

https://doi.org/10.26637/MJM0703/0034

Edge vertex prime labeling of graphs

M. Simaringa^{1*} and S. Muthukumaran²

Abstract

A bijective labeling $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., |V(G) \cup E(G)|\}$ is an *edge vertex prime labeling* if for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. A graph G which admits edge vertex prime labeling is called an *edge vertex prime graph*. In this paper, we have obtained some class of graphs such as p+q is odd for $G\hat{O}W_n$, $G\hat{O}f_n$, $G\hat{O}F_n$, p+q is even for $G\hat{O}P_n$, crown graph and union of cycles are edge vertex prime graph.

Keywords

Prime labeling, edge vertex prime labeling, relatively prime.

AMS Subject Classification

05C78.

¹Department of Mathematics, Thiru Kolanjiappar Government Arts College, Virudhachalam-606001, Tamil Nadu, India. ²Department of Mathematics, Siga College of Management and Computer Science, Villupuram-605601, Tamil Nadu, India. *Corresponding author: ¹ simaringalancia@gmail.com; ²smuthukumaranmaths@gmail.com Article History: Received 24 May 2019; Accepted 4 August 2019

©2019 MJM.

	Contents
1	Introduction
2	Main Results 573
	References

1. Introduction

All our graphs are simple, finite and undirected and we follow Balakrishnan and Ranganathan [1] for standard notations and terminology. G = (V(G), E(G)), where V(G) is vertex set and E(G) is edge set of the graph. |V(G)| and |E(G)|are denoted by the number of vertices and edges respectively, which is *order* and *size* of *G*. A *graph labeling* is an assignment of integers to the vertices or edges or both subject to certain conditions. See the dynamic graph labeling survey [2] by Gallian is regularly updated. Prime labeling is a type of graph labeling developed by Roger Entriger that was first formally introduced by Tout, Dabboucy and Howalla [7]. We define [n] = 1, 2, ..., n, where *n* is a positive integers. Given a simple graph *G* of order *n*, a *prime labeling* consists of labeling the vertices with integers from the set [n] so that the labels of any pair of adjacent vertices are relatively prime.

Edge vertex prime labeling is a variation of prime labeling. A bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., |V(G) \cup E(G)|\}$ is said to be an *edge vertex prime labeling* if for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Jagadesh and Baskar Babujee [3] was introduced the concept of an edge vertex prime labeling and proved the existence of the same paths, cycles and star $K_{1,n}$. In [4], if $G_1(p_1,q_1)$ and $G_2(p_2,q_2)$ are two connected graphs, then the graph obtained by superimposing any selected vertex of G_2 on any selected vertex of G_1 is denoted by $G_1 \hat{O} G_2$. The resultant graph $G = G_1 \hat{O} G_2$ contains $p_1 + p_2 - 1$ vertices $q_1 + q_2$ edges. In general, there are $p_1 p_2$ possibilities of getting $G_1 \hat{O} G_2$ from G_1 and G_2 . In [4], they also proved that edge vertex prime labeling, for some class of graphs such as generalized star, generalized cycle star, p + q is odd for $GOK_{1,n}$, GOP_n , GOC_n . Parmer [5] proved that wheel W_n , fan f_n , friendship graph F_n are an edge vertex prime labeling. In [6], they also proved that $K_{2,n}$, for all *n* and $K_{3,n}$ for $n = \{2, 3, ..., 29\}$ are edge vertex prime labeling. We [8] proved that triangular and rectangular book, butterfly graph, Drums graph D_n , Jahangir graph $J_{n,3}$ and $J_{n,4}$ are edge vertex prime labeling.

A wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. Fan graph f_n , $n \ge 2$ obtained by joining all vertices of a path P_n to a further vertex called centre. That is, $f_n = P_n + K_1$. Friendship graph F_n is a graph which consists of *n*-triangles with a common vertex. The crown graph is obtained from a cycle C_n by attaching a pendant edge at each vertex of the *n*- cycle. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The graph G =(V(G), E(G)), where $V = V_1 \bigcup V_2$ and $E = E_1 \bigcup E_2$, is called the *union* of G_1 and G_2 is denoted by $G_1 \bigcup G_2$.

In this paper, we established that p + q is odd for $G\hat{O}W_n$,

 $G\hat{O}f_n$, $G\hat{O}F_n$, p+q is even for $G\hat{O}P_n$, crown graph, union of cycles and some class of several graphs are edge vertex prime.

