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LMI conditions for delay probability distribution
dependent robust stability analysis of markovian
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Abstract
This paper investigates the robust stability analysis for a class of uncertain stochastic neural networks (SNNs)with
markovian jump and time-varying delays. Based on the stochastic analysis approach & Lyapunov-Krasovskii
functional, a delay probability distribution dependent sufficient condition is obtained in the linear matrix inequality
(LMI) form such that delayed markovian jump SNNs are robustly globally asymptotically stable in the mean
square for all admissible uncertainties. An important feature of the result is that the stability conditions are
dependent on the probability distribution of delays and upper bound of the derivative is allowed to be greater
than or equal to 1. Numerical examples are given for the comparison to illustrate the effectiveness of our results.
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1. Introduction
In recent years, dynamics of neural networks have been widely
studied due to their extensive applications in aerospace, de-

fense, robotic, telecommunications, signal processing, pattern
recognition, static image processing, associative memory and
combinatorial optimization [1]. During the implementation
of artificial neural networks, time delays often arise in the
processing of information storage and transmission. Some of
these applications require the equilibrium points of designed
networks to be stable, see for example [2]-[9] and references
therein. Furthermore, time delay is frequently a source of
oscillation, divergence, or even instability and deterioration
of neural networks. Generally speaking, the so-far obtained
stability results for delayed neural networks can be classified
into two types; that is, delay-independent stability [10]-[12]
and delay-dependent stability [13]-[15]. In addition, the prob-
lem of neural networks with probability-distribution delay is
investigated in [16, 17] and the references therein.

As time delays, there are two types of disturbances that is,
parametric uncertainty and stochastic perturbations. First, un-
certainties are frequently encountered in various engineering
and communication systems. The characteristics of dynamic
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systems are significantly affected by the presence of the un-
certainty, even to the extend of instability in extreme situation.
The desired stability properties of neural networks are custom-
arily based on imposing constraint conditions on the network
parameters neural system. It is desired that the stability prop-
erties of neural networks should be affected by the small
deviations in the values of the parameters. In other words,
the neural networks must be globally robust stable (see [18]
and references therein). Next, in real nervous systems, the
synaptic transmission with the noisy process give the random
fluctuations in the neurotransmitters, see [1, 19–21]. Practi-
cally, in the design of electrical circuit for neural networks
will cause the stochastic phenomenon [1]. For further study
on stability of SNNs with time varying delays [22]-[37]. To
the best of authors knowledge, very few authors have studied
the delay-probability-distribution-dependent robust stability
analysis of SNNs with time-varying delays, which is very
important in both theories and applications and also is a very
challenging problem.

Modern industrial applications are come upon with numer-
ous hybrid behavior of the processes. For example, any mal-
function of sensors or actuators can cause a jumping behaviour
in process performance. This type of jumping behavior may
be modelled as a Markov jump systems. In other words, the
neural networks may have finite modes and the mode may
jump from one to another at different times. The jumping
between different modes can be governed by a Markov chain
[38]-[41]. Thus, Markovian jump systems correspond to an
important class of systems that are subject to abrupt process
changes. The abrupt changes in the systems are discrete events
and are assumed to be modelled by a Markov chain taking
values in a finite value set. Practical motivations as well as
many theoretical results for Markovian jump system can be
found, for instance, in [42]-[44]. More recently, Luo et al.
[45] studied the Robust fault detection of Markovian jump
systems with different system modes. Wang et al. [46] investi-
gated the Delay-dependent H∞ control for singular Markovain
jump systems with time delay. Therefore, neural networks
with Markovian jump parameters have received a great deal
of attention. So studies of the stability criteria and the per-
formance for Markovian jump systems with delays are more
important to theoretical and practical applications.

By the above discussions, the LMI conditions for delay-
probability-distribution-dependent robust stability analysis
of SNNs with time-varying delays are considered in this pa-
per. By constructing a novel Lyapunov-Krasovskii functional,
employing some analysis techniques and introducing some
free-weighting matrices, sufficient conditions are derived for
the considered SNNs in terms of LMIs, which can be easily
calculated by MATLAB LMI control Toolbox. Numerical
examples are given to illustrate the effectiveness and less
conservativeness of the proposed method.

Notations: Throughout this paper, Rn be the n-dimensional
Euclidean space and Rn×n denote the set of all n×n real ma-
trices. The transposition denoted by superscript T . When X

and Y are symmetric matrices X ≥ Y (respectively, X > Y ),
means that X−Y is positive semi-definite (respectively, pos-
itive definite). In be the identity n× n matrix. | · | is the Eu-
clidean norm in Rn. Further, the complete probability space
be (Ω,F ,{Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the
usual conditions. The notation ∗ always denotes the symmet-
ric block in one symmetric matrix. Sometimes, the arguments
of a function or a matrix will be omitted in the analysis when
no confusion can arise.

2. Problem description and preliminaries

Let {r(t), t ≥ 0} is a right-continuous Markov chain on
the probability space (Ω,F,P) taking values in a finite state
space S = {1,2, . . . ,N} with generator Q = (qi j)N×N given
by

P{r(t +∆t) = j|r(t) = i}=
{

qi j∆t +o(∆t), i 6= j,
1+qii∆t +o(∆t), i = j,

where ∆t > 0 and lim∆t→0
o(∆t)

∆t = 0, qi j ≥ 0 is the transition
rate from i to j, if i 6= j while qii =−∑ j 6=i qi j.

In this paper, we consider the following uncertainmarko-
vian jump stochastic Hopfield neural networks with time-
varying delays:

dx(t) =
[
−Ai(t)x(t)+Bi(t) f (x(t))

+Wi(t) f (x(t− τ(t))
]
dt

+
[
H0ix(t)+H1ix(t− τ(t))

]
dw(t)

x(t) = φ(t), ∀t ∈ [−τ̄,0], (2.1)

where x(t) ∈ Rn is the neural state vector,

f (x(t)) = [ f1(x1(t)), . . . , fn(xn(t))]T ∈ Rn

is the neuron activation function vector with initial condition
f (0) = 0. w(t) = [w1(t), . . . ,wn(t)] ∈ Rn is an n-dimensional
Brownian motion defined on a complete probability space
(Ω,Ft ,{Ft}t≥0,P).

The time-varying delays τ(t) satisfies

0≤ τ(t)≤ τ̄, τ̇(t)≤ µ, (2.2)

where τ̄ and µ are constants.In (2.1), Ai(t) = Ai + ∆Ai(t),
Bi(t) = Bi +∆Bi(t),Wi(t) =Wi +∆Wi(t) and where the diag-
onal matrices Ai > 0(i = 1,2, . . . ,N) and Bi,Wi,H0i,H1i are
connection weight matrices with appropriate dimensions. Fur-
ther ∆Ai(t), ∆Bi(t) and ∆Wi(t), denote the time-varying and
norm-bounded uncertainties.
Assumption 2.1 Considering the information of probability
distribution of the time delay τ(t), two sets and functions are
defined Ω1 = {t : τ(t) ∈ [0,τ0)} and Ω2 = {t : τ(t) ∈ [τ0, τ̄]}

τ1(t) =
{

τ(t), f or t ∈Ω1
τ̄1, f or t ∈Ω2,

and τ2(t) =
{

τ(t), f or t ∈Ω2
τ̄2, f or t ∈Ω1,

(2.3)
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τ̇1(t)≤ µ1 < ∞, τ̇2(t)≤ µ2 < ∞ (2.4)

where τ0 ∈ [0, τ̄], τ̄1 ∈ [0,τ0) and τ̄2 ∈ [τ0, τ̄]. It is easy to
know t ∈Ω1 means the event τ(t) ∈ [0,τ0) occurs and t ∈Ω2
means the event τ(t) ∈ [τ0, τ̄] occurs. Therefore, a stochastic
variable α(t) can be defined as

α(t) =
{

1, f or t ∈Ω1
0, f or t ∈Ω2.

