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Numerical solution of generalised Pantograph
equation using natural continuous extension fourth
order Runge-Kutta method
K. Ponnammal1* and R. Sayeelakshmi2

Abstract
In this paper, we have solved Generalised pantograph equation which is special delay differential equation (DDE)
using Natural Continuous Extension Runge-Kutta two stage fourth order Method (NCERKM). A modest effort is
taken to derive NCERKM quadrature formula. Cubic Hermite Interpolation is incorporated to estimate the delay
term. Numerical Results are given for various coefficients arrived.
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1. Introduction
A big and very significant aspect of this is the study of

numerical solutions of functional equations in contemporary
mathematics. It enables the development of computer sys-
tems by considering different functional equations, obtaining
numerical outcomes, and finding approximate alternatives.
In recent years, numerical solutions have been applied to a
wide range of techniques. The British Railways had to make
the 1960ś electric locomotive run quicker. A device named

pantograph, which collects current from an overhead wire,
was a significant thing built for this purpose. Additionally, J.
R. Ockendon and A. B. Tayler, [5] researched on an electric
locomotive the movement of the pantograph head. They found
a unique delay differential equation(DDE) of the type in the
solution method for this issue. A special delay differential
equation is of the form

dy
dt

= ay(t)+by(λ t) (1.1)

where a, b and λ are real constants and 0<λ<1, t ∈ (0,∞).
In 1971, the pantograph was mathematically modelled. The
pantograph equation has become a major instance of delay
differential equations in latest years. In particular, analytic so-
lutions for pantograph delay differential equations can rarely
be achieved, so numerical methods have gained increasing
attention. The generalized pantograph equations solved nu-
merically in the past years using the technique of Adomian
decomposition, Taylor method, and Bessel matrix based on
collocation points. Researchers implemented the differential
transform technique to get the solution as Taylor expansion.
Salih Yalcinbas, Huseyin Hilmi Sorkun and Mehmet, [4]
found a numerical method for solutions of pantograph type
differential equations with variable coefficients using Bern-
stein polynomials In addition, the approximate solutions of
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generalized pantograph equations obtained using the homo-
topy method and variational iteration methods. Ali, H.
Brunner and T. Tang, [6] used the Galerkin methods for solu-
tions of pantograph delay differential equations. Researchers
developed the collocation methods to solve the functional
delay differential equation. In this work, Natural Continu-
ous Extension Fourth Order Runge-Kutta method quadrature
formula is derived. The comparison of certain fourth order
Runge-Kutta Butcher coefficients to the numerical solution of
first order pantograph equation is investigated. Cubic Hermite
Interpolation is used to approximate the delay argument.

2. Methods
Bellen and Zennaro [1] stated the definitions of Natural

Continuous Extension(NCE) for all Runge-Kutta(RK) pro-
cesses.

2.1 continuous Runge-Kutta method for ordinary dif-
ferential equation

Given mesh ∆=
(
t1, t2, . . . , tN = t f

)
, a v-stage R-K method

for the numerical solution of the ODE.

dy
dt

= g(t,y(t)),y(t0) = y0 (2.1)

has the form

yi
n+1 = yn +hn+1

v

∑
j=1

ai jg(t
j
n+1,y

j
n+1) (2.2)

yn+1 = yn +hn+1

v

∑
i=1

big(t i
n+1,y

i
n+1) (2.3)

where t i
n+1 = tn + cihn+1, ci =

v

∑
i=1

ai j, i = 1,2 . . . ,v,

hn+1 = tn+1− tn and v is referred to as the number of stages.
The bi′s are called quadrature weights and ci′s are called ab-
scissa. The one-step RK method interpolants provided in
(2.2) and (2.3) are created step by step by using information
from the underlying mesh interval [tn, tn+1] only, potentially
by including some additional phases, i.e. some additional eval-
uations of the g(t, y) in equation (2.1). Interpolants obtained
from no additional stages are called first-class interpolants. In
each sub-interval of the mesh the value acquired from con-
tinuous extension η(t) is described by a one-step continuous
quadrature rule of the form