2. Main Results

Theorem 2.1. If G ($G \neq P_m$ and W_4) has an edge vertex prime labeling with p + q is odd, then there exists a graph from the class $G\hat{O}W_n$ that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph and $G \neq P_m$ and W_4 , when p+q is odd, with bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., p+q\}$ with the property that given any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Consider the graph W_n with vertex set $\{w, w_i : 1 \leq i \leq n\}$ and edge set $\{ww_i : 1 \leq i \leq n\} \cup \{w_i w_{i+1} : 1 \leq i \leq n-1\} \cup \{w_1 w_n\}$. We superimpose one of the vertex say w of W_n on selected vertex v_1 in G. Now, we define new graph $G_1 = G\hat{O}W_n$ with vertex set $V_1 = V \cup \{w, w_i : 1 \leq i \leq n\}$ and edge set $E_1 = E \cup \{ww_i : 1 \leq i \leq n\} \cup \{w_i w_{i+1} : 1 \leq i \leq n-1\} \cup \{w_1 w_n\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow \{1, 2, 3, ..., p+q, p+q+1, ..., p+q+3n+1\}$ by g(v) = f(v) for all $v \in V(G)$ and g(uv) = f(uv)for all $uv \in E(G)$.

Consider $G\hat{O}W_n$ the following cases. **Case(i).** When *n* is even.

$$g(w) = 1$$

$$g(w_i) = \begin{cases} p+q+3i-1; & i \text{ is odd} \\ p+q+3i-2; & i \text{ is even} \end{cases}$$

$$g(ww_i) = \begin{cases} p+q+3i-2; & i \text{ is odd} \\ p+q+3i-1; & i \text{ is even} \end{cases}$$

$$g(w_iw_{i+1}) = p+q+3i, \forall i$$

We have to prove that G_1 is an edge vertex prime labeling. Already, *G* is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in *G*, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. (i) For any edge $ww_i \in E_1$ ($1 \le i \le n$),

$$gcd(g(w), g(w_i)) = \begin{cases} gcd(1, p+q+3i-1); & i \text{ is odd} \\ gcd(1, p+q+3i-2); & i \text{ is even} \\ = 1 \\ gcd(g(w), g(ww_i)) = \begin{cases} gcd(1, p+q+3i-2); & i \text{ is odd} \\ gcd(1, p+q+3i-2); & i \text{ is odd} \\ gcd(1, p+q+3i-1); & i \text{ is even} \end{cases}$$
$$= 1 \\ gcd(g(w_i), g(ww_i)) = \begin{cases} gcd(p+q+3i-1, p+q+3i-2); \\ & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i-1); \\ & i \text{ is even} \end{cases}$$
$$= 1$$

(ii) For any edge
$$w_i w_{i+1} \in E_1$$
 $(1 \le i \le n-1)$,
 $gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i + 1); i \text{ is odd} \\ +1); i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i + 2); i \text{ is even} \end{cases}$

$$= 1$$
 $gcd(g(w_i), g(w_i w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q + 3i); i \text{ is odd} \\ gcd(p+q+3i-2, p+q + 3i); i \text{ is odd} \\ gcd(p+q+3i-2, p+q + 3i); i \text{ is even} \end{cases}$

$$gcd(g(w_{i+1}), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q + 3i); i \text{ is odd} \\ gcd(p+q+3i+2, p+q + 3i); i \text{ is even} \end{cases}$$
$$= 1$$

= 1

Case(ii). When *n* is odd.

$$g(w) = 1$$

$$g(w_i) = \begin{cases} p+q+3i-1; & i=1,3,5,...,n-2\\ p+q+3i-2; & i=2,4,6,...,n-1 \end{cases}$$

$$g(ww_i) = \begin{cases} p+q+3i-2; & i=1,3,5,...,n-2\\ p+q+3i-1; & i=2,4,6,...,n-1 \end{cases}$$

$$g(w_iw_{i+1}) = p+q+3i, \text{ for } i=1,2,...,n-2, \\ g(w_n) = p+q+3n-3, \\ g(w_{n-1}w_n) = p+q+3n-1, \\ g(w_1w_n) = p+q+3n+1. \end{cases}$$

Now, our claims are (i) $g(w), g(w_i)$ and $g(ww_i)$, (ii) $g(w_i), \\ g(w_{i+1})$ and $g(w_iw_{i+1})$ are pairwise relatively prime.
(i) For any edge $ww_i \in E_1$ $(1 \le i \le n), \end{cases}$

$$gcd(g(w), g(w_i)) = \begin{cases} gcd(1, p+q+3i-1); & i = 1, 3, 5, ..., n-2 \\ gcd(1, p+q+3i-2); & i = 2, 4, 6, ..., n-1 \\ gcd(1, p+q+3i-3); & i = n \\ & = 1 \\ \begin{cases} gcd(1, p+q+3i-2); & i \text{ is odd} \end{cases} \end{cases}$$

$$gcd(g(w), g(ww_i)) = \begin{cases} gcd(1, p+q+3i-1); & i \text{ is even} \\ gcd(1, p+q+3n); & i = n \end{cases}$$

$$= 1$$

$$gcd(g(w_i), g(ww_i)) = \begin{cases} gcd(p+q+3i-1, p+q+3i-2); \\ i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i-1); \\ i \text{ is even} \\ gcd(p+q+3i-3, p+q+3n); \\ i = n \end{cases}$$