(2.5)

Assumption 2.2 α(t) is a Bernoulli distributed sequence with
Prob{α(t) = 1}= E{α(t)}= α0, Prob{α(t) = 0}= 1−

E{α(t)}= 1−α0, where 0≤α0≤ 1 is a constant and E{α(t)}
is the expectation of α(t).

Remark 2.1. From Assumption 2.2, it is easy to know that
E{α(t)−α0}= 0,E{(α(t)−α0)

2}= α0(1−α0).

By Assumptions 2.1 and 2.2, the system (2.1) can be
rewritten as

dx(t) = [−Ai(t)x(t)+Bi(t) f (x(t))

+α(t)Wi(t) f (x(t− τ1(t)))

+(1−α(t))Wi(t) f (x(t− τ2(t)))]dt

+[H0ix(t)+α(t)H1ix(t− τ1(t))

+(1−α(t))H1ix(t− τ2(t))]dw(t) (2.6)
x(t) = ξ (t), t ∈ [−τ̄,0],

which is equivalent to

dx(t) = [−Ai(t)x(t)+Bi(t) f (x(t))

+α0Wi(t) f (x(t− τ1(t)))

+(1−α0)Wi(t) f (x(t− τ2(t)))

+(α(t)−α0)(Wi(t) f (x(t− τ1(t)))

−Wi(t) f (x(t− τ2(t))))]dt

+[H0ix(t)+α0H1ix(t− τ1(t))

+(1−α0)H1ix(t− τ2(t))

+(α(t)−α0)(H1ix(t− τ1(t))

−H1ix(t− τ2(t)))]dw(t) (2.7)
x(t) = ξ (t), t ∈ [−τ̄,0].

Remark 2.2. The probability distribution of the delay taking
values in some interval is assumed to be known in advance
in this paper, and then a new model of the markovian jump
SNNs (2.7) has been derived, which can be seen as an exten-
sion of the common markovian jump SNNs (2.1). Specially,
when α(t) ≡ 1, system (2.7) becomes system (2.1). When
the probability of time delay taking values is known a priori,
the possible values that the delay takes may be larger than
those obtained based on the traditional methods, which will
be illustrated via example in section 4.

Assumption 2.3 The neural activation function fi(xi) satisfies

l−i ≤
fi(xi)− fi(yi)

xi− yi
≤ l+i ∀xi,yi ∈ R,

xi 6= yi, i = 1, . . . ,n (2.8)

which implies that

( fi(xi)− l+i xi)( fi(xi)− l−i xi)≤ 0, (2.9)

where l−i , l+i are some constant.
The parameter uncertainties ∆Ai(t), ∆Bi(t) and ∆Wi(t)

are of the forms[
∆Ai(t) ∆Bi(t) ∆Wi(t)

]
= HiFi(t)

[
E1i E2i E3i

]
,

(2.10)

where Hi, E1i, E2i and E3i are given known matrices. Fi(t) is
an uncertain matrix satisfying

FT
i (t)Fi(t)≤ I. (2.11)

Definition 2.3. For system (2.7) and any ξ ∈L2
F0

([−τ̄,0];Rn),
the trivial solution is robustly, globally, asymptotically stable
in the mean-square sense for all admissible uncertainties, if

lim
t−→∞

E|x(t,ξ )|2 = 0.

Lemma 2.4. [47](Schur Complement) Given constant ma-
trices Ω1, Ω2 and Ω3 with appropriate dimensions, where
ΩT

1 = Ω1 and ΩT
2 = Ω2 > 0, the inequality

Ω1 +Ω
T
3 Ω
−1
2 Ω3 < 0,

holds, if and only if[
Ω1 ΩT

3
∗ −Ω2

]
< 0, or

[
−Ω2 Ω3
∗ Ω1

]
< 0.

Lemma 2.5. [48] For any constant matrix M > 0, any scalars
a and b with a < b and a vector function x(t) : [a,b] −→
Rn such that the integrals concerned are well defined, the
following holds[∫ b

a
x(s)ds

]T
M
[∫ b

a
x(s)ds

]
≤ (b−a)

[∫ b

a
x(s)T Mx(s)ds

]
.

Lemma 2.6. [49] Let U,V (t),W and Z be real matrices of
appropriate dimensions with Z satisfying Z = ZT , then

Z +UV (t)W +W TV T (t)UT < 0, V T (t)V (t)≤ I

if and only if there exists a scalar ε > 0 such that

Z + ε
−1UUT + εW TW < 0,

3. MAIN RESULTS
Defining two new state variables for the markovian jump
SNNs (2.7),

y(t) = −Ai(t)x(t)+Bi(t) f (x(t))+α0Wi(t)

× f (x(t− τ1(t)))+(1−α0)Wi(t) f (x(t− τ2(t)))

+(α(t)−α0)

× [Wi(t) f (x(t− τ1(t)))−Wi(t) f (x(t− τ2(t)))], (3.1)
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and

g(t) = H0ix(t)+α0H1i(x(t− τ1(t)))

+(1−α0)H1ix(t− τ2(t))

+(α(t)−α0)[H1ix(t− τ1(t))−H1ix(t− τ2(t))],
(3.2)

the SNNs (2.7) can be written as

dx(t) = y(t)dt +g(t)dω(t). (3.3)

Moreover, the following equality holds,

x(t)− x(t− τ(t)) =
∫ t

t−τ(t)
y(s)ds+

∫ t

t−τ(t)
g(s)dω(s)

(3.4)

Theorem 3.1. For given scalars τ0 ≥ 0, τ̄0 > 0, µ1, 0 < α0 <
1 satisfying α0µ1 < 1, the markovian jump SNNs (2.7) without
uncertain parameters is asymptotically stable in the mean
square if there exist matrices Pi > 0, Qi > 0, i = 1,2,3, Rl > 0,
Zl > 0, l = 1,2, for any matrices Nk,Mk,Sk,Uk,Vk,Yk(k = 1,2)
and there exist positive diagonal matrices K1 > 0, K2 > 0 and
K3 > 0 such that the following LMIs are feasible

Ξ1 =

[
Π −α0τ0M
∗ −α0τ0Z1

]
< 0, (3.5)

Ξ2 =

[
Π −τ0(1−α0)N
∗ −τ0(1−α0)Z1

]
< 0, (3.6)

Ξ3 =

[
Π −τ0S
∗ −τ0Z1

]
< 0, (3.7)

Ξ4 =

[
Π −(τ̄− τ0)U
∗ −(τ̄− τ0)Z2

]
< 0, (3.8)

Ξ5 =

[
Π −(τ̄− τ0)V
∗ −(τ̄− τ0)Z2

]
< 0, (3.9)

where

Π =



Ω̃ M N S U V Γ

∗ −Z1 0 0 0 0 0
∗ ∗ −Z1 0 0 0 0
∗ ∗ ∗ −Z1 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ ∗ −P̄