η(tn +θhn+1) = yn +hn+1

v

∑
i=1

bi(θ)g(t i
n+1,y

i
n+1) (2.4)

(or) in the K- Notation

η(tn +θhn+1) = yn +hn+1

v

∑
i=1

bi(θ)Ki
n+1 (2.5)

where the bi(θ)′s are polynomials of suitable degree ≤ δ

satisfying

bi(0) = 0 and bi(1) = bi, i = 1,2 . . . ,v (2.6)

So as to satisfy the continuity conditions

η(tn) = yn,η(tn+1) = yn+1. (2.7)

3. Continuous extension of Runge-Kutta
methods for delay differential equations

The first order delay differential equation has the form

y′(t) = f (t,y,y(t− τ)) for t > t0 (3.1)

y(t) = ψ(t) for t ≤ t0 ψ(t) is the history initial function,
the function τ(t,y(t)) is called the delay, (t− τ) called the
delay argument, the value of y(t−τ(t,y(t))) is the solution of
the delay term. The delay is classified as constant delay, time
dependent and state dependent. The conventional technique
to solve the DDE is to resolve the local issues step by step

ω
t
n+1 = f (t,ωn+1(t),y(t− τ(t,ωn+1(t))) for tn < t < tn+1

ωn+1 = yn

(3.2)

x(s) =


ψ(s) for s≤ t0
η(s) for t0 ≤ s≤ tn
ωn+1(s) for tn ≤ s≤ tn+1

(3.3)

and η(s) is the continuous approximate solution computed up
to tn. The overall method for DDE is presented as

Y i
n+1 = yn +hn+1

v

∑
i=1

ai j f (t i
n+1,y

i
n+1,η(t i

n+1, t− τ(t i
n+1,Y

i
n+1)),

i = 1,2, . . .s
(3.4)

η(tn +θhn+1)

= yn +hn+1

v

∑
i=1

bi(θ) f (t i
n+1,Y

i
n+1,η(t i

n+1, t− τ(t i
n+1,Y

i
n+1)), (3.5)

0≤ θ ≤ 1.

The method are called the RK method for DDE. The
coefficients (A, b) are the underlying discrete RK method,
whereas (A, b(θ )) are the interpolants. The pair created the
discrete RK method and interpolants is called the underlying
continuous RK method. In the mesh interval [tn, tn+1], the
equation (3.4) and (3.5) takes the form

η(tn +θhn+1) = yn +hn+1

v

∑
i=1

bi(θ) f (t i
n+1,Y

i
n+1,

¯yi
n+1),

0≤ θ ≤ 1
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(3.6)

Y i
n+1 = yn +hn+1

v

∑
i=1

ai j f (t i
n+1,Y

i
n+1,

¯Y i
n+1) (3.7)

where the spurious stages ¯Yn+1
i are given by

¯Yn+1
i
= yn +hn+1

v

∑
j=1

b j(θ) f (t j
n+1,Y

j
n+1,

¯Yn+1 ji) (3.8)

if by

t i
n+1−τ(t i

n+1−Y i
n+1)>tn and by ¯Yn +1i

= η(t i
n+1−Y i

n+1)

(3.9)

Otherwise, the system of equations (3.6) ,(3.7) and (3.9)
has to be solved only for the stage values, ¯Y j

n+1, j = 1,2, . . . ,v,
the system enlarged by equation (3.8) for some it has to be
solved also for the relevant spurious stage value ¯Y i

n+1.