= 1

(ii) For any edge
$$w_i w_{i+1} \in E_1$$
 $(1 \le i \le n-1)$,
 $gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i+2i); & i \text{ is even} \\ gcd(p+q+3i-2, p+q+3i+2i); & i = n-1 \end{cases}$
 $gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); & i = 1,3,5,..., n-2 \\ gcd(p+q+3i-2, p+q+3i+2i); & i = 2,4,6,..., n-3 \\ gcd(p+q+3i-2, p+q+3i+3); & i = n-1 \end{cases}$

= 1

$$gcd(g(w_i), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i); \\ i = 1,3,5,...,n-2 \\ gcd(p+q+3i-2, p+q+3i); \\ i = 2,4,6,...,n-3 \\ gcd(p+q+3n-2, p+q+3n \\ -1); i = n-1 \end{cases}$$
$$gcd(p+q+3i-1, p+q+3i); \\ i = 1,3,5,...,n-2 \\ gcd(p+q+3i-2, p+q+3i); \\ i = 2,4,6,...,n-3 \\ gcd(p+q+3i-2, p+q+3i+2) \\ i = n-1 \end{cases}$$

= 1

$$gcd(g(w_{i+1}), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q+3i); \\ i = 1, 3, 5, \dots, n-2 \\ gcd(p+q+3i+2, p+q+3i); \\ i = 2, 4, 6, \dots, n-3 \\ gcd(p+q+3n-3, p+q+3n-1); i = n-1 \end{cases}$$

$$gcd(g(w_{i+1}), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q+3i); \\ i = 1, 3, 5, ..., n-2 \\ gcd(p+q+3i+2, p+q+3i); \\ i = 2, 4, 6, ..., n-3 \\ gcd(p+q+3i, p+q+3i+2); \\ i = n-1 \\ = 1 \end{cases}$$

Therefore, for any edge $uv \in E_1$ which is not in *G*, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. Hence $G\hat{O}W_n$ is an edge vertex prime labeling,

where $G \ (G \neq P_m \text{ and } W_4)$.

The above theorem is not applicable for G ($G \neq P_m$ and W_4). But, first we apply Jagadesh et. al.,[4] proved that if $G = W_n$ is an edge vertex prime labeling, then there exist a graph from the class $W_n \hat{O} P_m$ that admits edge vertex prime labeling.

Next, consider a graph $G = W_4 \hat{O} W_5$. Then $V(G) = \{u, u_i, v_j : 1 \le i \le 4, 1 \le j \le 5\}$ and $E(G) = \{uu_i, uv_j : 1 \le i \le 4, 1 \le j \le 5\}$. Also, |V(G)| = 10 and |E(G)| = 18. Define a bijective function $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., 28\}$ by $f(u) = 1, f(u_1) = 3, f(u_2) = 5, f(u_3) = 9, f(u_4) = 11, f(uu_1) = 2, f(uu_2) = 6, f(uu_3) = 8, f(uu_4) = 12, f(u_1u_2) = 4, f(u_2u_3) = 7, f(u_3u_4) = 10, f(u_1u_4) = 13, f(v_1) = 15, f(v_2) = 17, f(v_3) = 19, f(v_4) = 21, f(v_5) = 23, f(v_1v_2) = 16, f(v_2v_3) = 18, f(v_3v_4) = 20, f(v_4v_5) = 22, f(v_1v_5) = 14, f(uv_1) = 28, f(uv_2) = 24, f(uv_3) = 25, f(uv_4) = 26, f(uv_5) = 27$. Clearly, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = W_4 \hat{O} W_5$ is an edge vertex prime labeling.

Theorem 2.2. If G(p,q) has an edge vertex prime labeling with p + q is odd, then there exists a graph from the class $G\hat{O}f_n$ that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph when p + q is odd with bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2,...,p+q\}$ with the property that given any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Consider the graph f_n with vertex set $\{w, w_i : 1 \le i \le n\}$ and edge set $\{ww_i : 1 \le i \le n\} \cup \{w_iw_{i+1} : 1 \le i \le n-1\}$. We superimpose one of the vertex say, w of f_n on selected vertex v_1 in G. Now, we define new graph $G_1 =$ $G\hat{O}f_n$ with vertex set $V_1 = V \cup \{w, w_i : 1 \le i \le n\}$ and edge set $E_1 = E \cup \{ww_i : 1 \le i \le n\} \cup \{w_iw_{i+1} : 1 \le i \le n-1\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow \{1, 2, ..., p+q, p+q+1, ..., p+q+3n\}$ by g(v) = f(v) for all $v \in V(G)$ and g(uv) = f(uv) for all $uv \in E(G)$,

