

https://doi.org/10.26637/MJM0703/0034

Edge vertex prime labeling of graphs

M. Simaringa^{1*} and S. Muthukumaran²

Abstract

A bijective labeling $f: V(G)\bigcup E(G) \to \{1,2,3,...,|V(G)\bigcup E(G)|\}$ is an *edge vertex prime labeling* if for any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. A graph G which admits edge vertex prime labeling is called an *edge vertex prime graph*. In this paper, we have obtained some class of graphs such a s $p+q$ is odd for $G\hat{O}W_n,$ $G\hat{O}f_n,$ $G\hat{O}F_n,$ $p+q$ is even for $G\hat{O}P_n,$ crown graph and union of cycles are edge vertex prime graph.

Keywords

Prime labeling, edge vertex prime labeling, relatively prime.

AMS Subject Classification

05C78.

¹*Department of Mathematics, Thiru Kolanjiappar Government Arts College, Virudhachalam-606001, Tamil Nadu, India.* ²*Department of Mathematics, Siga College of Management and Computer Science, Villupuram-605601, Tamil Nadu, India.* ***Corresponding author**: ¹ simaringalancia@gmail.com; ²smuthukumaranmaths@gmail.com **Article History**: Received **24** May **2019**; Accepted **4** August **2019** c 2019 MJM.

1. Introduction

All our graphs are simple, finite and undirected and we follow Balakrishnan and Ranganathan [1] for standard notations and terminology. $G = (V(G), E(G))$, where $V(G)$ is vertex set and $E(G)$ is edge set of the graph. $|V(G)|$ and $|E(G)|$ are denoted by the number of vertices and edges respectively, which is *order* and *size* of *G*. A *graph labeling* is an assignment of integers to the vertices or edges or both subject to certain conditions. See the dynamic graph labeling survey [2] by Gallian is regularly updated. Prime labeling is a type of graph labeling developed by Roger Entriger that was first formally introduced by Tout, Dabboucy and Howalla [7]. We define $[n] = 1, 2, ..., n$, where *n* is a positive integers. Given a simple graph *G* of order *n*, a *prime labeling* consists of labeling the vertices with integers from the set $[n]$ so that the labels of any pair of adjacent vertices are relatively prime.

Edge vertex prime labeling is a variation of prime labeling. A bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., |V(G) \cup E(G)|\}$ $E(G)|$ is said to be an *edge vertex prime labeling* if for any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Jagadesh and Baskar Babujee [3] was

introduced the concept of an edge vertex prime labeling and proved the existence of the same paths, cycles and star *K*1,*n*. In [4], if $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ are two connected graphs, then the graph obtained by superimposing any selected vertex of G_2 on any selected vertex of G_1 is denoted by $G_1 \hat{O} G_2$. The resultant graph $G = G_1 \hat{O} G_2$ contains $p_1 + p_2 - 1$ vertices $q_1 + q_2$ edges. In general, there are $p_1 p_2$ possibilities of getting $G_1 \hat{O} G_2$ from G_1 and G_2 . In [4], they also proved that edge vertex prime labeling, for some class of graphs such as generalized star, generalized cycle star, $p + q$ is odd for $G\hat{O}K_{1,n}$, $G\hat{O}P_n$, $G\hat{O}C_n$. Parmer [5] proved that wheel *Wn*, fan *fn*, friendship graph *Fⁿ* are an edge vertex prime labeling. In [6], they also proved that $K_{2,n}$, for all *n* and $K_{3,n}$ for $n = \{2, 3, \ldots, 29\}$ are edge vertex prime labeling. We [8] proved that triangular and rectangular book, butterfly graph, Drums graph D_n , Jahangir graph $J_{n,3}$ and $J_{n,4}$ are edge vertex prime labeling.

A wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. Fan graph f_n , $n \geq 2$ obtained by joining all vertices of a path P_n to a further vertex called centre. That is, $f_n = P_n + K_1$. Friendship graph F_n is a graph which consists of *n*-triangles with a common vertex. The crown graph is obtained from a cycle C_n by attaching a pendant edge at each vertex of the *n*- cycle. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The graph $G =$ $(V(G), E(G))$, where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$, is called the *union* of G_1 and G_2 is denoted by $G_1 \bigcup G_2$.

In this paper, we established that $p+q$ is odd for $G\hat{O}W_n$,

 $G\hat{O}f_n$, $G\hat{O}F_n$, $p+q$ is even for $G\hat{O}P_n$, crown graph, union of cycles and some class of several graphs are edge vertex prime.