4. Natural continuous extension first
order interpolant for Runge-Kutta method

Bellen and Zennaro [1] developed the Natural Continuous
Extension(NCE) of first class interpolants of RK method. The
interpolant η(t) in(2.4) of order p is a NCE of the RK method
(2.3) of degree q if the polynomials, i = 1,2, . . . ,v are such
that bi(θ) satisfies the additional asymptotic orthogonality
condition as∥∥∥∥∫ tn+1

tn
G(t)[y′(t)−η ′(t)]

∥∥∥∥= O(hp+1), (4.1)

G satisfies
η(t0) = y0,η(t0 + h) = y1 hold. The RK method is ac-

curate of order p ( ≥1) satisfies |y(t0 +h)− y′| = O(hp+1)
. The approximate solution find iteratively on a mesh δ =
(t0, t1, t2 . . . tN = t f ) of the interval (t0, t1), such that

max‖y′(t)−η ′(t)‖= O(hq). (4.2)

It is to be noticed that the collocation polynomial for any
one-step first interpolant method is as NCE of degree q = v.
The Theorems 1 to 3 are given by Butcher [2].
Theorem 1:

Every RK process (2.3) and (2.5) of order p has a NCE
of minimal degree q = p+1

2 .
Theorem 2:

If the interpolant (2.4) of order (and degree) q is an NCE
of the RK method 2.3 and 2.4 of order p, then q≥ b p+1

2 c.
Theorem 3:

Every Runge-Kutta method of (2.2) of order p≥1 has a
continuous extension η of order q=1 . . .b p+1

2 c The polyno-
mial bi(θ) satisfies the condition

bi(θ) = 0 and
∫ 1

0
bi′(θ)dθ = bicr

i r = 0,1, . . . ,q (4.3)

The NCE of RK method is not unique and (4.3) gives a
rule to get one. Table 1 and 2 show the coefficient of Butcher
[2],[3]. The order condition indicated in Table 1 is used to
achieve the NCE of RK method. Table 3 reflects tableau
for NCE RK coefficient of order p=4, c1 = 0, c2 = c3 =
1
2 ,c4 = 1 and b3 6= 0

a41 =
c2

3(12c2
2−12c2+4)+c3(12c2

2−15c2+5)+4c2
2−6c2+2

2c2c3[3−4(c2+c3)+6c2c3]

a42 =
(−4c2

3 +5c3 + c2 +2)(1− c3)

2c2(c3− c2)[3−4(c2 + c3)+6c2c3]

a43 =
(1−2c2)(1− c3)(1− c2)

c3− (c3− c2)[3−4(c2 + c3)+6c2c3]

b1 =
1−2(c2 + c3)+6c2c3

12c2c3

b2 =
2c3−1

12c2(c3− c2)(1− c2)

b3 =
1−2c2

2c2(c3− c2)(1− c2)

b4 =
3−4(c2 + c3)+6c2c3

12c2(1− c2)(1− c3)
.

Table 1. Order Condition for Continuous RK Method

1
v

∑
i=1

bi(θ) = θ

2
v

∑
i=1

bi(θ)ci = 1
2 θ 2

3
v

∑
i=1

bi(θ)c2
i = 1

3 θ 2

4
v

∑
i=1

bi(θ)c3
i = 1

4 θ 4

v

∑
i, j=1

bi(θ)ciai jc j = 1
8 θ 4

v

∑
i, j=1

bi(θ)ciai jc2
j = 1

12 θ 2

v

∑
i, j,k=1

bi(θ)ai jck = 1
12 θ 2

Table 2. Runge-Kutta Butcher Coefficient Tableau
0
1
2

1
2

1
2

3b3−1
6b3

1
6b3

1 0 1−3b3 3b3
1
6

2
3 −b3 b3

1
6

From Theorem 1 it follows that NCE of minimal degree
q = b p+1

2 c = 2 for p = 4 is derived. The second degree poly-
nomial stated as bi(θ) = ξiθ

