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Existence of continuous solutions for nonlinear
functional differential and integral inclusions
El-Sayed, A.M.A1* and Al-Issa, Sh. M2

Abstract
In this article, we establish the existence of a positive continuous solution of the functional integral inclusion of
fractional order

x(t) ∈ p(t)+ Iα F1(t, Iβ f2(t,x(ϕ(t))), t ∈ [0,1], α,β ∈ (0,1).

The study holds in the case when the set-valued function has Lipschitz selections.
As an application, we study the initial-value problem of the arbitrary fractional order differential inclusion

dx
dt
∈ F1(t,Dγ x(t)), a.e, t ∈ [0,1], γ > 0

where F1(t,x(t)) is a Lipschitz set-valued function defined on [0,1]×R+.
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1. Introduction
The topic of differential and integral inclusions is of much

interest in the subject of set-valued analysis. Differential
Equations and Control Processes, the existence theorems for
the inclusions problems are generally obtained under the as-
sumptions that the set-valued function is either lower or upper
semicontinuous in the domain of its definitions (see [1] and
[12]) and for the discontinuity of the set-valued function (see
[6]). The integral inclusions have been studied by B.C. Dhage
and D. O‘Regan (see [5] and [12]) for the existence results
under Caratheodory Condition of F .

Consider the functional integral inclusion of fractional order

x(t) ∈ p(t)+F1(t, Iα f2(t,x(ϕ(t))), t ∈ [0,1], α ∈ (0,1).
(1.1)

In [8], the authors proved the existence of global integrable
solutions for the nonlinear functional integral inclusion (1.1),
where the set-valued map F1 : (0,1)×R+→ 2R+

has nonempty
closed values which are satisfying Caratheodory and growth
conditions.
Recently, the existence of positive monotonic continuous and
integrable solutions of the mixed type integral inclusion

x(t)∈ p(t)+
∫ 1

0
k(t,s)F1(s, Iβ f2(s,x(s))ds, t ∈ [0,1], β > 0

(1.2)

has been studied in [9, 10] by using Schauder’s and Nonlinear
Alternative of Leray-Shauder type fixed-point Theorem. As a
generalization of previous results the authors (see [2]) proved
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the existence of positive integrable solution for the nonlinear
functional integral inclusion

x(t)∈ p(t)+Iα F1(t, Iβ f2(t,x(ϕ(t))) t ∈ [0,1], α,β ∈ (0,1).
(1.3)

Here, we are going to study the existence of positive con-
tinuous solutions for the integral inclusion (1.3), where the
set-valued map F1 : (0,1)×R+→ 2R+

satisfies Lipschitiz con-
dition.
As an application, the initial-value problem of the arbitrary
(fractional) Order differential inclusion

dx(t)
dt
∈ p(t)+ Iα F1(t, ,Dγ x(t)), t ∈ [0,1], γ > 0, (1.4)

x(0) = x◦ (1.5)

will be also studied.

2. Preliminaries
In this section, we recall some definitions and basic re-

sults of fractional calculus, which will be used throughout the
paper.

Let L1(I) be the class of Lebesgue integrable function on
the Interval I = [a,b],
0≤ a< b < ∞ and Let Γ(.) be the gamma function.

Definition 2.1. The Riemann-Liouville of fractional integral
of the function f ∈ L1(I) of order α ∈R+ is defined by (cf.[14],
[15],[16] , and [17])

Iα
a f (t) =

∫ t

a

(t− s)α−1

Γ(α)
f (s) ds

and when a = 0, we have Iα f (t) = Iα
0 f (t).

Definition 2.2. The (Caputo) fractional order derivative Dα ,
α ∈ (0,1] of the absolutely continuous function g is defined
as (see [4], [15], [16], and [17] )

Dα
a g(t) = I1−α

a
d
dt

g(t) , t ∈ [a,b].

For further properties of fractional calculus operator (see
[4], [15], [16], and [17] )

Definition 2.3. Let X and Y be two non-empty sets, a set-
valued (multivalued) map F : X → Y is a function that as-
sociate to any element x ∈ X a subset F(x) of Y , called the
(image) valued of F at x.

Let F be a set-valued map defined on a Banach space E, f
is called a Selection of F if f (x) ∈ F(x) for every x ∈ E and
we denote by

SF = { f : f (x) ∈ F(x),x ∈ E}

the set of all selections of F (For the properties of the selection
of F see [3, 11, 18] ).

