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Abstract. The purpose of this paper is to present new results on the existence, uniqueness and monotonicity of positive
solutions for hybrid Caputo-Hadamard fractional integro-differential equations. Our results are based on the method of upper
and lower solutions, and the Dhage and Banach fixed point theorems. Two examples are given to illustrate our obtained
results.
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1. Introduction

Fractional differential equations with and without delay arise from a variety of applications including in
various fields of science and engineering such as applied sciences, physics, chemistry, biology, medicine, etc. In
particular, problems concerning qualitative analysis of fractional differential equations with and without delay
have received the attention of many authors, see [1]–[14], [16]–[22] and the references therein.

Hybrid Fractional differential equations arise from a variety of different areas of applied mathematics and
physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam,
electromagnetic waves or gravity driven flows and so on [2, 3, 13, 14, 21, 22].
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Haoues)
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Hybrid Caputo-Hadamard fractional integro-differential equations

Let J = [t0, T ]. Haoues et al. [18] investigated the existence, uniqueness and monotonicity of positive
solutions for the following hybrid fractional integro-differential equation

CDα
t0

(
x (t)

p (t) + 1
Γ(β)

∫ t
t0

(t− s)β−1
g (s, x (s)) ds

)
= f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ ≥ 0,

where CDα
t0 is the Caputo fractional derivative of order 0 < α ≤ 1, 0 < β ≤ 1, 0 ≤ t0 < T , f, g : J × R → R

and p : J → R are given continuous functions. By using the method of the upper and lower solutions and the
Dhage and Banach fixed point theorems, the authors obtained the existence, uniqueness and monotonicity of a
positive solution.

In this paper, we extend the results in [18] by proving the existence, uniqueness and monotonicity of positive
solutions for the following hybrid nonlinear Caputo-Hadamard fractional integro-differential equation

CHDα
t0

 x (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
g (s, x (s)) dss

 = f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ ≥ 0,

(1.1)

where CHDα
t0 is the Caputo-Hadamard fractional derivative of order 0 < α ≤ 1, 0 < β ≤ 1, 1 ≤ t0 < T ,

f, g : J × R → R and p : J → R are given continuous functions. To prove the existence, uniqueness and
monotonicity of positive solutions, we transform (1.1) into an integral equation and then by the method of upper
and lower solutions and use Dhage and Banach fixed point theorems.

2. Preliminaries

Let X = C (J) be the Banach space of all real-valued continuous functions defined on the compact interval
J , endowed with the maximum norm. Define the subset Cθ = {x ∈ X : x (t) ≥ p (t0) θ, t ∈ J} of X .

Definition 2.1 ([19]). The Hadamard fractional integral of order α > 0 for a continuous function x : [t0,+∞)→
R is defined as

HIαt0x (t) =
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

x (s)
ds

s
.

Definition 2.2 ([19]). The Caputo-Hadamard fractional derivative of order α > 0 for a continuous function
x : [t0,+∞)→ R is defined as

CHDα
t0x (t) =

1

Γ (n− α)

∫ t

t0

(
log

t

s

)n−α−1

δn (x) (s)
ds

s
,

where δn =
(
t ddt
)n

and n = [α] + 1.

Lemma 2.3 ([19]). Let α > 0 and x ∈ Cn−1 [t0,+∞) and δn (x) exists almost everywhere on any bounded
interval of [t0,+∞). Then

(
HIαCHt0 Dα

t0x
)

(t) = x (t)−
n−1∑
k=0

x(k) (t0)

k!
(log t)

k
.

In particular, when 0 < α ≤ 1,
(
HIαCHt0 Dα

t0x
)

(t) = x (t)− x (t0).
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A. Ardjouni and M. Haoues

Definition 2.4. For any x ∈ [a, b] ⊂ R+, we define the upper-control function by

U (t, x) = sup {f (t, s) : a ≤ s ≤ x} ,

and the lower-control function by

L (t, x) = inf {f (t, s) : x ≤ s ≤ b} .

