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Edge vertex prime labeling of graphs
M. Simaringa1* and S. Muthukumaran2

Abstract
A bijective labeling f : V (G)

⋃
E(G)→{1,2,3, ..., |V (G)

⋃
E(G)|} is an edge vertex prime labeling if for any edge

uv ∈ E(G), the numbers f (u), f (v) and f (uv) are pairwise relatively prime. A graph G which admits edge vertex
prime labeling is called an edge vertex prime graph. In this paper, we have obtained some class of graphs such
as p+q is odd for GÔWn, GÔ fn, GÔFn, p+q is even for GÔPn, crown graph and union of cycles are edge vertex
prime graph.
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1. Introduction
All our graphs are simple, finite and undirected and we fol-

low Balakrishnan and Ranganathan [1] for standard notations
and terminology. G = (V (G),E(G)), where V (G) is vertex
set and E(G) is edge set of the graph. |V (G)| and |E(G)|
are denoted by the number of vertices and edges respectively,
which is order and size of G. A graph labeling is an assign-
ment of integers to the vertices or edges or both subject to
certain conditions. See the dynamic graph labeling survey
[2] by Gallian is regularly updated. Prime labeling is a type
of graph labeling developed by Roger Entriger that was first
formally introduced by Tout, Dabboucy and Howalla [7]. We
define [n] = 1,2, ...,n, where n is a positive integers. Given a
simple graph G of order n, a prime labeling consists of label-
ing the vertices with integers from the set [n] so that the labels
of any pair of adjacent vertices are relatively prime.

Edge vertex prime labeling is a variation of prime labeling.
A bijective function f : V (G)

⋃
E(G)→{1,2,3, ..., |V (G)

⋃
E(G)|} is said to be an edge vertex prime labeling if for any
edge uv ∈ E(G), the numbers f (u), f (v) and f (uv) are pair-
wise relatively prime. Jagadesh and Baskar Babujee [3] was

introduced the concept of an edge vertex prime labeling and
proved the existence of the same paths, cycles and star K1,n.
In [4], if G1(p1,q1) and G2(p2,q2) are two connected graphs,
then the graph obtained by superimposing any selected vertex
of G2 on any selected vertex of G1 is denoted by G1ÔG2.
The resultant graph G = G1ÔG2 contains p1 + p2− 1 ver-
tices q1 + q2 edges. In general, there are p1 p2 possibilities
of getting G1ÔG2 from G1 and G2. In [4], they also proved
that edge vertex prime labeling, for some class of graphs
such as generalized star, generalized cycle star, p+q is odd
for GÔK1,n, GÔPn, GÔCn . Parmer [5] proved that wheel
Wn, fan fn, friendship graph Fn are an edge vertex prime la-
beling. In [6], they also proved that K2,n, for all n and K3,n
for n = {2,3, ...,29} are edge vertex prime labeling. We [8]
proved that triangular and rectangular book, butterfly graph,
Drums graph Dn, Jahangir graph Jn,3 and Jn,4 are edge vertex
prime labeling.

A wheel graph is a graph formed by connecting a single
universal vertex to all vertices of a cycle. Fan graph fn, n≥ 2
obtained by joining all vertices of a path Pn to a further vertex
called centre. That is, fn = Pn +K1. Friendship graph Fn is
a graph which consists of n-triangles with a common vertex.
The crown graph is obtained from a cycle Cn by attaching a
pendant edge at each vertex of the n- cycle. Let G1 = (V1,E1)
and G2 = (V2,E2) be two simple graphs. The graph G =
(V (G),E(G)), where V =V1

⋃
V2 and E = E1

⋃
E2, is called

the union of G1 and G2 is denoted by G1
⋃

G2.
In this paper, we established that p+q is odd for GÔWn,
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GÔ fn, GÔFn, p+q is even for GÔPn, crown graph, union of
cycles and some class of several graphs are edge vertex prime.