Definition 2.4. A set-valued map F from I×E to family of
all nonempty closed subsets of E is called Lipschitzian if there
exists L > 0, such that for all t ∈ I and all x1,x2 ∈ E, we have

h(F(t,x1),F(t,x2))≤ L‖x1− x2‖ (2.1)

where, h(A,B) is the Hausdorff distance between the two sub-
sets A,B ∈ I×E (For the properties of the Hausdorff distance
see ([1]) ).

The following Theorem [[1], Sect.9, Chap. 1, Th. 1]
assume the existence of Lipschitzian selection.

Theorem 2.5. Let M be a metric space and F be Lipschitzian
set-valued function from M into the nonempty compact convex
subsets of Rn. Assume, moreover, that for some λ > 0, F(x)⊂
λB for all x ∈M where B is the unit ball on Rn. Then there
exists a constant c and a single-valued function f : M →
Rn, f (x) ∈ F(x) for x ∈M, this function is Lipschitzian with
constant L.

3. Main results
In this section, we deal with the existence of positive

continuous solutions for the fractional integral inclusion (1.3).
Now, we consider the following assumptions to establish the
existence results:

(i) The function p(t) : [0,1]→ R+ is continuous.

(ii) The function f2 : [0,1]×R+ → R+ is continuous in its
two arguments and there exists a constants c, such that

| f2(t,x1(t))− f2(t,x2(t))| ≤ c |x1(t)− x2(t)|

for every x1, x2 ∈ R+ and t ∈ [0,1].

(iii) Let F1(t,x(t)) : [0,1]×R+→ 2R+
be a Lipschitzian set-

valued map with nonempty compact convex subset of
2R+

.

(iv) The function φ : (0,1)→ (0,1) is continuous.

(v) L c < Γ(α +1)Γ(β +1).

It is clear that from Theorem 2.5 and assumption (iii), the set
of Lipschitiz selection of F1 is non empty. So, the solution of
the single valued integral equation

x(t) = p(x)+ Iα F1(t, Iβ f2(t,x(ϕ(t))), t ∈ [0,1] (3.1)

where f1 ∈ SF1 , is a solution of (1.3).
It must be noted that f1 satisfied the Lipschitiz selection

| f1(t,x)− f1(s,y)| ≤ L (|t− s|, |x− y|).

Now, for the existence of a unique continuous solution of
the functional integral inclusion (1.3) we have the following
theorem.
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Theorem 3.1. Let assumptions (i)-(v) be satisfied, then the
inclusion (1.3) has a unique positive solution x ∈C[0,1].

Proof. Let A : C[0,1]→C[0,1] be the operator defined by

Ax(t) = p(t)+ Iα f1(t, Iβ f2(t,x(ϕ(t)))). (3.2)

Let x1,x2 ∈C[0,1]. Then, in view of our assumptions, we have

|Ax1(t)−Ax2(t)|

≤ |Iα f1(t, Iβ f2(t,x1(ϕ(t))))

− Iα f1(t, Iβ f2(t,x2(ϕ(t))))|

≤ |
∫ t

0

(t− s)α−1

Γ(α)
[ f1(s, Iβ f2(s,x1(ϕ(s))))

− f1(s, Iβ f2(s,x2(ϕ(s)))]|ds

≤
∫ t

0

(t− s)α−1

Γ(α)
| f1(s, Iβ f2(s,x1(ϕ(s))))

− f1(t, Iβ f2(s,x2(ϕ(s))))|ds

using Lipschitz condition for f1, we obtain:

|Ax1(t)−Ax2(t)|

≤ L
∫ t

0

(t− s)α−1

Γ(α)
|Iβ f2(s,x1(ϕ(s)))

− Iβ f2(s,x2(ϕ(s)))|ds

≤ L
∫ t

0

(t− s)α−1

Γ(α)

∫ s

0

(s− τ)β−1

Γ(β )
| f2(τ,x1(ϕ(τ)))

− f2(τ,x2(ϕ(τ)))|dτ ds

using Lipschitz condition for f2, we obtain:

|Ax1(t)−Ax2(t)|

≤ L c
∫ t

0

(t− s)α−1

Γ(α)

∫ s

0

(s− τ)β−1

Γ(β )
|x1(ϕ(τ))

− x2(ϕ(τ))|dτ ds

≤ Lc
∫ t

0

(t− s)α−1

Γ(α)

(s)β

Γ(β +1)
|x1(ϕ(τ))− x2(ϕ(τ))|ds

≤ Lc
Γ(β +1)

‖x1− x2‖
∫ t

0

(t− s)α−1(s)β

Γ(α)
ds

≤ L c
Γ(α +1)Γ(β +1)

‖x1− x2‖.