2. Main Results

Theorem 2.1. *If* G ($G \neq P_m$ *and* W_4 *)* has an edge vertex prime *labeling with* $p + q$ *is odd, then there exists a graph from the* $class\ G\hat{O}W_n$ that admits edge vertex prime labeling.

Proof. Let $G(p,q)$ be an edge vertex prime labeling graph and $G \neq P_m$ and W_4 , when $p+q$ is odd, with bijective func- $\text{tion } f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., p+q\}$ with the property that given any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Consider the graph W_n with vertex set $\{w, w_i : 1 \le i \le n\}$ and edge set $\{ww_i : 1 \le i \le n\}$ $i \leq n$ } $\bigcup \{w_i w_{i+1} : 1 \leq i \leq n-1\} \bigcup \{w_1 w_n\}$. We superimpose one of the vertex say *w* of W_n on selected vertex v_1 in *G*. Now, we define new graph $G_1 = G\hat{O}W_n$ with vertex set $V_1 = V \bigcup \{ w, w_i : 1 \le i \le n \}$ and edge set $E_1 = E \bigcup \{ ww_i : 1 \le i \le n \}$ *i* ≤ *n*} $\bigcup \{w_i w_{i+1} : 1 \le i \le n-1\}$ $\bigcup \{w_1 w_n\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow \{1, 2, 3, ..., p+q, p+q+1, ..., p+q+1\}$ 3*n* + 1} by $g(v) = f(v)$ for all $v \in V(G)$ and $g(uv) = f(uv)$ for all $uv \in E(G)$.

Consider $G\hat{O}W_n$ the following cases. Case(i). When *n* is even.

> $g(w) = 1$ $g(w_i) = \begin{cases} p + q + 3i - 1; & i \text{ is odd} \\ 0 & i \neq j \end{cases}$ *p*+*q*+3*i*−2; *i* is even $g(ww_i) = \begin{cases} p+q+3i-2; & i \text{ is odd} \\ 0 & i \leq n \end{cases}$ *p*+*q*+3*i*−1; *i* is even $g(w_iw_{i+1}) = p + q + 3i, \forall i$

We have to prove that G_1 is an edge vertex prime labeling. Already, *G* is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in *G*, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. (i) For any edge $ww_i \in E_1$ $(1 \le i \le n)$,

$$
gcd(g(w), g(w_i)) = \begin{cases} gcd(1, p+q+3i-1); & i \text{ is odd} \\ gcd(1, p+q+3i-2); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w), g(ww_i)) = \begin{cases} gcd(1, p+q+3i-2); & i \text{ is odd} \\ gcd(1, p+q+3i-1); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w_i), g(ww_i)) = \begin{cases} gcd(p+q+3i-1, p+q+3i-2); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i-1); & i \text{ is even} \end{cases}
$$

= 1

(ii) For any edge
$$
w_iw_{i+1} \in E_1
$$
 $(1 \le i \le n-1)$,
\n
$$
gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i+2); i \text{ is even} \\ *2); i \text{ is even} \end{cases}
$$
\n
$$
= 1
$$
\n
$$
gcd(g(w_i), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i); i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i); i \text{ is even} \\ *3i); i \text{ is even} \end{cases}
$$
\n
$$
= 1
$$

$$
gcd(g(w_{i+1}), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q \\ +3i); i \text{ is odd} \\ gcd(p+q+3i+2, p+q \\ +3i); i \text{ is even} \end{cases}
$$

$$
= 1
$$

Case(ii). When *n* is odd.

$$
g(w) = 1
$$

$$
g(w_i) = \begin{cases} p+q+3i-1; & i = 1,3,5,...,n-2 \\ p+q+3i-2; & i = 2,4,6,...,n-1 \end{cases}
$$

\n
$$
g(ww_i) = \begin{cases} p+q+3i-2; & i = 1,3,5,...,n-2 \\ p+q+3i-1; & i = 2,4,6,...,n-1 \end{cases}
$$

\n
$$
g(w_iw_{i+1}) = p+q+3i, \text{ for } i = 1,2,...,n-2,
$$

\n
$$
g(w_n) = p+q+3n-3,
$$

\n
$$
g(w_{n-1}w_n) = p+q+3n-1,
$$

\n
$$
g(w_1w_n) = p+q+3n+1.
$$

\nNow, our claims are (i) $g(w_i), g(w_i)$ and $g(ww_i),$ (ii) $g(w_i), g(w_{i+1})$ and $g(w_{i}w_{i+1})$ are pairwise relatively prime.
\n(i) For any edge $ww_i \in E_1$ ($1 \le i \le n$),

$$
gcd(g(w), g(w_i)) = \begin{cases} gcd(1, p+q+3i-1); & i = 1, 3, 5, ..., n-2 \\ gcd(1, p+q+3i-2); & i = 2, 4, 6, ..., n-1 \\ gcd(1, p+q+3i-3); & i = n \\ & = 1 \end{cases}
$$