It is obvious that these functions are non-decreasing on [a, b], i.e.

L (t, x) ≤ f (t, x) ≤ U (t, x) , t ∈ J.

Definition 2.5. A function x ∈ X is positive bounded below if x ∈ Cθ. In particular, we call x as nonnegative
function if p (t0) θ = 0 and positive function if p (t0) θ > 0.

The following fixed point theorem due to Dhage [15] is essential tool for the proof of the first result.

Theorem 2.6 ([15]). Let S be a nonempty bounded closed convex subset of a Banach algebraX . Let B : S → X

and A : S → X be two operators such that
i) A is Lipschiz with a Lipschitz constant σ,
ii) B is completely continuous,
iii) AxBy ∈ S for all x, y ∈ S.

Then the product operator equation
AxBx = x,

has a solution, whenever σM < 1, where M = sup {‖Bx‖ : x ∈ S}.

3. Existence of positive solutions

In this section, we will discuss the existence of positive solutions for (1.1). We introduce the following
conditions

(H1) For t ∈ J and x ∈ X , we have

p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s
> 0,

and

θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s
≥ 0.

(H2) Let x∗, x∗ ∈ Cθ, such that x∗ (t0) = x∗ (t0) = p (t0) θ and p (t0) θ ≤ x∗ (t) ≤ x∗ (t) ≤ b, t ∈ J .
Moreover, 

CHDα
t0

 x∗ (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
g (s, x∗ (s)) dss

 ≥ U (t, x∗ (t)) ,

CHDα
t0

 x∗ (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
g (s, x∗ (s)) dss

 ≤ L (t, x∗ (t)) ,

(3.1)

for any t ∈ J .
(H3) Let g be monotonic non-decreasing with respect to x and there exists Lg > 0 such that

|g (t, x)− g (t, y)| ≤ Lg |x− y| , t ∈ J, x, y ∈ R,
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Hybrid Caputo-Hadamard fractional integro-differential equations

where

0 < Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

 < 1.

(H4) There exists Lf > 0 such that

|f (t, x)− f (t, y)| ≤ Lf |x− y| , t ∈ J, x, y ∈ R.

The functions x∗ and x∗ are respectively called the pair of upper and lower solutions for (1.1).
From Lemma 2.3, we deduce the following lemma.

Lemma 3.1. Suppose that
x

h
is differentiable on J . Then the equation

CHDα
t0

(
x (t)

h (t)

)
= f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ,
(3.2)

is equivalent to

x (t) = h (t)

(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s

)
, t ∈ J. (3.3)

By the previous lemma, (1.1) is equivalent to

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)

×

(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s

)
, t∈ J.

Hence, according to the Dhage fixed point theorem 2.6, we define the operators A,B : Cθ → Cθ by

(Ax) (t) = p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s
, (3.4)

and

(Bx) (t) = θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s
, (3.5)

for t ∈ J .

Theorem 3.2. Suppose that (H1)− (H3) are satisfied, then the problem (1.1) has at last one positive bounded
below solution x ∈ Cθ satisfying x∗ (t) ≤ x (t) ≤ x∗ (t), t ∈ J .

Proof. Let S = {x ∈ Cθ : x∗ (t) ≤ x (t) ≤ x∗ (t) , t ∈ J}, endowed with the norm ‖x‖ = maxt∈J |x (t)|, then
for any x ∈ S, we have ‖x‖ ≤ b. Hence, S is a convex, bounded and closed subset of Cθ. Moreover, the
continuity of g and f implies the continuity of the operators A and B on S. Now, if x ∈ S there exists a positive
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constant cf such that max {|f (t, x (t))| : (t, x) ∈ J × S} ≤ cf . Then

|(Bx) (t)| =

∣∣∣∣∣θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ |θ|+ 1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

|f (s, x (s))| ds
s

≤ |θ|+ cf
Γ (α)

∫ t

t0

(
log

t

s

)α−1
ds

s

≤ |θ|+
cf

(
log t

t0

)α
Γ (α+ 1)

.