Then, from assumption (v) we get

‖Ax1−Ax2‖ < ‖x1− x2‖.

Hence the map A : C[0,1]→ C[0,1], defined by (3.2), is a
contraction, then it has a fixed point x(t) = Ax(t).
Therefore, there exists a unique solution x ∈ C[0,1] of the
integral equation (3.1), from which we deduce that solution
satisfy the integer inclusion (1.3), so there exists a solution
x ∈C[0,1] for inclusion (1.3).

Corollary 3.2. The solution of inclusion (1.3) is continuously
depends on the SF1 of all Lipschitzian selections of F1.

Proof. Let h1(t,x(t)) and h2(t,x(t)) be two different Lips-
chitzian selections of F1(t,x(t)), such that

|h1(t,x(t))−h2(t,x(t)|< ε, ε > 0, t ∈ [0,1]

then for the two corresponding solutions xh1(t) and xh2(t) of
(1.3) we have.

xh1(t)− xh2(t)

= Iα h1(t, Iβ f2(t,xh1(ϕ(t)))− Iα h2(t, Iβ f2(t,xh2(ϕ(t)))

|xh1(t)− xh2(t)|
≤ |Iα h1(t, Iβ f2(t,xh1(ϕ(t)))− Iα h2(t, Iβ f2(t,xh2(ϕ(t)))|

≤ |Iα h1(t, Iβ f2(t,xh1(ϕ(t)))− Iα h1(t, Iβ f2(t,xh2(ϕ(t)))|
+|Iα h1(t, Iβ f2(t,xh2(ϕ(t)))− Iα h2(t, Iβ f2(t,xh2(ϕ(t)))|

≤
∫ t

0

(t− s)α−1

Γ(α)
|h1(s, Iβ f2(s,xh1(ϕ(s)))

−h1(s, Iβ f2(s,xh2(ϕ(s)))|ds

+
∫ t

0

(t− s)α−1

Γ(α)
|h1(s, Iβ f2(s,xh2(ϕ(t)))

−h2(s, Iβ f2(s,xh2(ϕ(s))))|ds

≤ L
∫ t

0

(t− s)α−1

Γ(α)
|Iβ f2(s,xh1(ϕ(s)))

−Iβ f2(s,xh2(ϕ(s)))|ds+
∫ t

0

(t− s)α−1

Γ(α)
ε ds

≤ L
∫ t

0

(t− s)α−1

Γ(α)

∫ s

0

(s− τ)β−1

Γ(β )
| f2(τ,xh1(ϕ(τ)))

− f2(τ,xh2(ϕ(τ)))|dτds+
ε

Γ(α +1)

≤ Lc
∫ t

0

(t− s)α−1

Γ(α)

(s)β

Γ(β +1)
|xh1(ϕ(s))− xh2(ϕ(s))|ds

+
ε

Γ(α +1)

≤ L c
Γ(β +1)

‖xh1 − xh2‖
∫ t

0

(t− s)α−1(s)β

Γ(α)
ds+

ε

Γ(α +1)

‖xh1 − xh2‖ ≤
L c

Γ(α +1)Γ(β +1)
‖xh1 − xh2‖+

ε

Γ(α +1)

‖xh1 − xh2‖ ≤ (1− L c
Γ(α +1)Γ(β +1)

)−1 ε

Γ(α +1)
= δ (ε).

From the above estimate, we drive the following inequality:

‖xh1 − xh2‖ ≤ δ (ε)
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which proves the continuous dependence of the solutions on
the set SF1 of all Lipschitzian selections of F1. This completes
the proof.

4. Differential inclusion
Consider now the initial value problem of the differential

inclusion (1.4) with the initial data (1.5).

Theorem 4.1. Let assumptions of Theorem 3.1 be satisfied,
then the initial value problem (1.4)-(1.5) has a unique positive
solution x ∈C([0,1]).

Proof. Let y(t) = dx(t)
dt , then the inclusion (1.4), will be

y(t) ∈ p(t)+ Iα F1(t, I1−γ y(t)). (4.1)

Letting φ(t) = t, f2(t,x) = x and β = 1− γ and applying
Theorem 3.1 on the functional inclusion (4.1) we deduce
that there exists a positive continuous solution y ∈ C[0,1]
of the functional inclusion (4.1) and this solution depends
continuously on the set SF1 .
This implies that the existence of a solution x ∈C1[0,1],

x(t) = x◦ +
∫ t

0
y(s)ds

of the initial-value problem (1.4)-(1.5).
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