(3.10)

and Ω̃ = (Ω̃i, j)10×10

with

Ω̃1,1 =Q1 +Q2 +Q3 +
N

∑
j=1

qi jPj +M1 +MT
1 −Y1 Ai

− AT
i Y T

1 −K1L1,Ω̃1,2 =−M1 +MT
2 ,Ω̃1,3 = 0,

Ω̃1,4 = 0,Ω̃1,5 = 0,Ω̃1,6 = 0,

Ω̃1,7 =−Y1− AT
i Y T

2 + Pi,Ω̃1,8 = Y1 Bi +K1L2,

Ω̃1,9 = α0Y1 Wi,Ω̃1,10 = (1−α0)Y1 Wi,

Ω̃2,2 =−(1−α0µ1)Q1−M2−MT
2 +N1 +NT

1 ,

Ω̃2,3 =−N1 +NT
2 ,Ω̃2,4 = 0,Ω̃2,5 = 0,Ω̃2,6 = 0,

Ω̃2,7 = 0,Ω̃2,8 = 0,Ω̃2,9 = 0,Ω̃2,10 = 0,

Ω̃3,3 =−N2−NT
2 +S1 +ST

1 −K2L1

+α0(1−α0) HT
1iP̄ H1i,Ω̃3,4 =−S1 +ST

2 ,

Ω̃3,5 =−α0(1−α0) H1i
T P̄ H1i,

Ω̃3,6 = 0,Ω̃3,7 = 0,Ω̃3,8 = 0,Ω̃3,9 = K2L2,

Ω̃3,10 = 0,Ω̃4,4 =−Q2−S2−ST
2 +U1 +UT

1 ,

Ω̃4,5 =−U1 +UT
2 ,Ω̃4,6 = 0,Ω̃4,7 = 0,Ω̃4,8 = 0,

Ω̃4,9 = 0,Ω̃4,10 = 0,Ω̃5,5 =−U2−UT
2

+V1 +V T
1 −K3L1 +α0(1−α0) H1i

T P̄ H1i,

Ω̃5,6 =−V1 +V T
2 ,Ω̃5,7 = 0,

Ω̃5,8 = 0, Ω̃5,9 = 0,Ω̃5,10 = K3L2,

Ω̃6,6 =−Q3−V2−V T
2 , Ω̃6,7 = 0,Ω̃6,8 = 0,

Ω̃6,9 = 0,Ω̃6,10 = 0,

Ω̃7,7 = τ0R1 +(τ̄− τ0)R2−Y2−Y T
2 ,

Ω̃7,9 = α0Y2 Wi,Ω̃7,8 = Y2 Bi,

Ω̃7,10 = (1−α0)Y2 Wi,Ω̃8,8 =−K1I,

Ω̃8,9 = Ω̃8,10 = 0,

Ω̃9,9 =−K2I,Ω̃10,10 =−K3I,

M =
[
MT

1 MT
2 0 0 0 0 0 0 0 0

]T
,

N =
[
0 NT

1 NT
2 0 0 0 0 0 0 0

]T
,

S =
[
0 0 ST

1 ST
2 0 0 0 0 0 0

]T
,

U =
[
0 0 0 UT

1 UT
2 0 0 0 0 0

]T
,

V =
[
0 0 0 0 V T

1 V T
2 0 0 0 0

]T
,

Y =
[
Y T

1 0 0 0 0 0 Y T
2 0 0 0

]T
,

Γ
T =[P̄ H0i 0 α0P̄ H1i 0 (1−α0)P̄ H1i

0 0 0 0 0],
P̄ =τ0Z1 +(τ̄− τ0)Z2 + Pi.
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Proof. Consider the Lyapunov-Krasovskii functional

V (xt , t) =V1(xt , t)+V2(xt , t)+V3(xt , t),

where

V1(xt , t) = xT (t) Pix(t),

V2(xt , t) =
∫ t

t−α0τ1(t)
xT (s)Q1x(s)ds

+
∫ t

t−τ0

xT (s)Q2x(s)ds

+
∫ t

t−τ̄

xT (s)Q3x(s)ds,

V3(xt , t) =
∫ 0

−τ0

∫ t

t+θ

yT (s)R1y(s)dsdθ

+
∫ −τ0

−τ̄

∫ t

t+θ

yT (s)R2y(s)dsdθ ,

+
∫ 0

−τ0

∫ t

t+θ

gT (s)Z1g(s)dsdθ

+
∫ −τ0

−τ̄

∫ t

t+θ

gT (s)Z2g(s)dsdθ ,

where xt = {x(t + θ) : −τ̄ ≤ θ ≤ 0}. Then, it can be
obtained by Ito’s formula that

dV (xt , t) = LV (xt , t)dt +2xT (t) Pig(t)dω(t), (3.11)

where

LV1(xt , t) = 2xT (t) Piy(t)+gT (t) Pig(t)

+
N

∑
j=1

qi jxT (t)Pjx(t),

LV2(xt , t)≤ xT (t)Q1x(t)− (1−α0µ1)xT (t−α0τ1(t))

×Q1x(t−α0τ1(t))+ xT (t)Q2x(t)

− xT (t− τ0)Q2x(t− τ0)+ xT (t)Q3x(t)

− xT (t− τ̄)Q3x(t− τ̄)

LV3(xt , t) = τ0yT (t)R1y(t)−
∫ t

t−τ0

yT (s)R1y(s)ds

+(τ̄− τ0)yT (t)R2y(t)−
∫ t−τ0

t−τ̄

yT (s)R2y(s)ds

+ τ0gT (t)Z1g(t)−
∫ t

t−τ0

gT (s)Z1g(s)ds

+(τ̄− τ0)gT (t)Z2g(t)−
∫ t−τ0

t−τ̄

gT (s)Z2g(s)ds.

LV3(xt , t)≤ yT (t)(τ0R1 +(τ̄− τ0)R2)y(t)

−
∫ t

t−α0τ1(t)
yT (s)R1y(s)ds

−
∫ t−α0τ1(t)

t−τ1(t)
yT (s)R1y(s)ds

−
∫ t−τ1(t)

t−τ0

yT (s)R1y(s)ds−
∫ t−τ0

t−τ2(t)
yT (s)R2y(s)ds

−
∫ t−τ2(t)

t−τ̄

yT (s)R2y(s)ds+gT (t)(τ0Z1 +(τ̄− τ0Z2)g(t)

−
∫ t

t−α0τ1(t)
gT (s)Z1g(s)ds

−
∫ t−α0τ1(t)

t−τ1(t)
gT (s)Z1g(s)ds−

∫ t−τ1(t)

t−τ0

gT (s)Z1g(s)ds

−
∫ t−τ0

t−τ2(t)
gT (s)Z2g(s)ds

−
∫ t−τ2(t)

t−τ̄

gT (s)Z2g(s)ds.

From (2.9), for any matrices Ki = diag(ki1,ki2, . . . ,kin)≥
0, i = 1,2,3, it is easy to obtain

=

[
x(t)

f (x(t))

]T [ −K1L1 K1L2
K1L2 −K1

][
x(t)

f (x(t))

]
+

2

∑
i=1

[
x(t− τi(t))

f (x(t− τi(t)))

]T

[
−Ki+1L1 Ki+1L2
Ki+1L2 −Ki+1

][
x(t− τi(t))

f (x(t− τi(t)))

]
≥ 0,

(3.12)

where L1 = diag
(

l+1 l−1 , . . . , l+n l−n
)

and L2 =

diag
(

l+1 +l−1
2 , . . . , l+n +l−n

2

)
are matrices of appropriate dimen-

sions. Now, we define the new vector

ξ
T (t) =

[
xT (t) xT (t−α0τ1(t))xT (t− τ1(t))

× xT (t− τ0) xT (t− τ2(t))xT (t− τ̄)

× yT (t) f T (x(t)) f T (x(t− τ1(t))) f T (x(t− τ2(t)))
]
.