So,

‖Bx‖ ≤ |θ|+
cf

(
log T

t0

)α
Γ (α+ 1)

.

Hence, B (S) is uniformly bounded. Next, we show the equicontinuity of B. Let x ∈ S, then for any t1, t2 ∈ J ,
t2 > t1, we get

|(Bx) (t2)− (Bx) (t1)|

=
1

Γ (α)

∣∣∣∣∣
∫ t2

t0

(
log

t2
s

)α−1

f (s, x (s))
ds

s
−
∫ t1

t0

(
log

t1
s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ 1

Γ (α)

∫ t1

t0

((
log

t1
s

)α−1

−
(

log
t2
s

)α−1
)
|f (s, x (s))| ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

|f (s, x (s))| ds
s

≤ cf
Γ (α)

(∫ t1

t0

(
log

t1
s

)α−1

−
(

log
t2
s

)α−1
ds

s
+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

)

≤ cf
Γ (α+ 1)

((
log

t1
t0

)α
−
(

log
t2
t0

)α
+ 2

(
log

t2
t1

)α)
≤ 2cf

Γ (α+ 1)

(
log

t2
t1

)α
.

As t1 → t2 the right-hand side of the previous inequality is independent of x and tends to zero. Therefore, B (S)

is equicontinuous. The Arzela-Ascoli theorem implies that B is compact. Hence B is completely continuous.
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Hybrid Caputo-Hadamard fractional integro-differential equations

By hypothesis (H3), for any x, y ∈ S, we get

|(Ax) (t)− (Ay) (t)|

=

∣∣∣∣∣ 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s
− 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, y (s))
ds

s

∣∣∣∣∣
≤ 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

|g (s, x (s))− g (s, y (s))| ds
s

≤ Lg
Γ (β)

(∫ t

t0

(
log

t

s

)β−1
ds

s

)
‖x− y‖

≤
Lg

(
log T

t0

)β
Γ (β + 1)

‖x− y‖ .

Then A is Lipschiz mapping with Lipschitz constant σ = Lg

(
log T

t0

)β
Γ(β+1) , that satisfying σ sup {‖Bx‖ : x ∈ S} <

1.
We need to show that AxBy ∈ S for all x, y ∈ S. Indeed, by Definition 2.4 and the hypothesis (H3), we

obtain

(Ax) (t) (By) (t)

=

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

f (s, y (s))
ds

s

)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, y (s))
ds

s

)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x∗ (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, x∗ (s))
ds

s

)
≤ x∗ (t) ,

and

(Ax) (t) (By) (t)

≥

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, y (s))
ds

s

)

≥

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

g (s, x∗ (s))
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, x∗ (s))
ds

s

)
≥ x∗ (t) .

Hence, x∗ (t) ≤ Ax (t)By (t) ≤ x∗ (t), t ∈ J , that is (AxBy) (S) ⊆ S. According to the Dhage fixed point
theorem, the operator equation AxBx = x has at last one fixed point x ∈ S. Therefore, the problem (1.1) has at
last one positive bounded below solution x ∈ Cθ. �

Next, we consider many particular cases of the previous theorem.

Corollary 3.3. Suppose that (H3) holds and there exist k1, k2, k3, k4 ∈ X , such that

k1 (t) ≤ g (t, x (t)) ≤ k2 (t) , (3.6)

173



A. Ardjouni and M. Haoues

and
k3 (t) ≤ f (t, x (t)) ≤ k4 (t) . (3.7)

If

p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s
> 0, (3.8)

and

θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s
≥ 0, (3.9)

then the problem (1.1) has at least one positive bounded below solution. Moreover(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s

)
≤ x (t)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k4 (s)
ds

s

)
.