a(10) = 1

$$g(w_{i}) = \begin{cases} p+q+3i-1; & i \text{ is odd} \\ p+q+3i-2; & i \text{ is even} \end{cases}$$
$$g(ww_{i}) = \begin{cases} p+q+3i-2; & i \text{ is odd} \\ p+q+3i-2; & i \text{ is odd} \\ p+q+3i-1; & i \text{ is even} \end{cases}$$

$$g(w_i w_{i+1}) = p + q + 3i, \forall i$$

We have to prove that G_1 is an edge vertex prime labeling. Already, *G* is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in *G*, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. (i) For any edge $ww_i \in E_1$ ($1 \le i \le n$),

$$gcd(g(w), g(w_i)) = \begin{cases} gcd(1, p+q+3i-1); & i \text{ is odd} \\ gcd(1, p+q+3i-2); & i \text{ is even} \\ = 1 \\ gcd(g(w), g(ww_i)) = \begin{cases} gcd(1, p+q+3i-2); & i \text{ is odd} \\ gcd(1, p+q+3i-1); & i \text{ is even} \\ = 1 \\ gcd(g(w_i), g(ww_i)) = \begin{cases} gcd(p+q+3i-1, p+q+3i-2); \\ & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i-1); \\ & i \text{ is even} \end{cases}$$
$$= 1$$

(ii) For any edge
$$w_i w_{i+1} \in E_1 \ (1 \le i \le n-1),$$

 $gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i+2); & i \text{ is even} \end{cases}$

$$gcd(g(w_i), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i); \\ i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i); \\ i \text{ is even} \end{cases}$$

= 1

$$= 1$$

$$gcd(g(w_{i+1}), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q+3i); \\ i \text{ is odd} \\ gcd(p+q+3i+2, p+q+3i); \\ i \text{ is even} \\ = 1 \end{cases}$$

Therefore, for any edge $uv \in E_1$ which is not in *G*, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. Hence there exists a graph from the class $G\hat{O}f_n$ admits edge vertex prime labeling.

The planter graph R_n $(n \ge 3)$ can be constructed by joining fan graph f_n $(n \ge 2)$ and cycle C_n , $(n \ge 3)$ with sharing a common vertex, where *n* is any positive integer, that is $R_n = f_n \hat{O} C_n$

Corollary 2.3. The planter graph R_n $(n \ge 3)$ admits edge vertex prime labeling graph, where n is any positive integer.

Theorem 2.4. If G(p,q) has an edge vertex prime labeling with p + q is odd, then there exists a graph from the class $G\hat{O}F_n$ that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph when p+q is odd with bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$ with the property that given any edge we C = E(C) the numbers f(w) of f(w) and f(w) are pointing

 $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Consider the graph F_n with vertex set $\{w, w_i : 1 \le i \le 2n\}$ and edge set $\{ww_i : 1 \le i \le 2n\} \cup \{w_{2i-1}w_{2i} : 1 \le i \le n\}$. We superimpose one of the vertex say w of F_n on selected vertex v_1 in G. Now, we define new graph $G_1 = G\hat{O}F_n$ with vertex set $V_1 = V \cup \{w, w_i : 1 \le i \le 2n\}$ and edge set $E_1 = E \cup \{ww_i : 1 \le i \le 2n\} \cup \{w_{2i-1}w_{2i} : 1 \le i \le n\}$. Define a bijective function $g : V_1 \cup E_1 \rightarrow \{1, 2, 3, ..., p+q, p+q+1, ..., p+q+5n+1\}$ by g(v) = f(v) for all $v \in V(G)$ and g(uv) = f(uv) for all $uv \in E(G)$,

$$g(w)=1,$$

$$g(w_{2i-1}) = \begin{cases} p+q+5i-3; & i \text{ is odd} \\ p+q+5i-4; & i \text{ is even} \end{cases}$$
$$g(w_{2i}) = \begin{cases} p+q+5i-1; & i \text{ is odd} \\ p+q+5i; & i \text{ is even} \end{cases}$$
$$g(ww_{2i-1}) = \begin{cases} p+q+5i-4; & i \text{ is odd} \\ p+q+5i-3; & i \text{ is even} \end{cases}$$
$$g(ww_{2i}) = \begin{cases} p+q+5i; & i \text{ is odd} \\ p+q+5i-1; & i \text{ is even} \end{cases}$$
$$g(w_{2i-1}w_{2i}) = p+q+5i-2, \forall i \end{cases}$$

We have to prove that G_1 is an edge vertex prime labeling. Already, G is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in G, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. Now, our claims are (i) $g(w), g(w_{2i-1})$ and $g(ww_{2i-1})$, (ii) $g(w), g(w_{2i})$ and $g(ww_{2i})$, (iii) $g(w_{2i-1}), g(w_{2i})$ and $g(w_{2i-1}w_{2i})$ are pairwise relatively prime.