= 1

$$
gcd(1, p+q+3i-2); i is odd
$$

$$
gcd(g(w), g(ww_i)) = \begin{cases} sc\alpha(1, p + q + 3i - 2), & i \text{ is odd} \\ gcd(1, p + q + 3i - 1); & i \text{ is even} \\ gcd(1, p + q + 3n); & i = n \end{cases}
$$

$$
= 1
$$

$$
gcd(g(w_i), g(ww_i)) = \begin{cases} gcd(p+q+3i-1, p+q+3i-2); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i-1); & i \text{ is even} \\ gcd(p+q+3i-3, p+q+3n); & i = n \end{cases}
$$

 $= 1$

(ii) For any edge
$$
w_iw_{i+1} \in E_1
$$
 $(1 \le i \le n-1)$,
\n
$$
gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i+2i); & i \text{ is even} \\ gcd(p+q+3i-2, p+q+3n); & i = n-1 \end{cases}
$$
\n
$$
gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); & i = 1, 3, 5, ..., n-2 \\ gcd(p+q+3i-2, p+q+3i+2i); & i = 2, 4, 6, ..., n-3 \\ gcd(p+q+3i-2, p+q+3i+3); & i = n-1 \end{cases}
$$

 $= 1$

$$
gcd(g(w_i), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i); & i = 1, 3, 5, ..., n-2 \\ gcd(p+q+3i-2, p+q+3i); & i = 2, 4, 6, ..., n-3 \\ gcd(p+q+3n-2, p+q+3n-1); i = n-1 \\ & -1); i = n-1 \end{cases}
$$

$$
gcd(g(w_i), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i); & i = 1, 3, 5, ..., n-2 \\ gcd(p+q+3i-2, p+q+3i); & i = 1, 3, 5, ..., n-3 \\ gcd(p+q+3i-2, p+q+3i); & i = 2, 4, 6, ..., n-3 \\ gcd(p+q+3i-2, p+q+3i+2); & i = n-1 \end{cases}
$$

 $\sqrt{ }$

 $= 1$

$$
gcd(g(w_{i+1}), g(w_i w_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q+3i); \\ i = 1, 3, 5, ..., n-2 \\ gcd(p+q+3i+2, p+q+3i); \\ i = 2, 4, 6, ..., n-3 \\ gcd(p+q+3n-3, p+q+3n-1); i = n-1 \end{cases}
$$

$$
gcd(g(w_{i+1}), g(w_i w_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q+3i); & i = 1, 3, 5, ..., n-2 \\ gcd(p+q+3i+2, p+q+3i); & i = 2, 4, 6, ..., n-3 \\ gcd(p+q+3i, p+q+3i+2); & i = n-1 \\ & i = n-1 \end{cases}
$$

Therefore, for any edge $uv \in E_1$ which is not in *G*, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. Hence $G\hat{O}W_n$ is an edge vertex prime labeling,

where G ($G \neq P_m$ and W_4).

 \Box

The above theorem is not applicable for G ($G \neq P_m$ and *W*4). But, first we apply Jagadesh et. al.,[4] proved that if $G = W_n$ is an edge vertex prime labeling, then there exist a graph from the class $W_n\hat{O}P_m$ that admits edge vertex prime labeling.

Next, consider a graph $G = W_4 \hat{O}W_5$. Then $V(G) = \{u, u_i, v_j :$ $1 \le i \le 4, 1 \le j \le 5$ } and $E(G) = \{uu_i, uv_j : 1 \le i \le 4, 1 \le j$ $j \le 5$. Also, $|V(G)| = 10$ and $|E(G)| = 18$. Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., 28\}$ by $f(u) = 1, f(u_1) = 3, f(u_2) = 5, f(u_3) = 9, f(u_4) = 11,$ $f(uu_1) = 2, f(uu_2) = 6, f(uu_3) = 8, f(uu_4) = 12,$ $f(u_1u_2) = 4, f(u_2u_3) = 7, f(u_3u_4) = 10, f(u_1u_4) = 13,$ $f(v_1) = 15$, $f(v_2) = 17$, $f(v_3) = 19$, $f(v_4) = 21$, $f(v_5) = 23$, $f(v_1v_2) = 16, f(v_2v_3) = 18, f(v_3v_4) = 20, f(v_4v_5) = 22,$ $f(v_1v_5) = 14, f(uv_1) = 28, f(uv_2) = 24, f(uv_3) = 25,$ $f(uv_4) = 26$, $f(uv_5) = 27$. Clearly, for any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Hence $G = W_4 \hat{O}W_5$ is an edge vertex prime labeling.