Proof. By the assumption (3.7) and the definition of control functions, we have

k3 (t) ≤ L (t, x (t)) ≤ U (t, x (t)) ≤ k4 (t) ,

for any t ∈ J . Now, we consider the fractional differential equations

CHDα
t0

 x (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
k1 (s) dss

 = k3 (t) , x (t0) = p (t0) θ, (3.10)

and

CHDα
t0

 x (t)

p (t) + 1
Γ(β)

∫ t
t0

(
log t

s

)β−1
k2 (s) dss

 = k4 (t) , x (t0) = p (t0) θ. (3.11)

In accordance of Lemma 3.1, the solutions of (3.10) and (3.11) are given respectively by

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s

)
,

and

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k4 (s)
ds

s

)
.

Therefore,

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k3 (s)
ds

s

)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, x (s))
ds

s

)
,
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and

x (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k4 (s)
ds

s

)

≥

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, x (s))
ds

s

)
.

One can define the upper and lower solutions as

x∗ (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

U (s, x∗ (s))
ds

s

)
,

and

x∗ (t) =

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

L (s, x∗ (s))
ds

s

)
.

Hence by Theorem 3.2, the problem (1.1) has a positive bounded below solution x ∈ Cθ. �

Corollary 3.4. Let k ∈ X and ϕ ∈ R+ such that ϕ < k (t) = limx→∞ f (t, x) < ∞ for t ∈ J . If (H3), (3.6)
and (3.8) hold and θ ∈ R+, then the problem (1.1) has at least one positive bounded below solution. Moreover
for 0 < ω < ϕ,

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)θ +
(ϕ− ω)

(
log t

t0

)α
Γ (α+ 1)


≤ x (t)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)θ +
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

k (s)
ds

s
+
ω
(

log t
t0

)α
Γ (α+ 1)

 .

Corollary 3.5. Suppose that (H3), (3.6) and (3.8) hold, and

lim
x→θ

f (t, x)

x
= γ (t) ,

where γ ∈ X , t ∈ J . Then there exists a positive bounded below solution of the problem (1.1).

Corollary 3.6. Let µ, ν and ξ are real positive numbers such that µ ≤ f (t, x (t)) ≤ νx (t) + ξ, for t ∈ J . If
(3.6), (3.8) and (H3) hold and θ ∈ R+, then the problem (1.1) has at least one positive bounded below solution.
Moreover(

p (t) +
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k1 (s)
ds

s

)θ +
µ
(

log t
t0

)α
Γ (α+ 1)


≤ x (t)

≤

(
p (t) +

1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

k2 (s)
ds

s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

(νx (s) + ξ)
ds

s

)
.
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4. Uniqueness of positive solutions

In this portion, we will prove the uniqueness of the bounded below positive solution of (1.1) using the Banach
contraction mapping principle.

Theorem 4.1. Suppose that (H1)− (H4) hold. If

Lg

(
log T

t0

)β
Γ (β + 1)

θ + cf

(
log T

t0

)α
Γ (α+ 1)

+

pm + cg

(
log T

t0

)β
Γ (β + 1)

Lf

(
log T

t0

)α
Γ (α+ 1)

< 1, (4.1)

then the problem (1.1) has a unique positive bounded below solution.

Proof. Let cf and cg are positive real numbers such that,

|f (t, x (t))| ≤ cf , |g (t, x (t))| ≤ cg,

for any t ∈ J and x, y ∈ Cθ. According to Theorem 3.2, the problem (1.1) has at least one positive bounded
below solution in S. Now, we need only to prove that the product operator AxBx is a contraction mapping on
X , where A and B are defined as in (3.4) and (3.5). Indeed, for any x, y ∈ Cθ and t ∈ J , we get

|(AxBx) (t)− (AyBy) (t)|

≤

(
1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

|g (s, x (s))− g (s, y (s))| ds
s

)(
θ +

1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

|f (s, x (s))| ds
s

)

+

(
|p (t)|+ 1

Γ (β)

∫ t

t0

(
log

t

s

)β−1

|g (s, y (s))| ds
s

)

×

(
1

Γ (α)

∫ t

t0

(
log

t

s

)α−1

|f (s, x (x))− f (s, y (s))| ds
s

)