(i) For any edge $ww_i \in E_1$ $(1 \le i \le 2n)$,

$$gcd(g(w), g(w_{2i-1})) = \begin{cases} gcd(1, p+q+5i-3); & i \text{ is odd} \\ gcd(1, p+q+5i-4); & i \text{ is even} \end{cases}$$
$$= 1$$

$$gcd(g(w), g(ww_{2i-1})) = \begin{cases} gcd(1, p+q+5i-4); & i \text{ is odd} \\ gcd(1, p+q+5i-3); & i \text{ is even} \end{cases}$$
$$= 1$$
$$gcd(g(w_{2i-1}), g(ww_{2i-1})) = \begin{cases} gcd(p+q+5i-3, p+q+5i-3, p+q+6i-3); & i \text{ is odd} \\ gcd(p+q+5i-4, p+q+6i-3); & i \text{ is odd} \\ gcd(p+q+5i-4, p+q+6i-3); & i \text{ is even} \end{cases}$$
$$= 1$$

(ii)

$$gcd(g(w), g(w_{2i})) = \begin{cases} gcd(1, p+q+5i-1); & i \text{ is odd} \\ gcd(1, p+q+5i); & i \text{ is even} \end{cases}$$

= 1
$$gcd(g(w), g(ww_{2i})) = \begin{cases} gcd(1, p+q+5i); & i \text{ is odd} \\ gcd(1, p+q+5i-1); & i \text{ is even} \end{cases}$$

= 1
$$gcd(g(w_{2i}), g(ww_{2i})) = \begin{cases} gcd(p+q+5i-1, p+q+5i); \\ i \text{ is odd} \\ gcd(p+q+5i, p+q+5i-1); \\ i \text{ is even} \end{cases}$$

(iii)

 $gcd(g(w_{2i-1}), g(w_{2i})) = \begin{cases} gcd(p+q+5i-3, p+q+5i-1); \\ i \text{ is odd} \\ gcd(p+q+5i-4, p+q+5i); \\ i \text{ is even} \end{cases}$

$$= 1$$

$$gcd(g(w_{2i-1}), g(w_{2i-1}w_{2i})) = \begin{cases} gcd(p+q+5i-3, p+q+5i-2); i \text{ is odd} \\ gcd(p+q+5i-4, p+q+5i-2); i \text{ is even} \end{cases}$$

$$= 1$$

$$gcd(g(w_{2i}), g(w_{2i-1}w_{2i})) = \begin{cases} gcd(p+q+5i-1, p+q+5i-2); i \text{ is odd} \\ gcd(p+q+5i, p+q+5i-2); i \text{ is even} \end{cases}$$

$$= 1$$

Therefore, for any edge $uv \in E_1$, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. Hence there exists a graph from the class $G\hat{O}F_n$ admits edge vertex prime labeling. \Box

Theorem 2.5. If G(p,q) has an edge vertex prime labeling with p + q is even, then there exists a graph from the class $G\hat{O}P_n$ that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph when p+q is even with bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2,3,...,p+q\}$ with the property that given any edge $uv \in$ E(G), the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Consider the graph P_n with vertex set $\{w_i: 1 \le i \le n\}$ and edge set $\{w_iw_{i+1}: 1 \le i \le n-1\}$. We superimpose one of the vertex say w_1 of P_n on selected vertex v_1 in G. Now, we define a new graph $G_1 = G\hat{O}P_n$ with vertex set $V_1 = V \cup \{w_i: 2 \le i \le n\}$ and edge set $E_1 = E \cup \{w_iw_{i+1}: 1 \le i \le n-1\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow$ $\{1,2,3,...,p+q,p+q+1,...,p+q+2n-2\}$ by g(v) = f(v), for all $v \in V$ and g(uv) = f(uv), for all $uv \in E(G), g(w_1) = 1$, $g(w_i) = p + q + 2n + 1 - 2i$ for $2 \le i \le n, g(w_iw_{i+1}) = p + q$ $\begin{array}{l} q+2n-2i \mbox{ for } 1 \leq i \leq n-1 \ . \\ \mbox{For any edge } w_i w_{i+1} \in E_1 (2 \leq i \leq n-1), \\ gcd(g(w_1),g(w_2)) = gcd(1,p+q+2n-3) = 1, \\ gcd(g(w_1),g(w_1w_2)) = gcd(1,p+q+2n-2) = 1, \\ gcd(g(w_2),g(w_1w_2)) = gcd(p+q+2n-3,p+q+2n-2) = \\ 1,gcd(g(w_i),g(w_{i+1})) = gcd(p+q+2n+1-2i,p+q+2n-2i-1) = 1, \\ gcd(g(w_i),g(w_i),g(w_{i+1})) = gcd(p+q+2n+1-2i,p+q+2n-2i) = 1, \\ gcd(g(w_i),g(w_i),g(w_{i+1})) = gcd(p+q+2n+1-2i,p+q+2n-2i) = 1, \\ gcd(g(w_i),g(w_i),g(w_i) = 1, \\ gcd(g(w_i),g(w_i),g(w_i) = 1, \\ gcd(g(w_i),g(w_i),g(w_i) = 1, \\ gcd(g(w_i),g(w_i) = 1, \\ gcd(g(w_i),$

Corollary 2.6. The graph $C_l \hat{O} K_{1,m} \hat{O} P_n$ is an edge vertex prime labeling.