2. Main Results
Theorem 2.1. If G (G 6=Pm and W4) has an edge vertex prime
labeling with p+q is odd, then there exists a graph from the
class GÔWn that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph
and G 6= Pm and W4, when p+q is odd, with bijective func-
tion f : V (G)

⋃
E(G)→ {1,2,3, ..., p+q} with the property

that given any edge uv ∈ E(G), the numbers f (u), f (v) and
f (uv) are pairwise relatively prime. Consider the graph Wn
with vertex set {w,wi : 1 ≤ i ≤ n} and edge set {wwi : 1 ≤
i ≤ n}

⋃
{wiwi+1 : 1 ≤ i ≤ n− 1}

⋃
{w1wn} . We superim-

pose one of the vertex say w of Wn on selected vertex v1 in
G. Now, we define new graph G1 = GÔWn with vertex set
V1 =V

⋃
{w,wi : 1≤ i≤ n} and edge set E1 = E

⋃
{wwi : 1≤

i≤ n}
⋃
{wiwi+1 : 1≤ i≤ n−1}

⋃
{w1wn} . Define a bijective

function g : V1
⋃

E1→{1,2,3, ..., p+q, p+q+1, ..., p+q+
3n+ 1} by g(v) = f (v) for all v ∈ V (G) and g(uv) = f (uv)
for all uv ∈ E(G).
Consider GÔWn the following cases.
Case(i). When n is even.

g(w) = 1

g(wi) =

{
p+q+3i−1; i is odd
p+q+3i−2; i is even

g(wwi) =

{
p+q+3i−2; i is odd
p+q+3i−1; i is even

g(wiwi+1) = p+q+3i,∀i

We have to prove that G1 is an edge vertex prime labeling.
Already, G is an edge vertex prime labeling, it is enough to
prove that for any edge uv∈ E1 which is not in G, the numbers
g(u),g(v) and g(uv) are pairwise relatively prime.
(i) For any edge wwi ∈ E1 (1≤ i≤ n),

gcd(g(w),g(wi)) =

{
gcd(1, p+q+3i−1); i is odd
gcd(1, p+q+3i−2); i is even

= 1

gcd(g(w),g(wwi)) =

{
gcd(1, p+q+3i−2); i is odd
gcd(1, p+q+3i−1); i is even

= 1

gcd(g(wi),g(wwi))=


gcd(p+q+3i−1, p+q+3i−2);

i is odd
gcd(p+q+3i−2, p+q+3i−1);

i is even

= 1

(ii) For any edge wiwi+1 ∈ E1 (1≤ i≤ n−1),

gcd(g(wi),g(wi+1))=


gcd(p+q+3i−1, p+q+3i

+1); i is odd
gcd(p+q+3i−2, p+q+3i

+2); i is even

= 1

gcd(g(wi),g(wiwi+1)) =


gcd(p+q+3i−1, p+q

+3i); i is odd
gcd(p+q+3i−2, p+q

+3i); i is even

= 1

gcd(g(wi+1),g(wiwi+1))=


gcd(p+q+3i+1, p+q

+3i); i is odd
gcd(p+q+3i+2, p+q

+3i); i is even

= 1

Case(ii). When n is odd.

g(w) = 1

g(wi) =

{
p+q+3i−1; i = 1,3,5, ...,n−2
p+q+3i−2; i = 2,4,6, ...,n−1

g(wwi) =

{
p+q+3i−2; i = 1,3,5, ...,n−2
p+q+3i−1; i = 2,4,6, ...,n−1

g(wiwi+1) = p+q+3i, for i = 1,2, ...,n−2,
g(wn) = p+q+3n−3,
g(wn−1wn) = p+q+3n−1,
g(w1wn) = p+q+3n+1.
Now, our claims are (i) g(w),g(wi) and g(wwi), (ii) g(wi),
g(wi+1) and g(wiwi+1) are pairwise relatively prime.
(i) For any edge wwi ∈ E1 (1≤ i≤ n),