Theorem 2.2. *If G*(*p*,*q*) *has an edge vertex prime labeling with* $p + q$ *is odd, then there exists a graph from the class* $G\hat{O}f_n$ that admits edge vertex prime labeling.

Proof. Let $G(p,q)$ be an edge vertex prime labeling graph when $p + q$ is odd with bijective function $f : V(G) \cup E(G) \rightarrow$ $\{1,2,...,p+q\}$ with the property that given any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Consider the graph f_n with vertex set $\{w, w_i :$ 1 ≤ *i* ≤ *n*} and edge set {*ww_i* : 1 ≤ *i* ≤ *n*}∪{*w_iw_{i+1}* : 1 ≤ $i \leq n-1$ }. We superimpose one of the vertex say, *w* of f_n on selected vertex v_1 in *G*. Now, we define new graph G_1 = *GÔ f_n* with vertex set $V_1 = V \bigcup \{w, w_i : 1 \le i \le n\}$ and edge set $E_1 = E \bigcup \{ww_i : 1 \le i \le n\} \bigcup \{w_iw_{i+1} : 1 \le i \le n-1\}.$ Define a bijective function $g: V_1 \cup E_1 \rightarrow \{1, 2, ..., p+q, p+\}$ *q* + 1,..., *p* + *q* + 3*n*} by *g*(*v*) = *f*(*v*) for all *v* \in *V*(*G*) and $g(uv) = f(uv)$ for all $uv \in E(G)$,

$$
g(w) = 1
$$

\n
$$
g(w_i) = \begin{cases} p+q+3i-1; & i \text{ is odd} \\ p+q+3i-2; & i \text{ is even} \end{cases}
$$

\n
$$
g(ww_i) = \begin{cases} p+q+3i-2; & i \text{ is odd} \\ p+q+3i-1; & i \text{ is even} \end{cases}
$$

$$
g(w_iw_{i+1}) = p + q + 3i, \forall i
$$

We have to prove that G_1 is an edge vertex prime labeling. Already, *G* is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in *G*, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. (i) For any edge $ww_i \in E_1$ $(1 \le i \le n)$,

$$
gcd(g(w), g(w_i)) = \begin{cases} gcd(1, p+q+3i-1); & i \text{ is odd} \\ gcd(1, p+q+3i-2); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w), g(ww_i)) = \begin{cases} gcd(1, p+q+3i-2); & i \text{ is odd} \\ gcd(1, p+q+3i-1); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w_i), g(ww_i)) = \begin{cases} gcd(p+q+3i-1, p+q+3i-2); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i-1); & i \text{ is even} \end{cases}
$$

= 1

(ii) For any edge
$$
w_iw_{i+1} \in E_1
$$
 $(1 \le i \le n - 1)$,
\n
$$
gcd(g(w_i), g(w_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i+1); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i+2); & i \text{ is even} \end{cases}
$$

$$
gcd(g(w_i), g(w_iw_{i+1})) = \begin{cases} gcd(p+q+3i-1, p+q+3i); & i \text{ is odd} \\ gcd(p+q+3i-2, p+q+3i); & i \text{ is even} \end{cases}
$$

 $= 1$

$$
= 1
$$

\n
$$
gcd(g(w_{i+1}), g(w_i w_{i+1})) = \begin{cases} gcd(p+q+3i+1, p+q+3i); & i \text{ is odd} \\ gcd(p+q+3i+2, p+q+3i); & i \text{ is even} \\ = 1 \end{cases}
$$

Therefore, for any edge $uv \in E_1$ which is not in *G*, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. Hence there exists a graph from the class $G\hat{O}f_n$ admits edge vertex prime labeling. \Box

The *planter graph* R_n ($n \geq 3$) can be constructed by joining fan graph f_n ($n \ge 2$) and cycle C_n , ($n \ge 3$) with sharing a common vertex, where *n* is any positive integer, that is $R_n = f_n \hat{O} C_n$

Corollary 2.3. *The planter graph* R_n ($n \geq 3$) *admits edge vertex prime labeling graph, where n is any positive integer.*

Theorem 2.4. *If G*(*p*,*q*) *has an edge vertex prime labeling with* $p + q$ *is odd, then there exists a graph from the class* $G\hat{O}F_n$ *that admits edge vertex prime labeling.*