From (3.1), (3.2) and (3.4), we can see that the following
equations hold for any matrices M,N,S,U,V and Y with ap-
propriate dimensions,

2ξ
T (t)M

[
x(t)− x(t−α0τ1(t))−

∫ t

t−α0τ1(t)
y(s)ds

−
∫ t

t−α0τ1(t)
g(s)dω(s)

]
= 0, (3.13)

2ξ
T (t)N

[
x(t−α0τ1(t))− x(t− τ1(t))−∫ t−α0τ1(t)

t−τ1(t)
y(s)ds−

∫ t−α0τ1(t)

t−τ1(t)
g(s)dω(s)

]
= 0, (3.14)
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2ξ
T (t)S

[
x(t− τ1(t))− x(t− τ0)−

∫ t−τ1(t)

t−τ0

y(s)ds

−
∫ t−τ1(t)

t−τ0

g(s)dω(s)
]
= 0, (3.15)

2ξ
T (t)U

[
x(t− τ0)− x(t− τ2(t))−

∫ t−τ0

t−τ2(t)
y(s)ds

−
∫ t−τ0

t−τ2(t)
g(s)dω(s)

]
= 0, (3.16)

2ξ
T (t)V

[
x(t− τ2(t))− x(t− τ̄)−

∫ t−τ2(t)

t−τ̄

y(s)ds

−
∫ t−τ2(t)

t−τ̄

g(s)dω(s)
]
= 0, (3.17)

2ξ
T (t)Y

[
−Ai(t)x(t)+Bi(t) f (x(t))

+α0Wi(t) f (x(t− τ1(t)))+(1−α0)Wi(t) f (x(t− τ2(t)))

+ (α(t)−α0)[Wi(t) f (x(t− τ1(t)))

−Wi(t) f (x(t− τ2(t)))]− y(t)
]
. (3.18)

From the above equations (3.13)-(3.17), we have

−2ξ
T (t)M

∫ t

t−α0τ1(t)
g(s)dω(s)≤ ξ

T (t)MZ−1
1 MT

ξ (t)

+
∫ t

t−α0τ(t)
gT (s)dω(s)Z1

∫ t

t−α0τ(t)
g(s)dω(s),

−2ξ
T (t)N

∫ t−α0τ1(t)

t−τ1

g(s)dω(s)≤ ξ
T (t)NZ−1

1 NT
ξ (t)

+
∫ t−α0τ1(t)

t−τ1

gT (s)dω(s),Z1

∫ t−α0τ1(t)

t−τ1

g(s)dω(s)

−2ξ
T (t)S

∫ t−τ1(t)

t−τ0

g(s)dω(s)≤ ξ
T (t)SZ−1

1 ST
ξ (t)

+
∫ t−τ1(t)

t−τ0

gT (s)dω(s)Z1

∫ t−τ1(t)

t−τ0

g(s)dω(s),

−2ξ
T (t)U

∫ t−τ0

t−τ2(t)
g(s)dω(s)≤ ξ

T (t)UZ−1
2 UT

ξ (t)

+
∫ t−τ0

t−τ2(t)
gT (s)dω(s)Z2

∫ t−τ0

t−τ2(t)
g(s)dω(s),

−2ξ
T (t)V

∫ t−τ2(t)

t−τ̄

g(s)dω(s)≤ ξ
T (t)V Z−1

2 V T
ξ (t)

+
∫ t−τ2(t)

t−τ̄

gT (s)dω(s)Z2

∫ t−τ2(t)

t−τ̄

g(s)dω(s). (3.19)

By Remark 2.1, it is easy to derive the following equality

E{gT (t)
(

Pi + τ0Z1 +(τ̄− τ0)Z2

)
g(t)}=

E
{
[ H0ix(t)+α0 H1ix(t− τ1(t))+(1−α0)

×H1ix(t− τ2(t))]T

× P̄[ H0ix(t)+α0 H1ix(t− τ1(t))+(1−α0)

×H1ix(t− τ2(t))]

+2(α(t)−α0)[ H0ix(t)+α0 H1ix(t− τ1(t))

+(1−α0) H1ix(t− τ2(t))]T

× P̄[ H1ix(t− τ1(t))−Dx(t− τ2(t))]+(α(t)−α0)
2

× [ H1ix(t− τ1(t))−Dx(t− τ2(t))]T P̄[ H1ix(t− τ1(t))

− H1ix(t− τ2(t))]
}

= [ H0ix(t)

+α0 H1ix(t− τ1(t))+(1−α0) H1ix(t− τ2(t))]T

× P̄[ H0ix(t)+α0 H1ix(t− τ1(t))+(1−α0)

×H1ix(t− τ2(t))]+α0(1−α0)[ H1ix(t− τ1(t))

− H1ix(t− τ2(t))]T P̄[ H1ix(t− τ1(t)− H1ix(t− τ2(t))].
(3.20)

Since,

E
{∫ t

t−α0τ1(t)
gT (s)dω(s)Z1

∫ t

t−α0τ1(t)
g(s)dω(s)

}
= E

{∫ t

t−α0τ1(t)
gT (s)Z1g(s)ds

}
, (3.21)

E
{∫ t−α0τ1(t)

t−τ1(t)
gT (s)dω(s)Z1

∫ t−α0τ1(t)

t−τ1(t)
gT (s)dω(s)

}
= E

{∫ t

t−α0τ1(t)
gT (s)Z1g(s)ds

}
, (3.22)

E
{∫ t−τ1(t)

t−τ0

gT (s)dω(s)Z2

∫ t−τ1(t)

t−τ0

gT (s)dω(s)
}

= E
{∫ t−τ1(t)

t−τ0

gT (s)Z2g(s)ds
}
, (3.23)

E
{∫ t−τ0

t−τ2(t)
gT (s)dω(s)Z1

∫ t−τ0

t−τ2(t)
gT (s)dω(s)

}
= E

{∫ t−τ0

t−τ2(t)
gT (s)Z2g(s)ds

}
, (3.24)

E
{∫ t−τ2(t)

t−τ̄

gT (s)dω(s)Z2

∫ t−τ2(t)

t−τ̄

gT (s)dω(s)
}

= E
{∫ t−τ2(t)

t−τ̄

gT (s)Z2g(s)ds
}
. (3.25)
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Then, substituting inequalities (3.12)-(3.25) into (3.11), it
is obtained that

LV (xt , t)

≤− 1
α0τ0

∫ t

t−α0τ1(t)

×η
T (t,s)

[
Π −α0τ0M
∗ −α0τ0Z1

]
η(t,s)ds

− 1
τ0(1−α0)

∫ t−α0τ1(t)

t−τ1(t)

×η
T (t,s)

[
Π −τ0(1−α0)N
∗ −τ0(1−α0)Z1

]
η(t,s)ds

− 1
τ0

∫ t−τ1(t)

t−τ0

η
T (t,s)

[
Π −τ0S
∗ −τ0Z1

]
η(t,s)ds

− 1
τ̄− τ0

∫ t−τ0

t−τ2(t)

×η
T (t,s)

[
Π −(τ̄− τ0)U
∗ −(τ̄− τ0)Z2

]
η(t,s)ds

− 1
τ̄− τ0

∫ t−τ2(t)

t−τ̄

×η
T (t,s)

[
Π −(τ̄− τ0)V
∗ −(τ̄− τ0)Z2

]
η(t,s)ds, (3.26)

where η(t,s) =
[
ξ T (s) yT (s)