gcd(g(w),g(wi)) =



gcd(1, p+q+3i−1);
i = 1,3,5, ...,n−2

gcd(1, p+q+3i−2);
i = 2,4,6, ...,n−1

gcd(1, p+q+3i−3);
i = n

= 1

gcd(g(w),g(wwi)) =


gcd(1, p+q+3i−2); i is odd
gcd(1, p+q+3i−1); i is even
gcd(1, p+q+3n); i = n

= 1
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gcd(g(wi),g(wwi))=



gcd(p+q+3i−1, p+q+3i−2);
i is odd

gcd(p+q+3i−2, p+q+3i−1);
i is even

gcd(p+q+3i−3, p+q+3n);
i = n

= 1

(ii) For any edge wiwi+1 ∈ E1 (1≤ i≤ n−1),

gcd(g(wi),g(wi+1))=



gcd(p+q+3i−1, p+q+3i+1);
i is odd

gcd(p+q+3i−2, p+q+3i+2i);
i is even

gcd(p+q+3i−2, p+q+3n);
i = n−1

gcd(g(wi),g(wi+1))=



gcd(p+q+3i−1, p+q+3i+1);
i = 1,3,5, ...,n−2

gcd(p+q+3i−2, p+q+3i+2i);
i = 2,4,6, ...,n−3

gcd(p+q+3i−2, p+q+3i+3);
i = n−1

= 1

gcd(g(wi),g(wiwi+1))=



gcd(p+q+3i−1, p+q+3i);
i = 1,3,5, ...,n−2

gcd(p+q+3i−2, p+q+3i);
i = 2,4,6, ...,n−3

gcd(p+q+3n−2, p+q+3n
−1); i = n−1

gcd(g(wi),g(wiwi+1)=



gcd(p+q+3i−1, p+q+3i);
i = 1,3,5, ...,n−2

gcd(p+q+3i−2, p+q+3i);
i = 2,4,6, ...,n−3

gcd(p+q+3i−2, p+q+3i+2);
i = n−1

= 1

gcd(g(wi+1),g(wiwi+1))=



gcd(p+q+3i+1, p+q+3i);
i = 1,3,5, ...,n−2

gcd(p+q+3i+2, p+q+3i);
i = 2,4,6, ...,n−3

gcd(p+q+3n−3, p+q+
3n−1); i = n−1

gcd(g(wi+1),g(wiwi+1))=



gcd(p+q+3i+1, p+q+3i);
i = 1,3,5, ...,n−2

gcd(p+q+3i+2, p+q+3i);
i = 2,4,6, ...,n−3

gcd(p+q+3i, p+q+3i+2);
i = n−1

= 1

Therefore, for any edge uv∈E1 which is not in G, the numbers
g(u), g(v) and g(uv) are pairwise relatively prime.
Hence GÔWn is an edge vertex prime labeling,
where G (G 6= Pm and W4).

The above theorem is not applicable for G (G 6= Pm and
W4). But, first we apply Jagadesh et. al.,[4] proved that if
G = Wn is an edge vertex prime labeling, then there exist a
graph from the class WnÔPm that admits edge vertex prime
labeling.

Next, consider a graph G=W4ÔW5. Then V (G)= {u,ui,v j :
1 ≤ i ≤ 4,1 ≤ j ≤ 5} and E(G) = {uui,uv j : 1 ≤ i ≤ 4,1 ≤
j≤ 5}. Also,|V (G)|= 10 and |E(G)|= 18. Define a bijective
function f : V (G)

⋃
E(G)→{1,2, ...,28} by

f (u) = 1, f (u1) = 3, f (u2) = 5, f (u3) = 9, f (u4) = 11,
f (uu1) = 2, f (uu2) = 6, f (uu3) = 8, f (uu4) = 12,
f (u1u2) = 4, f (u2u3) = 7, f (u3u4) = 10, f (u1u4) = 13,
f (v1) = 15, f (v2) = 17, f (v3) = 19, f (v4) = 21, f (v5) = 23,
f (v1v2) = 16, f (v2v3) = 18, f (v3v4) = 20, f (v4v5) = 22,
f (v1v5) = 14, f (uv1) = 28, f (uv2) = 24, f (uv3) = 25,
f (uv4) = 26, f (uv5) = 27 . Clearly, for any edge uv ∈ E(G),
the numbers f (u), f (v) and f (uv) are pairwise relatively prime.
Hence G =W4ÔW5 is an edge vertex prime labeling.