Proof. Let $G = C_l \hat{O} K_{1,m} \hat{O} P_n$ be a graph. Then $V(G) = \{u_i :$ $1 \leq i \leq l$ } \bigcup { $v, v_j : 1 \leq j \leq m$ } \bigcup { $w_k : 1 \leq k \leq n$ } and E(G) = $\{u_i u_{i+1} : 1 \le i \le l-1\} \bigcup \{u_1 u_l\} \bigcup \{u_1 v_j : 1 \le j \le m\} \bigcup$ $\{u_1w_{n-1}\} \cup \{w_kw_{k+1} : 1 \le k \le n-2\}$. Also, |V(G)| = l+m+n-1 and |E(G)| = l + m + n - 1. We superimpose two of the vertices say, v of $K_{1,m}$ and w_n of P_n on selected vertex u_1 in C_l . Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1, 2, 3, ..., 2(l + m + n - 1)\}$ by $f(u_1) = f(v) = f(w_n) = 1$, $f(u_i) = 2i - 1$ for $2 \le i \le l$, $f(u_i u_{i+1}) = 2i$ for $1 \le i \le l - 1$, $f(u_1u_l) = 2l, f(v_i) = 2l + 2j - 1$ for $1 \le j \le m, f(u_1v_i) =$ 2l + 2j for $1 \le j \le m$, $f(w_k) = 2(l + m + k) - 1$ for $1 \le k \le m$ n-1, $f(w_k w_{k+1}) = 2(l+m+k)$ for $1 \le k \le n-1$. Clearly, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv)are pairwise relatively prime. Hence $G = C_l \hat{O} K_{1,m} \hat{O} P_n$ admits edge vertex prime labeling. \square

Parmer [5] proved that f_m is an edge vertex prime labeling . Jagadesh, Baskar Babujee [4] proved that if G has an edge vertex prime labeling, then there exist a graph from the class $G\hat{O}P_n$ admits edge vertex prime labeling.

An Umbrella graph U(m,n) is the graph obtained by joining a path P_n with the central vertex of a fan f_m .

Corollary 2.7. *The Umbrella graph* U(m,n) *is an edge vertex prime labeling.*

Theorem 2.8. If G has an edge vertex prime labeling with p + q is even, then there exists a graph from the class GOC_3 that admits edge vertex prime labeling.

Proof. Let G(p,q) be an edge vertex prime labeling graph when p+q is even with bijective function from $f: V(G) \cup E(G)$ $\rightarrow \{1,2,3,...,p+q\}$ with the property that given any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Consider the graph C_3 with vertex set $\{w_1, w_2, w_3\}$ and edge set $\{w_1w_2, w_2w_3, w_3w_1\}$. We superimpose one of the vertex say w_1 of C_3 on selected vertex v_1 in G. Now, we define new graph $G_1 = G\hat{O}C_3$ with vertex set $V_1 = V \cup \{w_1, w_2, w_3\}$ and edge set $E_1 = E \cup \{w_1w_2, w_2w_3, w_3w_1\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow \{1, 2, 3, ..., p+q, p+q+1, p+q+2, p+q+3\}$ by g(v) = f(v) for all $v \in V(G)$ and g(uv) =f(uv) for all $uv \in E(G), g(w_1) = 1, g(w_2) = p+q+1, g(w_3) =$ p+q+3, $g(w_1w_2) = p+q+2$, $g(w_2w_3) = p+q+5$ and $g(w_1w_3) = p+q+4$. We have to prove that G_1 is an edge vertex prime labeling. Already, G is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in G, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. For any edge $w_iw_{i+1} \leq E_1, gcd(g(w_1), g(w_2)) =$ $gcd(1, p+q+1) = 1, gcd(g(w_1), g(w_1w_2)) = gcd(1, p+q+4) = 1, gcd(g(w_2), g(w_1w_2)) = gcd(p+q+1, p+q+2) = 1, gcd(g(w_2), g(w_2w_3)) = gcd(p+q+1, p+q+3) = 1, gcd(g(w_2), g(w_2w_3)) = gcd(p+q+3, p+q+5) = 1, gcd(g(w_1), g(w_1)) = gcd(1, p+q+3) = 1, gcd(g(w_1), g(w_1)) = gcd(1, p+q+4) = 1, gcd(g(w_1), g(w_1w_3)) = gcd(1, p+q+4) = 1, gcd(g(w_1), g(w_1w_3)) = gcd(p+q+3, p+q+4) = 1.$

Therefore, for any edge $uv \in E_1$, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. Hence there exists a graph from the class $G\hat{O}C_3$ admits edge vertex prime labeling.