≤

Lg
(

log t
t0

)β
Γ (β + 1)

‖x− y‖


θ + cf

(
log t

t0

)α
Γ (α+ 1)



+

|p (t)|+ cg

(
log t

t0

)β
Γ (β + 1)


Lf

(
log t

t0

)α
Γ (α+ 1)

‖x− y‖



≤

Lg
(

log T
t0

)β
Γ (β + 1)

θ + cf

(
log T

t0

)α
Γ (α+ 1)

+

pm + cg

(
log T

t0

)β
Γ (β + 1)

Lf

(
log T

t0

)α
Γ (α+ 1)

 ‖x− y‖ ,
where pm = maxt∈J |p (t)|. Hence, by (4.1) the product operator AxBx is a contraction mapping. Therefore,
the problem (1.1) has a unique positive bounded below solution x ∈ Cθ. �

5. Monotonicity of positive solutions

Theorem 5.1. Let p, g and f be non-decreasing functions with respect to both variables, f (t0, x (t0)) ≥ 0 and
g (t0, x (t0)) ≥ 0. Moreover, let (H1)− (H4) hold, then there is a monotonic non-decreasing positive bounded
below solution of the problem (1.1).
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Proof. Define a subset R = {x ∈ S : x is nondecreasing on J}, then R is a closed and convex subset of S. The
operator B is uniformly bounded and completely continuous and the operator A is Lipschitzian with Lipschitz
constant σ, and satisfying σ sup {‖Bx‖ : x ∈ R} ≤ 1. It remains for applying the Dhage theorem that AxBx ∈
R whenever x, y ∈ R. To this end, it suffices to consider x, y ∈ R, t1, t2 ∈ J with t1 < t2. It follows that

Ax (t2)By (t2)−Ax (t1)By (t1)

= Ax (t2) (By (t2)− By (t1)) + (Ax (t2)−Ax (t1))By (t1)

=
1

Γ (α)

(
p (t2) +

1

Γ (β)

∫ t2

t0

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)

×

(∫ t1

t0

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
f (s, y (s))

ds

s
+

∫ t2

t1

(
log

t2
s

)α−1

f (s, y (s))
ds

s

)

+

(
p (t2)− p (t1) +

1

Γ (β)

∫ t1

t0

((
log

t2
s

)β−1

−
(

log
t1
s

)β−1
)
g (s, x (s))

ds

s

+
1

Γ (β)

∫ t2

t1

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)(
θ +

1

Γ (α)

∫ t1

t0

(
log

t1
s

)α−1

f (s, y (s))
ds

s

)
.

Since
(
log t2

s

)α−1 −
(
log t1

s

)α−1
< 0 and

(
log t2

s

)β−1 −
(
log t1

s

)β−1
< 0, then

Ax (t2)By (t2)−Ax (t1)By (t1)

≥ f (t1, y (t1))

Γ (α)

(
p (t2) +

1

Γ (β)

∫ t2

t0

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)

×

(∫ t1

t0

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
ds

s
+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

)

+

(
p (t2)− p (t1) +

g (t1, x (t1))

Γ (β)

(∫ t1

t0

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
ds

s

+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

))(
θ +

1

Γ (α)

∫ t1

t0

(
log

t1
s

)α−1

f (s, y (s))
ds

s

)

≥ f (t1, y (t1))

Γ (α+ 1)

(
p (t2) +

1

Γ (β)

∫ t2

t0

(
log

t2
s

)β−1

g (s, x (s))
ds

s

)((
log

t2
t0

)α
−
(

log
t1
t0

)α)

+

(
p (t2)− p (t1) +

g (t1, x (t1))

Γ (β + 1)

((
log

t2
t0

)β
−
(

log
t1
t0

)β))

×

(
θ +

1

Γ (α)

∫ t1

t0

(
log

t1
s

)α−1

f (s, y (s))
ds

s

)
≥ 0.