Theorem 2.2. If G(p,q) has an edge vertex prime labeling
with p+ q is odd, then there exists a graph from the class
GÔ fn that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph
when p+q is odd with bijective function f : V (G)

⋃
E(G)→

{1,2, ..., p+q} with the property that given any edge
uv ∈ E(G), the numbers f (u), f (v) and f (uv) are pairwise
relatively prime. Consider the graph fn with vertex set {w,wi :
1 ≤ i ≤ n} and edge set {wwi : 1 ≤ i ≤ n}

⋃
{wiwi+1 : 1 ≤

i ≤ n− 1}. We superimpose one of the vertex say, w of fn
on selected vertex v1 in G. Now, we define new graph G1 =
GÔ fn with vertex set V1 = V

⋃
{w,wi : 1 ≤ i ≤ n} and edge

set E1 = E
⋃
{wwi : 1 ≤ i ≤ n}

⋃
{wiwi+1 : 1 ≤ i ≤ n− 1}.

Define a bijective function g : V1
⋃

E1→ {1,2, ..., p+ q, p+
q+ 1, ..., p+ q+ 3n} by g(v) = f (v) for all v ∈ V (G) and
g(uv) = f (uv) for all uv ∈ E(G),

g(w) = 1

g(wi) =

{
p+q+3i−1; i is odd
p+q+3i−2; i is even

g(wwi) =

{
p+q+3i−2; i is odd
p+q+3i−1; i is even
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g(wiwi+1) = p+q+3i,∀i

We have to prove that G1 is an edge vertex prime labeling.
Already, G is an edge vertex prime labeling, it is enough to
prove that for any edge uv∈ E1 which is not in G, the numbers
g(u),g(v) and g(uv) are pairwise relatively prime.
(i) For any edge wwi ∈ E1 (1≤ i≤ n),

gcd(g(w),g(wi)) =

{
gcd(1, p+q+3i−1); i is odd
gcd(1, p+q+3i−2); i is even

= 1

gcd(g(w),g(wwi)) =

{
gcd(1, p+q+3i−2); i is odd
gcd(1, p+q+3i−1); i is even

= 1

gcd(g(wi),g(wwi))=


gcd(p+q+3i−1, p+q+3i−2);

i is odd
gcd(p+q+3i−2, p+q+3i−1);

i is even

= 1

(ii) For any edge wiwi+1 ∈ E1 (1≤ i≤ n−1),

gcd(g(wi),g(wi+1))=


gcd(p+q+3i−1, p+q+3i+1);

i is odd
gcd(p+q+3i−2, p+q+3i+2);

i is even

= 1

gcd(g(wi),g(wiwi+1))=


gcd(p+q+3i−1, p+q+3i);

i is odd
gcd(p+q+3i−2, p+q+3i);

i is even

= 1

gcd(g(wi+1),g(wiwi+1))=


gcd(p+q+3i+1, p+q+3i);

i is odd
gcd(p+q+3i+2, p+q+3i);

i is even

= 1

Therefore, for any edge uv ∈ E1 which is not in G, the
numbers g(u),g(v) and g(uv) are pairwise relatively prime.
Hence there exists a graph from the class GÔ fn admits edge
vertex prime labeling.

The planter graph Rn (n≥ 3) can be constructed by join-
ing fan graph fn (n ≥ 2) and cycle Cn,(n ≥ 3) with sharing
a common vertex, where n is any positive integer, that is
Rn = fnÔCn

Corollary 2.3. The planter graph Rn (n ≥ 3) admits edge
vertex prime labeling graph, where n is any positive integer.

Theorem 2.4. If G(p,q) has an edge vertex prime labeling
with p+ q is odd, then there exists a graph from the class
GÔFn that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph
when p+q is odd with bijective function f : V (G)

⋃
E(G)→

{1,2, ..., p+q} with the property that given any edge
uv ∈ E(G), the numbers f (u), f (v) and f (uv) are pairwise
relatively prime. Consider the graph Fn with vertex set {w,wi :
1 ≤ i ≤ 2n} and edge set {wwi : 1 ≤ i ≤ 2n}

⋃
{w2i−1w2i :

1 ≤ i ≤ n} . We superimpose one of the vertex say w of
Fn on selected vertex v1 in G. Now, we define new graph
G1 = GÔFn with vertex set V1 =V

⋃
{w,wi : 1≤ i≤ 2n} and

edge set E1 =E
⋃
{wwi : 1≤ i≤ 2n}

⋃
{w2i−1w2i : 1≤ i≤ n} .

