Ei(u)∪Ei(v)}\

∪k−1
i=1 {E 〈Ai〉∪E 〈Bi〉 \∪k−1

i=2 E(i−1),i}\ e

∣∣∣∣∣∣ ,
for 2≤ k ≤ ecc(e).

We will illustrate the above with the following example.

Example: Consider G to be the Petersen graph.

Figure 4. The Petersen Graph (G)

Consider the edge (2,9) in G then (2,9) is a vertex in
L(G). Pertesen Graph is a distance degree regular graph with
distance degree sequence (1,3,6).
Hence, ddsG(2) = (1,3,6) = ddsG(9). Consider the span-
ning trees rooted at 2 and 9 in G.
ddsL(G)(e) = (d

′′
0(e),d

′′
1(e),d

′′
2(e), . . . ,d

′′
ecc(e)(e)).

d
′′
0(e) = d

′
0(e) = 1,

d
′′
1(e) = |{E1(u)∪E1(v)}\ e|

d
′′
1(e) = |{{1,2},{2,3},{9,8},{9,10}}| = 4

d
′′
2(e) =

∣∣∣∣ {{E2(u)∪E2(v)}∪{E 〈A1〉∪E 〈B1〉}∪E1,2}
\{E1(u)∪E1(v)}\ e

∣∣∣∣
d
′′
2(e) =
|{{5,8},{8,7},{4,10},{10,6},{1,5},{1,6},{4,3},{3,7}}|

d
′′
2(e) = 8

d
′′
3(e) =

∣∣∣∣∣∣∣∣
{{E3(u)∪E3(v)}∪{E 〈A2〉∪E 〈B2〉}∪E2,3}
\{E2(u)∪E2(v)}\{E1(u)∪E1(v)}

\{E 〈A1〉∪E 〈B1〉}\E1,2
\e

∣∣∣∣∣∣∣∣
d
′′
3(e) = |{{4,5},{6,7}}|

d
′′
3(e) = 2

Thus we get ddsL(G)(e) = (1,4,8,2). Applying this proce-
dure on each edge of G we can see that L(G) is a distance
degree regular graph with DDS= (1,4,8,2)10.

Corollary 3.6. If G and H
are any two graphs with DDS(L(G)) 6= DDS(L(H)) then the
one-to-one correspondence between adjacent vertex distance
degree sequences cannot be established.

Proof Let e = uv ∈ E(G) and f = st ∈ E(H) such that
ddsL(G)(e) 6= ddsL(H)( f ). Using Theorem 3.2, Theorem 3.5
the proof follows.

4. Distance degree sequences of
subdivision and total graphs

In this section we consider one more derived graph viz., the
subdivision graph. Note that a subdivision graph is obtained
by introducing a degree two vertex on an edge of a graph.
Here we give distance degree sequence of a subdivision graph
with each edge being subdivided r- times. We start with
subdivision of a tree.

Let H(T,r) be a subdivision of a tree T with each edge
subdivided by r vertices.

Theorem 4.1. The distance matrix of H(T,r) the r −
subdivided tree is given by

D(H(T,r))=
[

[A]p×p 0
0 [B]r(p−1)×r(p−1)

]
((r+1)p−r)×((r+1)p−r)

(4.1)

Proof: Here we give the distance degree sequences of
each vertex the tree and the subdivided vertices.
Note that for the tree vertices the set of eccentric vertices
remain the same. On subdivision of edges r- times we see that
the distance between the tree vertices gets multiplied by r+1.
So the eccH(T,r)(u) = (r+1)eccT (u), for each u ∈V (T ).
So in H(T,r) we see that the deg(u) remains the same and the
tree vertices that were neighbors of u( in T ) are at distance
r+ 1 in H(T,r) with the distance between u and the r new
vertices being {1,2,3,4, . . . ,r}. Hence the number of vertices
at each distance can be achieved upto (r+1)eccT (u). Now for
the new vertices introduced at each edge we will write down
the distances. Or in otherwords we write down the distance
matrix of H(T,r) derived from that of T. Given the D(T ),
D(H(T,r)) will have p+ r(p− 1) = (r + 1)p− r vertices,
out of which we will retain the first p entries as the vertices of
T. Hence in D(H(T,r)) each entry of the submatrix of order
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p× p is just the multiple of (r+1) of the entries of D(T ), as
they correspond to the tree vertices. And we denote this block
matrix as A. The next block matrix of order r(p−1)×r(p−1)
has all new vertices introduced as subdivision vertices. We
denote this by B.
Picking the (i, j)th entry in D(T ), if it is one, then in
D(H(T,r)) the (i,u)th and (i,v)th entry will be one the same
number of times. It is clear that no non-tree vertex is an
eccentric vertex in H(T,r), and hence the eccentricity of
any vertex of H(T,r) will be at most (r+1)eccT (x). So the
pendant vertices of T are the peripheral vertices of H(T,r)
also. For any vertex, say x, of the tree T, the distances from x
to all vertices will be as follows:

ddsH(T,r)(x) = (1,( j)r+1,(r+1+ j)r+1, . . . ,((r+1)(i−
1)+ j)r+1, . . . ,((r+1)(eccT (x)−1)+ j)r+1) for all 1≤ j ≤
r+1 and 1≤ i≤ eccT (x).

Below we enlist the distance degree sequences of the
subdivision vertices H(T,r).

Let the subdivision vertices between two tree vertices say
vi and v j be
{ui, j,1,ui, j,2,ui, j,3, . . . ,ui, j,r}.

Let e = viv j be the edge then we have from Theorem 3.2,
ddsLT (e) = (d0(e),d1(e),d2(e), . . . ,decc(e)(e)), where ecc(e)
is the eccentricity of e in L(T ) that is min(eccT (u),eccT (v)).
Here we consider different cases:

Case 1: Let the number of subdivisions r be odd.
Then the distance degree sequence of ui, j,k is given by
dds(ui, j,k ) =
{1,2k,(d1(u))r−2k+1,(d1(e))2k,(d2(u))r−2k+1,(d2(e))2k, . . . ,
(decc(e)(u))r−2k+1,(decc(e)(e))2k} for 1≤ k ≤ r−1

2 .
dds(ui, j, r+1

2
) =

{1,2 r+1
2 ,(d1(e))r+1,(d2(e))2k,(d2(u))r+1,(d3(e))r+1, . . . ,

(decc(e)(e))r+1}.
dds(ui, j,k ) =

{1,2r−k+1,(d1(u))2k−r+1,(d1(e))2(r−k+1),(d2(u))2k−r+1,
(d2(e))2(r−k+1), . . . , (decc(e)(u))2k−r+1,(decc(e)(e))2(r−k+1)}
for r+3

2 ≤ k ≤ r.
Case 2: Let the number of subdivisions r be even.
Now the distance degree sequences are given as follows:
dds(ui, j,k ) =
{1,2k,(d1(u))r−2k+1,(d1(e))2k,(d2(u))r−2k+1,(d2(e))2k, . . . ,
(decc(e)(u))r−2k+1,(decc(e)(e))2k} for 1≤ k ≤ r

2 .
dds(ui, j,k ) =

{1,2r−k+1,(d1(u))2k−r+1,(d1(e))2(r−k+1),(d2(u))2k−r+1,
(d2(e))2(r−k+1), . . . , (decc(e)(u))2k−r+1,(decc(e)(e))2(r−k+1)}
for r+2

2 ≤ k ≤ r.
By putting all the distances of the tree vertices and the sub-
division vertices together, we get the distance matrix of the
H(T,r) as a block matrix given in the statement of the theo-
rem.

Remark 4.2. The total graph T (G) of a graph G can be
obtained by subdividing the graph G once at all edges and
then taking its second power. Referring to Theorem 4.1 and

then applying the Lemma 2.1, we can get the distance degree
sequence of total graph of a graph.

Corollary 4.3. If two trees A and B have the same distance
degree sequence then the total graphs of A and B also have
the same distance degree sequence.

Proof: We have T (A) as the second power graph of
H(A,2) and T (B) as the second power graph of H(B,2).
Then by Theorem 4.1, Lemma 2.1 we can observe that the
DDS(T (A)) = DDS(T (B)).

5. Distance degree sequence of
Mycieleski graph

Here we consider Mycieleski graph of a graph G and give the
distance degree sequence of it. For ready reference we give
the definition of the Mycieleski of a graph here.
Mycielski graph: Let G be a graph with n vertices. Let these
n vertices be labeled as {u1,u2, . . . ,un}. The Mycielski graph
µ(G) contains G itself as a subgraph, together with n+ 1
additional vertices: a vertex vi corresponding to each vertex
ui of G, and an extra vertex w. Each vertex vi is connected
by an edge to w, so that these vertices form a subgraph in the
form of a star K1,n. In addition, for each edge uiu j of G, the
Mycielski graph includes two edges, viu j and uiv j. Thus, if G
has n vertices and m edges, then µ(G) has 2n+1 vertices and
3m+n edges.