]
and Π = Ω̄ + MZ−1

1 MT +

NZ−1
1 NT +SZ−1

1 ST +UZ−1
2 UT +V Z−1

2 V T +ΓP̄−1ΓT .
Therefore, if (3.5)-(3.9) are satisfied, (3.26) implies that

LV (xt , t)

≤− 1
α0τ0

∫ t

t−α0τ1(t)
λ‖x(t)‖2ds

− 1
τ0(1−α0)

∫ t−α0τ1(t)

t−τ1(t)
λ‖x(t)‖2ds

− 1
τ0

∫ t−τ1(t)

t−τ0

λ‖x(t)‖2ds

− 1
τ̄− τ0

∫ t−τ0

t−τ2(t)
λ‖x(t)‖2ds

×− 1
τ̄− τ0

∫ t−τ2(t)

t−τ̄

λ‖x(t)‖2ds

=−λ‖x(t)‖2 (3.27)

where λ = min{λmin(Ξi)}, i = 1, . . . ,5. Taking the expecta-
tion of both sides of (3.27) yields

E{LV (xt , t)} ≤ −λE‖x(t)‖2 (3.28)

which indicates from the Lyapunov stability theory that the
SNNs (2.7) is asymptotically stable in the mean square.

Remark 3.2. When it is not considered Markov jump param-
eters, i.e, the Markov chain {r(t), t ≥ 0} only takes a unique

value 1(i.e, S = {1}), the system (2.7) will be reduced to the
following time-varying delayed neural networks:

dx(t) = [−A(t)x(t)+B(t) f (x(t))+α0W (t)

× f (x(t− τ1(t)))+(1−α0)W (t) f (x(t− τ2(t)))

+(α(t)−α0)

×(W (t) f (x(t− τ1(t)))−W (t) f (x(t− τ2(t))))]dt

+[H0x(t)+α0H1x(t− τ1(t))

+(1−α0)H1x(t− τ2(t))+(α(t)−α0)

×(H1x(t− τ1(t))−H1x(t− τ2(t)))]dw(t) (3.29)
x(t) = ξ (t), t ∈ [−τ̄,0].

For system (3.29), we have the following result by Theorem
3.1.

Theorem 3.3. For given scalars τ0 ≥ 0, τ̄0 > 0, µ1, 0 < α0 <
1 satisfying α0µ1 < 1, the SNNs (3.29) without uncertain
parameters is asymptotically stable in the mean square if
there exist matrices P > 0, Qi > 0, i = 1,2,3, Rl > 0, Zl > 0,
l = 1,2, for any matrices Nk,Mk,Sk,Uk,Vk,Yk(k = 1,2) and
there exist positive diagonal matrices K1 > 0, K2 > 0 and
K3 > 0 such that the following LMIs are feasible

Ξ1 =

[
Π −α0τ0M
∗ −α0τ0Z1

]
< 0, (3.30)

Ξ2 =

[
Π −τ0(1−α0)N
∗ −τ0(1−α0)Z1

]
< 0, (3.31)

Ξ3 =

[
Π −τ0S
∗ −τ0Z1

]
< 0, (3.32)

Ξ4 =

[
Π −(τ̄− τ0)U
∗ −(τ̄− τ0)Z2

]
< 0, (3.33)

Ξ5 =

[
Π −(τ̄− τ0)V
∗ −(τ̄− τ0)Z2

]
< 0, (3.34)

where

Π =



Ω̄ M N S U V Γ

∗ −Z1 0 0 0 0 0
∗ ∗ −Z1 0 0 0 0
∗ ∗ ∗ −Z1 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ ∗ −P̄


,

(3.35)
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and Ω̄ = (Ωi, j)10×10 with

Ω1,1 = Q1 +Q2

+Q3 +M1 +MT
1 −Y1A−ATY T

1 −K1L1,

Ω1,2 =−M1 +MT
2 Ω1,3 = 0,

Ω1,4 = 0, Ω1,5 = 0, Ω1,6 = 0,

Ω1,7 =−Y1−ATY T
2 +P,Ω1,8 = Y1B+K1L2,

Ω1,9 = α0Y1W, Ω1,10 = (1−α0)Y1W,

Ω2,2 =−(1−α0µ1)Q1−M2−MT
2 +N1 +NT

1 ,

Ω2,3 =−N1 +NT
2 ,Ω2,4 = 0,Ω2,5 = 0,Ω2,6 = 0,

Ω2,7 = 0,Ω2,8 = 0,Ω2,9 = 0,Ω2,10 = 0,

Ω3,3 =−N2−NT
2

+S1 +ST
1 −K2L1 +α0(1−α0)HT

1 P̄H1,

Ω3,5 =−α0(1−α0)HT
1 P̄H1, Ω3,6 = 0,

Ω3,7 = 0,Ω3,8 = 0, Ω3,9 = K2L2,

Ω3,10 = 0, Ω3,4 =−S1 +ST
2 ,

Ω4,4 =−Q2−S2−ST
2 +U1 +UT

1 ,

Ω4,5 =−U1 +UT
2 , Ω4,6 = 0, Ω4,7 = 0,

Ω4,8 = 0, Ω4,9 = 0, Ω4,10 = 0,

Ω5,5 =−U2−UT
2

+V1 +V T
1 −K3L1 +α0(1−α0)HT

1 P̄H1,

Ω5,6 =−V1 +V T
2 , Ω5,7 = 0, Ω5,8 = 0,

Ω5,9 = 0,

Ω6,6 =−Q3−V2−V T
2 , Ω6,7 = 0,

Ω6,8 = 0, Ω6,9 = 0,Ω5,10 = K3L2,

Ω6,10 =, Ω7,7 = τ0R1 +(τ̄− τ0)R2−Y2−Y T
2 ,

Ω7,8 = Y2B, Ω7,9 = α0Y2W,

Ω7,10 = (1−α0)Y2W, Ω8,8 =−K1I, Ω8,9 = 0
Ω8,10 = 0,Ω9,9 =−K2I, Ω10,10 =−K3I,

M =
[
MT

1 MT
2 0 0 0 0 0 0 0 0

]T
,

N =
[
0 NT

1 NT
2 0 0 0 0 0 0 0

]T
,

S =
[
0 0 ST

1 ST
2 0 0 0 0 0 0

]T
,

U =
[
0 0 0 UT

1 UT
2 0 0 0 0 0

]T
,

V =
[
0 0 0 0 V T

1 V T
2 0 0 0 0

]T
,

Y =
[
Y T

1 0 0 0 0 0 Y T
2 0 0 0

]T
,

Γ
T = [P̄H0 0 α0P̄H1 0 (1−α0)P̄H1

0 0 0 0 0],
P̄ = τ0Z1 +(τ̄− τ0)Z2 +P.

Proof:The proof is similar as to Theorem 3.1.

Remark 3.4. In [29, 30], when µ ≥ 1, Q will no longer be
helpful to improve the stability condition since −(1−µ)Q is
nonnegative definite. When µ1 ≥ 1, if α0µ1 < 1 is satisfied,
then −(1−α0µ1)Q1 is still negative definite. Therefore, the
constraint on µ1 < 1 is eliminated.