Define a bijective function g : V1
⋃

E1→{1,2,3, ..., p+q, p+
q+1, ..., p+q+5n+1} by g(v) = f (v) for all v ∈V (G) and
g(uv) = f (uv) for all uv ∈ E(G),

g(w) = 1,

g(w2i−1) =

{
p+q+5i−3; i is odd
p+q+5i−4; i is even

g(w2i) =

{
p+q+5i−1; i is odd
p+q+5i; i is even

g(ww2i−1) =

{
p+q+5i−4; i is odd
p+q+5i−3; i is even

g(ww2i) =

{
p+q+5i; i is odd
p+q+5i−1; i is even

g(w2i−1w2i) = p+q+5i−2,∀i

We have to prove that G1 is an edge vertex prime labeling.
Already, G is an edge vertex prime labeling, it is enough to
prove that for any edge uv∈ E1 which is not in G, the numbers
g(u),g(v) and g(uv) are pairwise relatively prime. Now, our
claims are (i) g(w),g(w2i−1) and g(ww2i−1), (ii) g(w),g(w2i)
and g(ww2i), (iii) g(w2i−1),g(w2i) and g(w2i−1w2i) are pair-
wise relatively prime.
(i) For any edge wwi ∈ E1 (1≤ i≤ 2n),

gcd(g(w),g(w2i−1)) =

{
gcd(1, p+q+5i−3); i is odd
gcd(1, p+q+5i−4); i is even

= 1

gcd(g(w),g(ww2i−1)) =

{
gcd(1, p+q+5i−4); i is odd
gcd(1, p+q+5i−3); i is even

= 1

gcd(g(w2i−1),g(ww2i−1)) =


gcd(p+q+5i−3, p+q+

5i−4); i is odd
gcd(p+q+5i−4, p+q+

5i−3); i is even

= 1

(ii)
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gcd(g(w),g(w2i)) =

{
gcd(1, p+q+5i−1); i is odd
gcd(1, p+q+5i); i is even

= 1

gcd(g(w),g(ww2i)) =

{
gcd(1, p+q+5i); i is odd
gcd(1, p+q+5i−1); i is even

= 1

gcd(g(w2i),g(ww2i)) =


gcd(p+q+5i−1, p+q+5i);

i is odd
gcd(p+q+5i, p+q+5i−1);

i is even

= 1

(iii)

gcd(g(w2i−1),g(w2i))=


gcd(p+q+5i−3, p+q+5i−1);

i is odd
gcd(p+q+5i−4, p+q+5i);

i is even

= 1

gcd(g(w2i−1),g(w2i−1w2i))=


gcd(p+q+5i−3, p+q+

5i−2); i is odd
gcd(p+q+5i−4, p+q+

5i−2); i is even

= 1

gcd(g(w2i),g(w2i−1w2i))=


gcd(p+q+5i−1, p+q+

5i−2); i is odd
gcd(p+q+5i, p+q+5i−2);

i is even

= 1

Therefore, for any edge uv ∈ E1, the numbers g(u),g(v) and
g(uv) are pairwise relatively prime. Hence there exists a graph
from the class GÔFn admits edge vertex prime labeling.

Theorem 2.5. If G(p,q) has an edge vertex prime labeling
with p+ q is even, then there exists a graph from the class
GÔPn that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph
when p+q is even with bijective function f : V (G)

⋃
E(G)→

{1,2,3, ..., p+q} with the property that given any edge uv ∈
E(G), the numbers f (u), f (v) and f (uv) are pairwise rela-
tively prime. Consider the graph Pn with vertex set {wi : 1≤
i ≤ n} and edge set {wiwi+1 : 1 ≤ i ≤ n− 1}. We superim-
pose one of the vertex say w1 of Pn on selected vertex v1
in G. Now, we define a new graph G1 = GÔPn with vertex
set V1 =V

⋃
{wi : 2≤ i≤ n} and edge set E1 = E

⋃
{wiwi+1 :