Theorem 5.1. Let G be any connected graph with
V (G) = {u1,u2, . . . ,un}. Then the Mycieleski of G, µ(G), has
its distance degree sequence as follows:
dds(µ(G))(ui) = (d0,2d1,2d2 + 2,2d3 + d4 + d5 + d6 + . . .+
deccG(ui),d4 +d5 +d6 + . . .+deccG(ui)));
ddsµ(G)(vi) = (d0,d1 +1,n+d2,n−1−d1−d2);
ddsµ(G)(w) = (d0,n,n).

Proof: Let G be a connected graph with V (G) =
{u1,u2, . . . ,un}. Then by the structure of the Mycielski graph
µ(G) contains a vertex vi corresponding to each vertex ui of
G, and an extra vertex w. The edge set consists of one copy
of edges of G and each vertex vi is connected by an edge to
w, and for each edge uiu j of G, two new edges, viu j and uiv j.
Here we consider different cases to prove the result.

From the construction of Mycielski graph µ(G) we have
three kinds vertices uis as in G, vis and w. For each kind we
give the distance degree sequence as follows:
1) For every vertex ui, note that ecc(ui) = 4.
We now write for each entry:
The number of vertices at distance one from ui is 2(d1) by the
structure of µ(G).
The number of vertices at distance two are; the vertex w and
the d2 vertices u js together with d2+1 vertices vi, v js. Hence,
2d2 +2 vertices are at distance two from ui in µ(G).
The number of vertices at distance 3 will be the number of
vertices at distance 3 in G of the form u js, the same number
contributed in the form v js, from the copy and remaining
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vertices at distance {4,5,6, . . . ,eccui} of vertices in the copied
version of the form v js (will be at distance 3 through w).
Hence, 2d3 +d4 +d5 +d6 + . . .+deccG(ui) number of vertices
are at distance 3 in µ(G).
All the remaining vertices at distance {4,5,6, . . . ,eccui} in
original graph are at distance 4 in µ(G). Hence, d4 + d5 +
d6 + . . .+deccG(ui) vertices are at distance 4.
That is, the dds(µ(G))(ui) = (d0,2d1,2d2 +2,2d3 +d4 +d5 +
d6 + . . .+deccG(ui),d4 +d5 +d6 + . . .+deccG(ui))).
2) For every vertex vi, note that ecc(vi) = 3.
We now write for each entry:
It is easy to see that the number of vertices at distance 1 is
d1 +1.
The number of vertices at distance 2 is n+d2 as d2 +1 of G
of the form u js are at distance 2 and from the construction
of Mycielski graph n−1 vertices of the copy of the form v js,
through the vertex w.
Rest of the vertices are at distance 3, hence n−1−d1−d2.
3) For the vertex w the dds(µ(G))(w) = (d0,n,n), trivially
from the construction of Mycielski graph.

Remark 5.2. Applying the above theorem iteratively we can
get distance degree sequences of any iterated Mycielskian of
a graph G.

Corollary 5.3. If G and H are two graphs having the same
distance degree sequence then µ(G) and µ(H) also have the
same distance degree sequence.

6. Bipartite Graphs

Theorem 6.1. There exists a bipartite DDR graph G with
each vertex having dds = (1,k,k, . . . ,k,1) where k occurs n
times with n odd only if k = 2.

Proof: Let G be a bipartite DDR graph with the DDS as
given in the hypothesis with n odd, n≥ 3. From the sequence
it is clear that whenever G is bipartite then the alternate
neighbors belong to one partite set and the rest to the other.
This implies that one partite set say, V1 has (i+1)k vertices
and the second V2 has (ik+2) vertices. Each vertex of V1 has
degree k implies degree sum of V1 = k(i+ 1)k = k2i+ k2.
All neighbors of V1 are in V2 and there are ik + 2 number
of vertices in V2 with each vertex having degree k. Hence,
k(ik+2) = k2i+k2 implying ik2 +2k = ik2 +k2. Therefore,
k = 2.

Theorem 6.2. A DDR graph G with its DDS(G) =
(1,k,k, . . . ,k,1)p is bipartite if and only if G is an even cycle.

Proof: From Theorem 6.1 the above result follows
trivially.

7. Conclusion
In this paper we have tried giving the distance degree
sequences of some of the derived graphs of graphs. But

finding the distance degree sequences of non-tree graphs
seems difficult at this point of time. Also the following
problem is unclear and hence we pose it as an open one.

Problem 1: Let G and H be two non-tree graphs having
the same distance degree sequence then is it possible for L(G)
and L(H) to have the same distance degree sequence.
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