Theorem 3.5. For given scalars τ0 ≥ 0, τ̄0 > 0, µ1, 0 <
α0 < 1 satisfying α0µ1 < 1, the SNNs (3.29) is asymptoti-
cally stable in the mean square if there exist matrices P > 0,
Qi > 0, i = 1,2,3, Rl > 0, Zl > 0, l = 1,2, for any matrices
Mk,Nk,Sk,Uk,Vk,Yk(k = 1,2) and there exist positive diago-
nal matrices K1 > 0, K2 > 0 and K3 > 0 and scalar ε > 0
such that the following LMIs are feasible

Ξ̄1 =

[
Π̂ −α0τ0M
∗ −α0τ0Z1

]
< 0, (3.36)

Ξ̄2 =

[
Π̂ −τ0(1−α0)N
∗ −τ0(1−α0)Z1

]
< 0, (3.37)

Ξ̄3 =

[
Π̂ −τ0S
∗ −τ0Z1

]
< 0, (3.38)

Ξ̄4 =

[
Π̂ −(τ̄− τ0)U
∗ −(τ̄− τ0)Z2

]
< 0, (3.39)

Ξ̄5 =

[
Π̂ −(τ̄− τ0)V
∗ −(τ̄− τ0)Z2

]
< 0, (3.40)

where

Π̂=



Ω̂ M N S U V Γ Σ

∗ −Z1 0 0 0 0 0 0
∗ ∗ −Z1 0 0 0 0 0
∗ ∗ ∗ −Z1 0 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


,

with

Ω̂ = Ω̄

+diag
(

εET
1 E1,0,0,0,0,0,0,εET

2 E2,εET
3 E3,εET

3 E3

)
,

σ =
√

2+α2
0 +(1−α0)2,

Σ
T = [σHTY T

1 ,0,0,0,0,0,σHTY T
2 ,0,0,0],

M,N,S,U,V and Y are defined as in Theorem 3.3.

Proof. Replace A, B, W in the LMI (3.35) with A+∆A(t),
B+∆B(t), W +∆W (t), respectively, we have

Ξi +ΘΨϒ+ϒ
T

Ψ
T

Θ
T < 0 i = 1, . . . ,5. (3.41)
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where

Θ =
[
Θ1,0, . . . ,0︸ ︷︷ ︸

5

,Θ2,0, . . . ,0︸ ︷︷ ︸
9

]
,

Θ1 =
[
Y1H,0, . . . ,0︸ ︷︷ ︸

6

,Y1H,α0Y1H,(1−α0)Y1H,0, . . . ,0︸ ︷︷ ︸
6

]
,

Θ2 =
[
Y2H,0, . . . ,0︸ ︷︷ ︸

6

,Y2H,α0Y1H,(1−α0)Y2H,0, . . . ,0︸ ︷︷ ︸
6

]
,

Ψ = diag(F(t), . . . ,F(t)),

ϒ = diag
(
−E1 0, . . . ,0︸ ︷︷ ︸

6

,E2,E3,E3,0, . . . ,0︸ ︷︷ ︸
6

)
.

Using Lemma 2.6 that the matrix inequality (3.41) is equiva-
lent to the following inequality.

Ξi + ε
−1

ΘΘ
T + εϒ

T
ϒ < 0. (3.42)

Using Schur complement, (3.42) is equivalent to (3.36)-(3.40)
for a scalar ε > 0. Then, similar to the proof of the Theorem
3.3, we obtain the results of Theorem 3.5. Hence the detailed
proof are omitted.

4. Numerical Examples
In this section, we will give four examples showing the effec-
tiveness of established results.

4.1 Example.
Consider the Markovian jump SNNs (2.7) with the following
matrices

A1 =

[
2 0
0 3

]
, A2 =

[
1.5 0
0 2.5

]
,

B1 =

[
0.3 −0.5
0.1 0

]
, B2 =

[
0.2 −0.4
0.3 0

]
,

W1 =

[
−0.2 −0.4
0.3 −0.1

]
, W2 =

[
−0.1 −0.5
0.4 −0.2

]
,

H01 =

[
0.3 0
0 0.3

]
, H02 =

[
0.4 0
0 0.4

]
,

H11 =

[
0.3 −0.3
−0.3 0

]
,

H12 =

[
0.4 −0.4
−0.4 0

]
, Q =

[
−2 2
3 −3

]
.

Solving the LMI in (3.5)-(3.10) by MATLAB LMI toolbox,
then the feasible solution is obtained for the corresponding
values L1 = 0, L2 = 0.5I. Meawhile, in order to confirm
the obtained results with Markovain jump time-varying delay
given in (2.7), we gives the values for α = 0.99,τ0 = 0.4,τ =
1.2,µ1 = 0.2, to get the feasible solution. Therefore, it fol-
lows from Theorem 3.1, that the system (2.7) is mean square
asymptotically stable.

4.2 Example.

Consider the SNNs (3.29) with the following matrices

A =

[
4 0
0 5

]
, B =

[
0.4 −0.7
0.1 0

]
,

W =

[
−0.2 0.6
0.5 −0.1

]
,

H0 =

[
0.5 0
0 0.5

]
, H1 =

[
0.5 −0.5
−0.5 0

]
,

H =

[
0.1
−0.1

]
,E1 = [0.20.3],E2 = [0.2−0.3],

E3 = [−0.2−0.3], L1 = 0.25I,L1 = 0,

by Assumption 2.3, L1 = 0,L2 = 0.25I equivalent to L = 0.5I
in [31]. For various µ1, the computed upper bound τ̄ , which
guarantee the robust stability of system (3.29), are listed in
Table 1. From Table 1, when the information of the delay-
probability distribution is considered, for various α0 and µ1the
allowable upper bound τ̄ is larger comparing those in [17, 29–
31].

4.3 Example.

Consider the SNNs (3.29) with the following matrices

A =

[
7 0
0 6

]
, B =

[
0.2 −4
0.1 0.3

]
,

W =

[
0.4 0.2
0.1 0.7

]
, H0 =

[
0.3 0
0 0.3

]
,

H1 =

[
0.5 −0.1
−0.5 0

]
, L2 =

[
−0.1 0

0 0.5

]
,

H =

[
0.1
0.1

]
, E1 = E2 = E3 = [1 1], L1 = 0.

For various µ1, the computed upper bound τ̄ , which guarantee
the robust stability of system (3.29), are listed in Table 2.
From Table 2, when the information of the delay-probability
distribution is considered, for various α0 and µ1 the allowable
upper bound τ̄ is larger than those result discussed in [17].
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Table 1. Maximum allowable upper bound of τ̄ with different µ for fixed τ0 = 0.6
Methods µ1 = 0.97 µ1 = 1 µ1 = 1.5 µ1 = 2 unknown

[31] - - - - 0.419
[29] 0.785 0.779 0.779 0.779 0.779
[30] 0.771 0.746 0.746 0.746 0.746
[17] α0 = 0.2 1.294 1.294 1.292 1.291 1.279

Theorem 3.5 α0 = 0.2 2.7482 2.7481 2.7456 2.7429 2.7339
[17] α0 = 0.4 1.338 1.337 1.324 1.299 1.281

Theorem 3.5 α0 = 0.4 3.1819 3.1809 3.1642 3.1567 3.1567
[17] α0 = 0.6 1.430 1.426 1.303 1.292 1.292

Theorem 3.5 α0 = 0.6 3.9210 3.9177 3.8990 3.8990 3.8990
[17] α0 = 0.8 1.615 1.579 1.323 1.323 1.323

Theorem 3.5 α0 = 0.8 5.6591 5.6591 5.6591 5.6591 5.6591

Table 2. Maximum allowable upper bound of τ̄ with different µ for fixed τ0 = 0.4
Methods µ1 = 0.2 µ1 = 0.6 µ1 = 1 µ1 = 1.5 µ1 = 2 µ1 = 2.5