1 ≤ i ≤ n− 1}. Define a bijective function g : V1
⋃

E1 →
{1,2,3, ..., p+q, p+q+1, ..., p+q+2n−2} by g(v) = f (v),
for all v ∈V and g(uv) = f (uv), for all uv ∈ E(G), g(w1) = 1,
g(wi) = p+ q+ 2n+ 1− 2i for 2 ≤ i ≤ n, g(wiwi+1) = p+

q+2n−2i for 1≤ i≤ n−1 .
For any edge wiwi+1 ∈ E1(2≤ i≤ n−1),
gcd(g(w1),g(w2)) = gcd(1, p+q+2n−3) = 1,
gcd(g(w1),g(w1w2)) = gcd(1, p+q+2n−2) = 1,
gcd(g(w2),g(w1w2)) = gcd(p+q+2n−3, p+q+2n−2) =
1, gcd(g(wi),g(wi+1))= gcd(p+q+2n+1−2i, p+q+2n−
2i− 1) = 1, gcd(g(wi),g(wiwi+1)) = gcd(p+ q+ 2n+ 1−
2i, p+q+2n−2i) = 1, gcd(g(wi+1),g(wiwi+1)) = gcd(p+
q+2n−2i−1, p+q+2n−2i) = 1. Therefore, for any edge
uv ∈ E1, the numbers g(u),g(v) and g(uv) are pairwise rela-
tively prime. Hence GÔPn admits edge vertex prime
labeling.

Corollary 2.6. The graph ClÔK1,mÔPn is an edge vertex
prime labeling.

Proof. Let G =ClÔK1,mÔPn be a graph. Then V (G) = {ui :
1≤ i≤ l}

⋃
{v,v j : 1≤ j≤m}

⋃
{wk : 1≤ k≤ n} and E(G) =

{uiui+1 : 1≤ i≤ l−1}
⋃
{u1ul}

⋃
{u1v j : 1≤ j ≤ m}

⋃
{u1wn−1}

⋃
{wkwk+1 : 1≤ k≤ n−2}. Also,|V (G)|= l+m+

n− 1 and |E(G)| = l +m+ n− 1. We superimpose two of
the vertices say, v of K1,m and wn of Pn on selected vertex
u1 in Cl . Define a bijective function f : V (G)

⋃
E(G) →

{1,2,3, ...,2(l +m+ n− 1)} by f (u1) = f (v) = f (wn) = 1,
f (ui) = 2i−1 for 2≤ i≤ l, f (uiui+1) = 2i for 1≤ i≤ l−1,
f (u1ul) = 2l, f (v j) = 2l + 2 j− 1 for 1 ≤ j ≤ m, f (u1v j) =
2l +2 j for 1≤ j ≤ m, f (wk) = 2(l +m+ k)−1 for 1≤ k ≤
n−1, f (wkwk+1) = 2(l +m+ k) for 1 ≤ k ≤ n−1. Clearly,
for any edge uv ∈ E(G), the numbers f (u), f (v) and f (uv)
are pairwise relatively prime. Hence G =ClÔK1,mÔPn admits
edge vertex prime labeling.

Parmer [5] proved that fm is an edge vertex prime labeling
. Jagadesh, Baskar Babujee [4] proved that if G has an edge
vertex prime labeling, then there exist a graph from the class
GÔPn admits edge vertex prime labeling.

An Umbrella graph U(m,n) is the graph obtained by join-
ing a path Pn with the central vertex of a fan fm.

Corollary 2.7. The Umbrella graph U(m,n) is an edge vertex
prime labeling.

Theorem 2.8. If G has an edge vertex prime labeling with
p+q is even, then there exists a graph from the class GÔC3
that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph
when p+q is even with bijective function from f :V (G)

⋃
E(G)

→ {1,2,3, ..., p+ q} with the property that given any edge
uv∈ E(G), the numbers f (u), f (v) and f (uv) are pairwise rel-
atively prime. Consider the graph C3 with vertex set {w1,w2,w3}
and edge set {w1w2,w2w3,w3w1}. We superimpose one of the
vertex say w1 of C3 on selected vertex v1 in G. Now, we define
new graph G1 = GÔC3 with vertex set V1 =V