2+ηiθ where ηi = bi−ξ i=1,2,3
and 4 fulfills the order condition of order 2 in Table 1, Then

the equations are given as,
v

∑
i=1

bi(θ) = θ and
v

∑
i=1

bi(θ)ci = 1
2 θ 2

Putting i = 1,2,3,4 in equation bi(θ), we get
b1(θ) = ξ1θ 2 +(b1−ξ1)θ
b2(θ) = ξ2θ 2 +(b2−ξ2)θ
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b3(θ) = ξ3θ 2 +(b3−ξ3)θ
b4(θ) = ξ4θ 2 +(b4−ξ4)θ .
To find b4(θ)

b4(θ)c4 =
1
2

θ
2−b2(θ)c2−b3(θ)c3

b4(θ) =

(
1

2c4
− ξ2c2

c4
− ξ3c3

c4

)
θ

2− b2c2

c4
θ

+
ξ2c2

c4
θ − b3c3

c4
θ +

ξ3c3

c4
θ

Putting λ = ξ2
c4
, µ = ξ3

c4
in the above equation, we have

b4(θ) =

(
1

2c4
−λc2−µc3

)
θ

2 +b4θ −
(

1
2c4
−λc2−µc3

)
θ

b4(θ) =

(
1

2c4
−λc2−µc3

)
θ

2− θ

c4
(b2c2 +b3c3)+λc2θ +µc3θ

b4(θ) =

(
1

2c4
−λc2−µc3

)
θ

2 +b4θ −
(

1
2c4
−λc2−µc3

)
θ

To find b3(θ)

b3(θ)c3 =
1
2

θ
2−b2(θ)c2−b4(θ)c4

b3(θ) =
1

2c3
θ

2−b2(θ)c2c3−b4(θ)c4c3

Substituting b2(θ) and b4(θ)

b3(θ) =−
1
c3
[c2b2 + c4b4]+ c4µθ

2 +
θ

2c3
− c4µ

=−c4µθ
2 +−c4µθ +b3θ

To find b2(θ)

b2(θ) = (
1
2

θ
2−b4(θ)c2−b3(θ)c4

=−b3θc3

c2
+λc4θ

2− b4θc4

c2
+

θ

2c2
−λθc4

= b2θ +λc4θ
2−λc4θ

To find b1(θ)

b1(θ) = θ −b2(θ)−b3(θ)−b4(θ)

b1(θ) = θ (1−b2−b3−b4)

+θ
2
(
−c4(λ +µ)− 1

2c4
+λc2 +µc3

)
+θ

(
c4(λ +µ)+

1
2c4
−λc2 +µc3

)
For the finding the NCEs of order q=2, put r = 1 in∫ 1

0
θbi′(θ)dθ = bici, ξ = 3bi(2ci−1).

We know that

bi(θ) = ξiθ
2 +(bi−ξi)θ

bi(θ) = 3bi(2ci−1)θ 2 +(4bi−6bici)θ

and therefore,
bi(θ) = 3bi(2ci−1)θ 2 +2bi(2−3ci)θ

Table 3. Butcher tableau for a RK method with 4th order
0
1
2

1
2

1
2

3
8

1
8

1 0 −3 4
1
6 - 2

3
4
3

1
6

where λ = 3(2c2−1)
c4

b3,µ = 3(2c3−1)
c4

b3
Fourth order Runge-Kutta Coefficients are presented in Table.
3.
Case 1:

The continuous extension coefficient becomes
b1(θ) =− 1

2 θ 2 + 2
3 θ

b2(θ) =− 2
3 θ

b3(θ) =− 4
3 θ

b4(θ) =− 1
2 θ 2− 1

3 θ .
Similarly
Case 2: For c1 = 0,c3 = 0,c2 =

1
2 ,c4 = 1

b1(θ) =
7
2 θ 2− 14

3 θ

b2(θ) =
2
3

b3(θ) =−4θ 2 + 16
3 θ

b4(θ) =
1
2 θ 2− 1

3 θ .
Case 3:

For c1 = 0,c3 = 0,c2 =
1
2 ,c4 = 1

b1(θ) =− 3
6 θ 2 + 14

6 θ

b2(θ) =− 21
6 θ 2 + 14

6 θ

b3(θ) =
2
3 θ

b4(θ) = 4θ 2− 8
3 θ .