Therefore, with the Dhage fixed point theorem the product operator AB : R → R has a fixed point with the
positivity and monotonicity nondecreasing properties which is a solution of the problem (1.1). �

Remark 5.2. The results of Theorem 5.1 are valid in Corollaries 3.3-3.6 if the assumptions of Theorem 5.1 are
added to Corollaries 3.3-3.6.
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6. Examples

Example 6.1. Consider the Caputo-Hadamard fractional integro-differential equation
CD

2
3

 x (t)

5+3t
8 + 1

Γ( 1
4 )

∫ t
1

(
log t

s

)− 3
4

(
x(s)+2
x(s)+3

)
ds
s

 = 1
5+t

(
tx(t)
x(t)+4 + 5

)
, t ∈ (1, e] ,

x (1) = 0,

(6.1)

where α = 2/3, β = 1/4, θ = 0, p (t) = 5+3t
8 , f (t, x) = 1

5+t

(
tx
x+4 + 5

)
and g (t, x) = x+2

x+3 . Since g is
nondecreasing on x,

2

3
≤ g (t, x) ≤ 1 and

5

5 + e
≤ f (t, x) ≤ 1 for t ∈ [1, e] , x ∈ [0,+∞) ,

and

Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

 ' 0.136 < 1.

Then, by Corollary 3.3, (6.1) has a positive solution which verifies x∗ (t) ≤ x (t) ≤ x∗ (t) where

x∗ (t) =

(
5 + 3t

8
+

2 (log t)
1
4

3Γ
(

5
4

) ) 5

5 + e

(log t)
2
3

Γ
(

5
3

) ,

and

x∗ (t) =

(
5 + 3t

8
+

(log t)
1
4

Γ
(

5
4

) ) (log t)
2
3

Γ
(

5
3

) .

This positive solution is unique due to the condition (4.1) is satisfied since

Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

+

pm + cg

(
log T

t0

)β
Γ (β + 1)

Lf

(
log T

t0

)α
Γ (α+ 1)

' 0.404 < 1.

The property of non-decreasing of this solution is not valid in spite of f .

Example 6.2. Consider the Caputo-Hadamard fractional integro-differential equation
CD

1
3

 x (t)

t
3 + 1 + 1

Γ( 2
5 )

∫ t
1

(
log t

s

)− 3
5 (2− cos (x (s))) dss

 = t
6 sin (x (t)) , t ∈ (1, e] ,

x (1) = 4,

(6.2)

where α = 1/3, β = 2/5, θ = 1/3, p (t) = t
3 + 1, f (t, x) = t

6 sinx and g (t, x) = 2 − cosx for t ∈ [1, e],
x ∈

[
0, π2

]
. Hence, g is nondecreasing on x and

0 ≤ f (t, x) ≤ e

6
, 1 ≤ g (t, x) ≤ 2.
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Since

Lg

(
log T

t0

)β
Γ (β + 1)

|θ|+ cf

(
log T

t0

)α
Γ (α+ 1)

 ' 0.947 < 1.

Then, by Corollary 3.3, (6.2) has a positive solution which verifies x∗ (t) ≤ x (t) ≤ x∗ (t) where

x∗ (t) =
t

9
+

1

3
+

(log t)
2
5

3Γ
(

7
5

) ,
and

x∗ (t) =

(
t

3
+ 1 +

2 (log t)
2
5

Γ
(

7
5

) )(
1

3
+
e (log t)

1
3

6Γ
(

4
3

) ) .
We could not guarantee this positive solution is unique due to the condition (4.1) is not satisfied. The property
of non-decreasing of this positive solution is valid since f and g are increasing on

[
0, π2

]
and p is increasing on

[1, e].

7. Conclusion

The hybrid nonlinear Caputo-Hadamard fractional integro-differential equation is considered. So, we have
studied the existence, uniqueness and monotonicity of positive solutions. The main tool of this work is the method
of upper and lower solutions and the Dhage and Banach fixed point theorems. However, by introducing a new
fixed mapping, we obtain new positivity conditions.
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