[17] α0 = 0.2 0.972 0.972 0.971 0.970 0.968 0.967
Theorem 3.5 α0 = 0.2 2.2317 2.2297 2.2275 2.2245 2.2213 2.2179

[17] α0 = 0.5 1.092 1.083 1.071 1.044 1.024 1.024
Theorem 3.5 α0 = 0.5 2.9122 2.8929 2.8706 2.8586 2.8586 2.8586

[17] α0 = 0.8 1.545 1.490 1.342 1.242 1.242 1.242
Theorem 3.5 α0 = 0.8 4.9575 4.8599 4.8160 4.8160 4.8160 4.8160

[17] α0 = 0.99 5.523 5.181 3.529 3.243 3.243 3.243
Theorem 3.5 α0 = 0.99 24.9910 24.0252 23.9266 23.9266 23.9266 23.9266

4.4 Example.
Consider the SNNs (3.29) with the following matrices

A =

 1.5 0 0
0 0.5 0
0 0 2.3

 ,
B =

 0.3 −0.19 0.3
−0.15 0.2 0.36
−0.17 0.29 −0.3

 ,
W =

 0.19 −0.13 0.2
0.16 0.09 0.1
0.02 −0.15 0.07

 ,
H0 = H1 =

 0.1 0 0
0 0.1 0
0 0 0.1

 ,
H =

 0.1 0 0
0 0.1 0
0 0 0.1

 ,
E1 = E2 = E3 =

 1 0 0
0 1 0
0 0 1


In order to compare results in this paper with those in [29]

[34] and [37], we assume the activation functions satisfy As-
sumption 2.5 with l−1 = l−2 = l−3 = 0, l+1 = 1.2, l+2 = 0.5, l+3 =

1.3. In this case, the LMI-based conditions obtained in [34]
are not feasible when µ ≥ 0.7. When the time-varying delay
is differentiable and µ = 0.85, by using Theorem 1 in [37] and
Theorem 1 in [29], it is found that the maximum allowable
upper bound of τ(t) as τ̄ = 9.6876, and τ̄ = 7.7377, respec-
tively. However, using Theorem 3.5 in this paper, we obtain
maximum allowable upper bound τ̄ = 9.7325. When the time
delay may not be differentiable; that is, µ is unknown, by us-
ing Theorem 2 in [37] and Theorem 2 in [29], it is found that
the maximum allowable upper bound of τ(t) as τ̄ = 2.3879,
and τ̄ = 2.314, respectively. However, using Theorem 3.5 in
this paper, we obtain the maximum allowable upper bound
τ̄ = 9.7325(α0 = 0.7).

According to Theorem 3.5, the upper bounds are derived
on the time-varying delay to guarantee the system is robustly
stochastically stable in the mean square. From Table 3, when
the information of the delay-probability distribution is con-
sidered, for various α0 and µ1 the allowable upper bound τ̄ is
larger than those results discussed in the literature [29, 34, 37].
Hence the proposed method gives the conservative results.

5. Conclusion
In this paper, the sufficient conditions guaranteeing the mean
square robust asymptotic stability for markovian jump SNNs
with time-varying delays have been proposed. Based on LMI
methods, robust stability condition for the markovian jump
SNNs have been obtained in the form of LMIs. Probability
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Table 3. Maximum allowable upper bound of τ̄ with different µ for fixed τ0 = 0.9
Methods µ1 = 0.7 µ1 = 0.85 µ1 = 1 µ1 = 2 µ1 = 3 unknown

[29] - 7.7377 - - - 2.3514
[37] - 9.6876 - - - 2.3879

Theorem 3.5 α0 = 0.7 9.7325 9.7325 9.7325 9.7325 9.7325 9.7325
Theorem 3.5 α0 = 0.8 10.0598 10.0598 10.0598 10.0598 10.0598 10.0598

distribution of the time-varying delays is introduced into the
stability criteria and the new method removes the constraint
that the derivative of the delay must be smaller than 1. Finally,
three numerical examples are demonstrated to prove less con-
servative results by comparison of numerical results in the
existing literature.
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Figure 1. The state trajectories of Example 4.2 for τ̄ = 1
with initial condition (3,−3).
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Figure 2. The state trajectories of Example 4.3 for τ̄ = 2.5
with initial condition (5,−5).

References
[1] S. Haykin, 1998, ”Neural Networks: A comprehensive

foundation,” Prentice Hall, NJ.
[2] X. Li 2009, ”Global exponential stability for a class of

neural networks,” Applied Mathematics Letters 22, 1235–
1239.

[3] X. Li and Z. Chen 2009, ”Stability properties for Hopfield
neural networks with delays and impulsive perturbations,”

0 5 10 15 20 25 30 35 40 45 50
−5

−4

−3

−2

−1

0

1

2

3

 

 
x1
x2
x3

Figure 3. The state trajectories of Example 4.4 for τ̄ = 2
with initial condition (2,−2,−4).

Nonlinear Analysis: Real World Applications 10, 3253–
3265.

[4] X. Li 2009, ”Existence and global exponential stability
of periodic solution for impulsive Cohen-Grossberg-type
BAM neural networks with continuously distributed de-
lays,” Applied Mathematics and Computation 215, 292–
307.

[5] M. Gao, X. Lou and B. Cui 2008, ”Robust exponential
stability of markovian jumping neural networks with time-
varying delay,” International Journal of Neural Systems
18, 207–218.

[6] T. Li, C. Sun, X. Zhao and C. Lin 2008, ”LMI-Based
asymptotic stability analysis of neural networks with time-
varying delays,” International Journal of Neural Systems
18, 257–265.

[7] Y. Zhao, Y. Xia and Q. Lu 2009, ”Stability analysis of
a class of general periodic neural networks with delays
and impulses,” International Journal of Neural Systems
19, 375-386.

[8] T. Li, A. Song and S. Fei, ”Novel stability criteria on
discrete-time neural networks with both time-varying
and distributed delays,” International Journal of Neural
Systems 19, 269–283.

[9] S. Arik 2005, ”Global robust stability analysis of neural
networks with discrete time delays,” Chaos Solitons and
Fractals 26, 1407–1414.

[10] S. Arik 2004, ”An analysis of exponential stability of de-
layed neural networks with time varying delays,” Neural
Networks 17, 1027–1031.

[11] V. Singh 2005, ”Global robust stability of delayed neu-
ral networks: an LMI approach,” IEEE Transactions on

363



LMI conditions for delay probability distribution dependent robust stability analysis of markovian jump stochastic
neural networks with time-varying delays — 364/365

Circuits and Systems II Express Briefs 52, 33–36.
[12] T. Chen and L. Rong 2003, ”Delay-independent stability

analysis of Cohen-Grossberg neural networks,” Physics
Letters A 317, 436–449.

[13] H. J. Cho and J. H. Park 2007, ”Novel delay-dependent
robust stability criterion of delayed cellular neural net-
works,” Chaos, Solitons and Fractals 32, 1194–1200.

[14] X. F. Liao, G. Chen and E. N. Sanchez 2002, ”Delay-
dependent exponential stability analysis of delayed neural
networks: an LMI approach,” Neural Networks 15, 855–
866.

[15] Y. Chen and Y. Wu 2009, ”Novel delay-dependent stabil-
ity criteria of neural networks with time-varying delay,”
Neurocomputing 72, 1065-1070.

[16] R. Yang, H. Gao, J. Lam and P. Shi 2009, ”New stability
criteria for neural networks with distributed and proba-
bilistic delays,” Circuits Systems and Signal Processing
28, 505-522.