⋃
{w1,w2,w3}

and edge set E1 = E
⋃
{w1w2,w2w3,w3w1}. Define a bijec-

tive function g : V1
⋃

E1 → {1,2,3, ..., p + q, p + q + 1, p +
q+2, p+q+3} by g(v) = f (v) for all v ∈V (G) and g(uv) =
f (uv) for all uv∈E(G),g(w1)= 1, g(w2)= p+q+1, g(w3)=
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p+ q+ 3, g(w1w2) = p+ q+ 2, g(w2w3) = p+ q+ 5 and
g(w1w3) = p+ q+ 4. We have to prove that G1 is an edge
vertex prime labeling. Already, G is an edge vertex prime
labeling, it is enough to prove that for any edge uv ∈ E1 which
is not in G, the numbers g(u),g(v) and g(uv) are pairwise rela-
tively prime. For any edge wiwi+1 ≤ E1,gcd(g(w1),g(w2)) =
gcd(1, p+q+1) = 1, gcd(g(w1),g(w1w2)) = gcd(1, p+q+
2) = 1, gcd(g(w2),g(w1w2)) = gcd(p+q+1, p+q+2) = 1,
gcd(g(w2),g(w3)) = gcd(p+q+1, p+q+3) = 1,
gcd(g(w2),g(w2w3)) = gcd(p+q+1, p+q+5) = 1,
gcd(g(w3),g(w2w3)) = gcd(p+q+3, p+q+5) = 1,
gcd(g(w1),g(w3)) = gcd(1, p+q+3) = 1,
gcd(g(w1),g(w1w3)) = gcd(1, p+q+4) = 1,
gcd(g(w3),g(w1w3)) = gcd(p+q+3, p+q+4) = 1.
Therefore, for any edge uv ∈ E1, the numbers g(u),g(v) and
g(uv) are pairwise relatively prime. Hence there exists a graph
from the class GÔC3 admits edge vertex prime labeling.

Theorem 2.9. The crown graph Cn.K1 is an edge vertex prime
labeling, where n is a positive integer.

Proof. Let G =Cn.K1 be a graph. The degree of the vertices
of a crown graph is either 3 or 1. Consider u1,u2, ...,un be the
vertices with degree 3 and v1,v2, ...,vn be the vertices with
degree 1. The edges of the crown graph are {uivi : 1 ≤ i ≤
n}

⋃
{uiui+1 : 1≤ i≤ n−1}

⋃
{u1un}. Here |V (G)|= 2n and

|E(G)|= 2n. Define a bijective function f : V (G)
⋃

E(G)→
{1,2, ...,4n}. For any edge 1≤ i≤ b n

2c−2, f (u3i−2) = 12i−
11, f (v3i−2) = 12i−9, f (u3i−1) = 12i−7, f (v3i−1) = 12i−5,
f (u3i−2u3i−1) = 12i−8, f (u3i−1u3i) = 12i−4,
f (u3i−2v3i−2) = 12i−10, f (u3i−1v3i−1) = 12i−6,
f (u3iv3i) = 12i−2.
Consider the following cases.
Case (i). When n is even.
For each 1≤ i≤ b n

2c−3, f (u3i) = 12i−1, f (v3i) = 12i−3.
Case (ii). When n is odd.
For each 1≤ i≤ b n

2c−2, f (u3i) = 12i−1, f (v3i) = 12i−3,
f (u1un) = 4n.
Next, we show that the edge vertex prime labeling.
gcd( f (u1), f (un)) = gcd(1,4n−3) = 1,
gcd( f (u1), f (u1un)) = gcd(1,4n) = 1,
gcd( f (un), f (u1un)) = gcd(4n−3,4n) = 1,
gcd( f (u3i−2), f (u3i−1)) = gcd(12i−11,12i−7) = 1,
gcd( f (u3i−2), f (u3i−2u3i−1)) = gcd(12i−11,12i−8) = 1,
gcd( f (u3i−1), f (u3i−2u3i−1)) = gcd(12i−7,12i−8) = 1,
gcd( f (u3i−1), f (u3i)) = gcd(12i−7,12i−1) = 1,
gcd( f (u3i−1), f (u3i−1u3i)) = gcd(12i−7,12i−4) = 1,
gcd( f (u3i), f (u3i−1u3i)) = gcd(12i−1,12i−4) = 1,
gcd( f (u3i−2), f (v3i−2)) = gcd(12i−11,12i−9) = 1,
gcd( f (u3i−2), f (u3i−2v3i−2)) = gcd(12i−11,12i−10) = 1,
gcd( f (v3i−2), f (u3i−2v3i−2)) = gcd(12i−9,12i−10) = 1,
gcd( f (u3i−1), f (v3i−1)) = gcd(12i−7,12i−5) = 1,
gcd( f (u3i−1), f (u3i−1v3i−1)) = gcd(12i−7,12i−6) = 1,
gcd( f (v3i−1), f (u3i−1v3i−1)) = gcd(12i−5,12i−6) = 1,
gcd( f (u3i), f (v3i) = gcd(12i−1,12i−3) = 1,
gcd( f (u3i), f (u3iv3i)) = gcd(12i−1,12i−2) = 1,

gcd( f (v3i), f (u3iv3i)) = gcd(12i−3,12i−2) = 1.
Therefore, for any edge uv ∈ E(G), the numbers f (u), f (v)
and f (uv) are pairwise relatively prime. Hence the crown
graph Cn.K1 is an edge vertex prime labeling.