Theorem 2.9. The crown graph C_n . K_1 is an edge vertex prime labeling, where n is a positive integer.

Proof. Let $G = C_n K_1$ be a graph. The degree of the vertices of a crown graph is either 3 or 1. Consider $u_1, u_2, ..., u_n$ be the vertices with degree 3 and $v_1, v_2, ..., v_n$ be the vertices with $n \{ \bigcup \{u_i u_{i+1} : 1 \le i \le n-1\} \bigcup \{u_1 u_n\}$. Here |V(G)| = 2n and |E(G)| = 2n. Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1, 2, ..., 4n\}$. For any edge $1 \le i \le \lfloor \frac{n}{2} \rfloor - 2$, $f(u_{3i-2}) = 12i - 12i$ 11, $f(v_{3i-2}) = 12i-9$, $f(u_{3i-1}) = 12i-7$, $f(v_{3i-1}) = 12i-5$, $f(u_{3i-2}u_{3i-1}) = 12i-8, f(u_{3i-1}u_{3i}) = 12i-4,$ $f(u_{3i-2}v_{3i-2}) = 12i - 10, f(u_{3i-1}v_{3i-1}) = 12i - 6,$ $f(u_{3i}v_{3i}) = 12i - 2.$ Consider the following cases. Case (i). When *n* is even. For each $1 \le i \le \lfloor \frac{n}{2} \rfloor - 3$, $f(u_{3i}) = 12i - 1$, $f(v_{3i}) = 12i - 3$. Case (ii). When *n* is odd. For each $1 \le i \le \lfloor \frac{n}{2} \rfloor - 2$, $f(u_{3i}) = 12i - 1$, $f(v_{3i}) = 12i - 3$, $f(u_1u_n) = 4n.$ Next, we show that the edge vertex prime labeling. $gcd(f(u_1), f(u_n)) = gcd(1, 4n - 3) = 1,$ $gcd(f(u_1), f(u_1u_n)) = gcd(1, 4n) = 1,$ $gcd(f(u_n), f(u_1u_n)) = gcd(4n - 3, 4n) = 1,$ $gcd(f(u_{3i-2}), f(u_{3i-1})) = gcd(12i-11, 12i-7) = 1,$ $gcd(f(u_{3i-2}), f(u_{3i-2}u_{3i-1})) = gcd(12i-11, 12i-8) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i-2}u_{3i-1})) = gcd(12i-7, 12i-8) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i})) = gcd(12i-7, 12i-1) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i-1}u_{3i})) = gcd(12i-7, 12i-4) = 1,$ $gcd(f(u_{3i}), f(u_{3i-1}u_{3i})) = gcd(12i-1, 12i-4) = 1,$ $gcd(f(u_{3i-2}), f(v_{3i-2})) = gcd(12i - 11, 12i - 9) = 1,$ $gcd(f(u_{3i-2}), f(u_{3i-2}v_{3i-2})) = gcd(12i-11, 12i-10) = 1,$ $gcd(f(v_{3i-2}), f(u_{3i-2}v_{3i-2})) = gcd(12i-9, 12i-10) = 1,$ $gcd(f(u_{3i-1}), f(v_{3i-1})) = gcd(12i-7, 12i-5) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i-1}v_{3i-1})) = gcd(12i-7, 12i-6) = 1,$ $gcd(f(v_{3i-1}), f(u_{3i-1}v_{3i-1})) = gcd(12i-5, 12i-6) = 1,$ $gcd(f(u_{3i}), f(v_{3i}) = gcd(12i - 1, 12i - 3) = 1,$ $gcd(f(u_{3i}), f(u_{3i}v_{3i})) = gcd(12i - 1, 12i - 2) = 1,$

 $gcd(f(v_{3i}), f(u_{3i}v_{3i})) = gcd(12i - 3, 12i - 2) = 1.$ Therefore, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence the crown graph $C_n.K_1$ is an edge vertex prime labeling.

Theorem 2.10. The graph $C_n \bigcup C_n \bigcup C_n$, $n \ge 3$ and $n \equiv 0 \pmod{3}$ is an edge vertex prime labeling.

Proof. Let $G = C_n \bigcup C_n \bigcup C_n$, $n \ge 3$ and $n \equiv 0 \pmod{3}$ be a graph. Then $V(G) = \{v_i : 1 \le i \le 3n\}$ and $E(G) = \{v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{v_1 v_n\} \bigcup \{v_i v_{i+1} : n+1 \le i \le 2n-1\} \bigcup \{v_{n+1} v_{2n}\} \bigcup \{v_i v_{i+1} : 2n+1 \le i \le 3n-1\} \bigcup \{v_{2n+1} v_{3n}\}$. Also, |V(G)| = 3n and |E(G)| = 3n. Define a bijective function $f: V(G) \bigcup E(G) \rightarrow \{1, 2, 3, ..., 6n\}$ as follows.