[17] J. Fu, H. G. Zhang and T. Ma 2009, Delay-probablity-
distribution-dependent robust stability analysis for SNNs
with time-varying delay, Progress Natural Science 19,
1333–1340.

[18] Y. Wenwu and J. Cao 2007, ”Robust control of uncertain
stochastic recurrent neural networks with time-varying
delay,” Neural Processing Letters 26, 101–119.

[19] S. Blythe, X. Mao and X. Liao 2001, ”Stability of stochas-
tic delay neural networks, Journal of the Franklin Institute
338, 481–495.

[20] Y. Chen, A. Xue, X. Zhao, S. Zhou 2009, ”Improved
delay-dependent stability analysis for uncertain stochastic
Hopfield neural networks with time-varying delays,” IET
Control Theory and Applications 3, 88-97.

[21] P. Balasubramaniam, S. Lakshmanan 2011, LMI Condi-
tions for Robust Stability Analysis of Stochastic Hopfield
Neural Networks with Interval Time-Varying Delays and
Linear Fractional Uncertainties, Circuits, Systems, and
Signal Processing, 30,1011-1028.

[22] W. Su and Y. Chen 2009, ”Global asymptotic stability
analysis for neutral stochastic neural networks with time-
varying delays,” Communications in Nonlinear Science
and Numerical Simulation 14, 1576–1581.

[23] J. Zhang, P. Shi and J. Qiu 2007, ”Novel robust stabil-
ity criteria for uncertain stochastic Hopfield neural net-
works with time-varying delays,” Nonlinear Analysis:
Real world Applications 8, 1349–1357.

[24] J. Yu, K. Zhang and S. Fei 2009, ”Further results on
mean square exponential stability of uncertain stochastic
delayed neural networks,” Communication in Nonlinear
Science and Numerical Simulation 14, 1582-1589.

[25] W. Feng, S. X. Yang and H. Wu 2009, ”On robust stability
of uncertain stochastic neural networks with distributed
and interval time-varying delays,” Chaos, Solitons and
Fractals 42, 2095–2104.

[26] W. Feng, S. X. Yang, W. Fu, and H. Wu 2009, ”Robust
stability analysis of uncertain stochastic neural networks

with interval time-varying delay,” Chaos, Solitons and
Fractals 41, 414–424.

[27] Y. Wu, Y. Wu and Y. Chen 2009, ”Mean square exponen-
tial stability of uncertain stochastic neural networks with
time-varying delay,” Neurocomputing 72, 2379–2384.

[28] R. Yang, H. Gao and P. Shi 2009, ”Novel robust stabil-
ity criteria for stochastic Hopfield neural networks with
time delays,” IEEE Transactions on Systems, Man, and
Cybernetics part B 39, 467–474.

[29] W. H. Chen and X. M. Lu 2008, ”Mean square expo-
nential stability of uncertain stochastic delayed neural
networks,” Physics Letters A 372, 1061–1069.

[30] H. Y. Li, B. Chen and Q. Zhou 2008, ”Robust exponential
stability for uncertain stochastic neural networks with
discrete and distributed time-varying delays,” Physics
Letters A 372, 3385–3894.

[31] H. Huang and G. Feng 2008, ”Corrigendum to delay-
dependent stability for uncertain SNNs with time-varying
delay,” [Physica A, 381 (2007) 93–103], Physica A 387,
1431-1432.

[32] X. Li and J. Cao 2007, ”Delay-independent exponential
stability of stochastic Cohen-Grossberg neural networks
with time-varying delays and reaction diffusion terms,”
Nonlinear Dynamics 50, 363–371.

[33] Y. Liu, Z. Wang and X. Liu 2008, On delay-dependent
robust exponential stability of SNNs with mixed time
delays and Markovian switching, Nonlinear Dynamics
54, 199–213.

[34] H. Huang and J. Cao 2007, Exponential stability analy-
sis of uncertain SNNs with multiple delays, Nonlinear
Analysis: Real World Applications 8, 646–653.

[35] C. Huang, Y. He and L. Huang 2009, ”Stability analysis
of non-autonomous stochastic Cohen-Grossberg neural
networks,” Nonlinear Dynamics 57, 469–478.

[36] J. Zhang, P. Shi, J. Qiu and H. Yang 2008, ”A new cri-
terion for exponential stability of uncertain SNNs with
mixed delays,” Mathematical and Computer Modelling
47, 1042–1051.

[37] B. Zhang, S. Xu, G. Zong and Y. Zou 2009 , Delay-
dependent exponential stability for uncertain stochas-
tic Hopfield Neural Networks with time-varying delays,
IEEE Transactions on Circuits and systems I 56, 1241–
1247.

[38] Q. Zhu and J. Cao 2012, Stability of Markovain jump
neural networks with impulse control and time varying
delays, Nonlinear Analysis: Real World Applications 13,
2259–2270.

[39] H. Huang and Q. Du 2013, Global exponential stability
of neutral high-order stochastic Hopfield neural networks
with Markovian jump parameters and mixed time delays,
ISA Transactions 52, 759–767.

[40] J. W. Yi, Y. W. Wang, J. W. Xiao and Y. Huang 2013,
Exponential synchronization of complex dynamical net-
works with markovian jump parameters and stochastic

364



LMI conditions for delay probability distribution dependent robust stability analysis of markovian jump stochastic
neural networks with time-varying delays — 365/365

delays and its application to multi-agent systems, Com-
munications in Nonlinear Science and Numerical Simula-
tion 18, 1175–1192.

[41] D. Zhang and L. Yu 2012, Exponential state estima-
tion for Markovian jumping neural networks with time-
varying discrete and distributed delays, Neural Networks
35, 103–111.

[42] C. D. Zheng, K. Qua and Z. Wang 2013, Robust conver-
gence of Cohen Grossberg neural networks with mode-
dependent time-varying delays and Markovian jump,
Journal of the Franklin Institute 350, 2166-2182.

[43] H. Li, Q. Zhou, B. Chen and H. Liu 2011, Parameter-
dependent robust stability for uncertain Markovian jump
systems with time delay, Journal of Franklin Institue 38,
738–748.

[44] Z. G. Wu, J. H. Park, H. Su and J. Chu 2013, Delay
dependent passivity for singular Markov jump systems
with time-delays, Communications in Nonlinear Science
and Numerical Simulation 18, 669–681.

[45] M. Luo, G. Liu and S. Zhong 2013, Robust fault detection
of Markovian jump systems with different system modes,
Applied Mathematical Modelling 37, 5001–5012.

[46] J. Wang, H. Wang, A. Xue and R. Lu 2013, Delay-
dependent H∞ control for singular Markovain jump sys-
tems with time delay, Nonlinear Analysis: Hybrid sys-
tems 8, 1–12.

[47] B. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan
1994, ”Linear matrix inequalities in systems and control
theory,” Philadelphia: SIAM.

[48] H. Zhang, Y. Wang and D. Liu 2008, Delay-dependent
guaranteed cost control for uncertain stochastic fuzzy
systems with multiple time delays, IEEE Transactions on
Systems, Man, and Cybernetics Part B 38, 126–40.

[49] L. Xie, M. Fu, and C. E. D. Souza 1992, H∞ control
and quadratic stabilization of systems with parameter
uncetainty via output feedback. IEEE Transsctions on
Automatic Control, 32, 1253–1256.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

365

http://www.malayajournal.org

	Introduction
	Problem description and preliminaries
	 MAIN RESULTS
	Numerical Examples
	Example.
	Example.
	Example.
	Example.

	Conclusion
	References