Case 4:
For c1 = 0,c3 =

2
3 ,c2 =

1
3 ,c4 = 1

b1(θ) =− 3
8 θ 2 + 1

2 θ

b2(θ)) =− 3
8 θ 2 + 3

4 θ

b3(θ)) =
3
8 θ 2

b4(θ)) =− 3
8 θ 2− 1

4 θ .

5. Results and Discussions
Natural continuous extension Runge-Kutta method with

interpolation used for finding approximate solutions of delay
differential equations. A first order Pantograph delay Dif-
ferential equation is applied to NCERKM. In this study, a
pantograph equation

y′(t) = 1
2

y(t)+
1
2

e
t
2 y(

t
2
),y(0) = 1,0≤ t ≤ 1 (5.1)

which has the exact solution y(t) = et considered [4].
The Butcher coefficients for Runge-Kutta approximation

methods is derived, combined with continuous extensions, are
applied to the Pantograph delay differential equations with
fixed delay. Cubic Hermite interpolation is used to approxi-
mate the delay term. We compared the computed results with
the exact solution of the problems where the exact solution of
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the problems is known. From the numerical results obtained
we conclude that these proposed methods are well suited for
finding the numerical solution of Pantograph DDE.

Table 4. Results of NCERKM for equation (5.1)

t
C

A
SE

1
C

A
SE

2
C

A
SE

3
C

A
SE

4
E

xa
ct

So
lu

tio
n

0.
0

1.
00

00
00

00
0

1.
00

00
00

00
0

1.
00

00
00

00
0

1.
00

00
00

00
0

1.
00

00
00

00
0

0.
1

1.
10

38
23

87
6

1.
10

38
23

87
2

1.
10

71
55

87
2

1.
10

38
23

87
1

1.
10

51
70

91
8

0.
2

1.
21

56
64

31
5

1.
21

56
65

07
1

1.
22

27
63

82
8

1.
21

56
65

06
9

1.
22

14
02

75
8

0.
3

1.
33

60
71

90
5

1.
33

60
72

77
0

1.
34

74
13

79
1

1.
33

60
72

76
7

1.
34

98
58

80
8

0.
4

1.
46

56
30

47
4

1.
46

56
31

38
5

1.
48

17
34

21
9

1.
46

56
31

38
0

1.
49

18
24

69
8

0.
5

1.
60

49
61

78
0

1.
60

49
62

73
4

1.
62

63
94

52
0

1.
60

49
62

72
8

1.
64

87
21

27
1

0.
6

1.
75

47
27

34
7

1.
75

47
28

34
6

1.
78

21
07

61
0

1.
75

47
28

33
9

1.
82

21
18

80
0

0.
7

1.
91

56
30

84
5

1.
91

56
31

89
1

1.
94

96
32

63
2

1.
91

56
31

88
2

2.
01

37
52

70
7

0.
8

2.
08

84
20

67
2

2.
08

84
21

76
6

2.
12

97
77

83
9

2.
08

84
21

75
5

2.
22

55
40

92
8

0.
9

2.
27

38
92

68
7

2.
27

38
93

83
2

2.
32

34
03

64
9

2.
27

38
93

81
9

2.
45

96
03

11
1

1
2.

47
28

93
11

2
2.

47
28

94
31

1
2.

53
14

25
88

9
2.

47
28

94
29

6
2.

71
82

81
82

8

Conclusion

We have derived coefficients of RK approximation meth-
ods aligning with continuous extensions. The continuous
extension coefficients can be obtained for different abscissa
and four such cases are given here. We have used the pro-
posed NCERKM incorporated with cubic Hermite interpola-
tion, which estimates delay term , to find the solution of the
pantograph equation (5.1) in all the four cases. We observe
from the Table.4 that the exact solution coincides well with
the approximations in case (iii) coefficients in compared with
all the other three cases for this particular Pantograph DDE.
The closeness of the approximations with the exact solution
shows the efficiency of the method. Further studies can be
made with the proposed method with other delay differential
equations.
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