Case 1. $n \equiv 0 \pmod{3}$ and *n* is not congruent to 6 modulo 15.

 $f(v_i) = 2i - 1 \text{ for } 1 \le i \le 3n, f(v_i v_{i+1}) = 2i \text{ for } 1 \le i \le n - 1,$ $f(v_1 v_n) = 2n, f(v_{n+1} v_{2n}) = 4n, f(v_i v_{i+1}) = 2i \text{ for } n+1 \le i \le 2n - 1, f(v_{2n+1} v_{3n}) = 6n, f(v_i v_{i+1}) = 2i \text{ for } 2n + 1 \le i \le 3n - 1.$

Case 2. $n \equiv 6 \pmod{15}$.

 $\begin{array}{l} f(v_i) = 2i - 1 \text{ for } 1 \leq i \leq 2n, \ f(v_{2n+1}) = 4n + 3, \ f(v_{2n+2}) = \\ 4n + 1, \ f(v_i) = 2i \text{ for } 2n + 3 \leq i \leq 3n, \ f(v_iv_{i+1}) = 2i \text{ for} \\ 1 \leq i \leq n - 1, \ f(v_1v_n) = 2n, \ f(v_{n+1}v_{2n}) = 4n, \ f(v_iv_{i+1}) = 2i \\ \text{for } n + 1 \leq i \leq 2n - 1, \ f(v_{2n+1}v_{3n}) = 6n, \ f(v_iv_{i+1}) = 2i \\ \text{for } n + 1 \leq i \leq 3n - 1. \\ \text{Clearly, for any edge } uv \in E(G), \text{ the} \\ \text{numbers } f(u), f(v) \text{ and } f(uv) \text{ are pairwise relatively prime.} \\ \text{Hence } G = C_n \bigcup C_n \bigcup C_n, \ n \geq 3 \text{ and } n \equiv 0 (\text{mod } 3) \text{ is an edge} \\ \text{vertex prime labeling.} \\ \end{array}$

Theorem 2.11. The graph $C_n \bigcup C_n \bigcup, ..., \bigcup C_n$, $n \equiv 0 \pmod{5}$ is an edge vertex prime labeling.

Proof. Let $G = C_n \bigcup C_n \bigcup, ..., \bigcup C_n, n \equiv 0 \pmod{5}$ be a graph. Then $V(G) = \{v_{ij} : 1 \le i \le m, 1 \le j \le 5\}$ and $E(G) = \{v_{ij}v_{ij+1} : 1 \le i \le m, 1 \le j \le 4\} \bigcup \{v_{i5}v_{i1} : 1 \le i \le m\}$. Also, |V(G)| = 5m and |E(G)| = 5m. Define a bijective function $f : V(G) \bigcup E(G) \rightarrow \{1, 2, 3, ..., 10m\}$ by $f(v_{ij}v_{ij+1}) = 10(i-1) + 2j$ for $1 \le i \le m, 1 \le j \le 4$, $f(v_{i5}v_{i1}) = 10(i-1) + 2n$ for $1 \le i \le m, f(v_{ij}) = 10(i-1) + 2j - 1$ for $1 \le i \le m, f(v_{ij}) = 10(i-1) + 2j - 1$ for $1 \le i \le m, 1 \le j \le 5$. Clearly, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = C_n \bigcup C_n \bigcup ..., \bigcup C_n, n \equiv 0 \pmod{5}$ is an edge vertex prime labeling. □

References

- ^[1] R. Balakrishnan and K. Ranganathan, Text Book of Graph Theory, *Second Edition, Springer, New York*, (2012).
- [2] J. A. Gallian, A Dynamic Survey of Graph Labeling, *Electronic Journal of Combinatorics*, (2015), DS6.
- [3] R. Jagadesh and J. Baskar Babujee, Edge Vertex Prime Labeling for some class of Graphs, *National Conference* on Recent Trends in Mathematics and its Applications, SRM University, Vadapalani, Chennai, India. (2017), 24– 25.

- [4] R. Jagadesh and J. Baskar Babujee, On Edge Vertex Prime Labeling, *International Journal of Pure and Applied Mathematics*, 114(2017), 209–218.
- ^[5] Y. Parmar, Edge Vertex Prime Labeling for Wheel, Fan and Friendship Graph, *International Journal of Mathematics and Statistics Invention*, 5(2017), 23–29.
- [6] Y. Parmar, Vertex Prime Labeling for K_{2,n} and K_{3,n} Graphs, *Mathematical Journal of Interdisciplinary Sciences*, 6(2018), 167–180.
- [7] A. Tout, A. N. Dabboucy and K. Howalla, Prime Labeling of Graphs, *National Academy Science, Letters*, 11(1982), 365–368.
- [8] M. Simaringa, S. Muthukumaran, Edge Vertex Prime Labeling of Some Graphs, *Malaya Journal of Matematik*, 7(2)(2019), 264–268.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