Theorem 2.10. The graph Cn
⋃

Cn
⋃

Cn, n≥ 3 and
n≡ 0(mod 3) is an edge vertex prime labeling.

Proof. Let G =Cn
⋃

Cn
⋃

Cn, n ≥ 3 and n ≡ 0(mod 3) be a
graph. Then V (G) = {vi : 1 ≤ i ≤ 3n} and E(G) = {vivi+1 :
1≤ i≤ n−1}

⋃
{v1vn}

⋃
{vivi+1 : n+1≤ i≤ 2n−1}

⋃
{vn+1v2n}

⋃
{vivi+1 : 2n+1≤ i≤ 3n−1}

⋃
{v2n+1v3n}. Also,

|V (G)|= 3n and |E(G)|= 3n. Define a bijective function
f : V (G)

⋃
E(G)→{1,2,3, ...,6n} as follows.

Case 1. n ≡ 0(mod 3) and n is not congruent to 6 modulo
15.
f (vi) = 2i−1 for 1≤ i≤ 3n, f (vivi+1) = 2i for 1≤ i≤ n−1,
f (v1vn) = 2n, f (vn+1v2n) = 4n, f (vivi+1) = 2i for n+ 1 ≤
i≤ 2n−1, f (v2n+1v3n) = 6n, f (vivi+1) = 2i for 2n+1≤ i≤
3n−1.
Case 2. n≡ 6(mod 15) .
f (vi) = 2i−1 for 1≤ i≤ 2n, f (v2n+1) = 4n+3, f (v2n+2) =
4n + 1, f (vi) = 2i for 2n + 3 ≤ i ≤ 3n, f (vivi+1) = 2i for
1≤ i≤ n−1, f (v1vn) = 2n, f (vn+1v2n) = 4n, f (vivi+1) = 2i
for n+ 1 ≤ i ≤ 2n− 1, f (v2n+1v3n) = 6n, f (vivi+1) = 2i for
2n+ 1 ≤ i ≤ 3n− 1. Clearly, for any edge uv ∈ E(G), the
numbers f (u), f (v) and f (uv) are pairwise relatively prime.
Hence G =Cn

⋃
Cn

⋃
Cn, n≥ 3 and n≡ 0(mod 3) is an edge

vertex prime labeling.

Theorem 2.11. The graph Cn
⋃

Cn
⋃
, ...,

⋃
Cn, n≡ 0(mod 5)

is an edge vertex prime labeling.

Proof. Let G=Cn
⋃

Cn
⋃
, ...,

⋃
Cn, n≡ 0(mod 5) be a graph.

Then V (G)= {vi j : 1≤ i≤m,1≤ j≤ 5} and E(G)= {vi jvi j+1 :
1 ≤ i ≤ m,1 ≤ j ≤ 4}

⋃
{vi5vi1 : 1 ≤ i ≤ m}. Also,|V (G)| =

5m and |E(G)|= 5m. Define a bijective function
f : V (G)

⋃
E(G)→{1,2,3, ...,10m} by f (vi jvi j+1) = 10(i−

1) + 2 j for 1 ≤ i ≤ m,1 ≤ j ≤ 4, f (vi5vi1) = 10(i− 1) +
2n for 1 ≤ i ≤ m, f (vi j) = 10(i− 1) + 2 j− 1 for 1 ≤ i ≤
m,1≤ j ≤ 5. Clearly, for any edge uv ∈ E(G), the numbers
f (u), f (v) and f (uv) are pairwise relatively prime. Hence G=
Cn

⋃
Cn

⋃
, ...,

⋃
Cn, n≡ 0(mod 5) is an edge vertex prime la-

beling.
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