Proof. Let *G*(*p*,*q*) be an edge vertex prime labeling graph when $p + q$ is odd with bijective function $f : V(G) \cup E(G) \rightarrow$ $\{1,2,...,p+q\}$ with the property that given any edge

 $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Consider the graph F_n with vertex set $\{w, w_i :$ 1 ≤ *i* ≤ 2*n*} and edge set {*ww_i* : 1 ≤ *i* ≤ 2*n*}∪{*w*_{2*i*-1*w*_{2*i*} :} $1 \leq i \leq n$. We superimpose one of the vertex say *w* of F_n on selected vertex v_1 in *G*. Now, we define new graph $G_1 = G\hat{O}F_n$ with vertex set $V_1 = V \bigcup \{w, w_i : 1 \le i \le 2n\}$ and edge set $E_1 = E \bigcup \{ww_i : 1 \le i \le 2n\} \bigcup \{w_{2i-1}w_{2i} : 1 \le i \le n\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow \{1, 2, 3, ..., p+q, p+\}$ *q*+1,..., *p*+*q*+5*n*+1} by *g*(*v*) = *f*(*v*) for all *v* ∈ *V*(*G*) and $g(uv) = f(uv)$ for all $uv \in E(G)$,

$$
g(w)=1,
$$

$$
g(w_{2i-1}) = \begin{cases} p+q+5i-3; & i \text{ is odd} \\ p+q+5i-4; & i \text{ is even} \end{cases}
$$

$$
g(w_{2i}) = \begin{cases} p+q+5i-1; & i \text{ is odd} \\ p+q+5i; & i \text{ is even} \end{cases}
$$

$$
g(ww_{2i-1}) = \begin{cases} p+q+5i-4; & i \text{ is odd} \\ p+q+5i-3; & i \text{ is even} \end{cases}
$$

$$
g(ww_{2i}) = \begin{cases} p+q+5i; & i \text{ is odd} \\ p+q+5i-1; & i \text{ is even} \end{cases}
$$

$$
g(w_{2i-1}w_{2i}) = p+q+5i-2, \forall i
$$

We have to prove that G_1 is an edge vertex prime labeling. Already, *G* is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in *G*, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. Now, our claims are (i) $g(w), g(w_{2i-1})$ and $g(ww_{2i-1}),$ (ii) $g(w), g(w_{2i})$ and $g(ww_{2i})$, (iii) $g(w_{2i-1})$, $g(w_{2i})$ and $g(w_{2i-1}w_{2i})$ are pairwise relatively prime.

(i) For any edge $ww_i \in E_1$ $(1 \le i \le 2n)$,

$$
gcd(g(w), g(w_{2i-1})) = \begin{cases} gcd(1, p+q+5i-3); & i \text{ is odd} \\ gcd(1, p+q+5i-4); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w), g(ww_{2i-1})) = \begin{cases} gcd(1, p+q+5i-4); & i \text{ is odd} \\ gcd(1, p+q+5i-3); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w_{2i-1}), g(ww_{2i-1})) = \begin{cases} gcd(p+q+5i-3, p+q+5i-4); & i \text{ is odd} \\ gcd(p+q+5i-4, p+q+5i-3); & i \text{ is even} \end{cases}
$$

= 1

(ii)

$$
gcd(g(w), g(w_{2i})) = \begin{cases} gcd(1, p+q+5i-1); & i \text{ is odd} \\ gcd(1, p+q+5i); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w), g(ww_{2i})) = \begin{cases} gcd(1, p+q+5i); & i \text{ is odd} \\ gcd(1, p+q+5i-1); & i \text{ is even} \end{cases}
$$

= 1

$$
gcd(g(w_{2i}), g(ww_{2i})) = \begin{cases} gcd(p+q+5i-1, p+q+5i); & i \text{ is odd} \\ gcd(p+q+5i, p+q+5i-1); & i \text{ is even} \end{cases}
$$

= 1

 (iii)

 $gcd(g(w_{2i-1}), g(w_{2i})) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ *gcd*(*p*+*q*+5*i*−3, *p*+*q*+5*i*−1); *i* is odd *gcd*(*p*+*q*+5*i*−4, *p*+*q*+5*i*); *i* is even $= 1$ $gcd(g(w_{2i-1}), g(w_{2i-1}w_{2i})) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ *gcd*(*p*+*q*+5*i*−3, *p*+*q*+ 5*i*−2);*i* is odd *gcd*(*p*+*q*+5*i*−4, *p*+*q*+ 5*i*−2);*i* is even $= 1$ $gcd(g(w_{2i}), g(w_{2i-1}w_{2i})) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ *gcd*(*p*+*q*+5*i*−1, *p*+*q*+ 5*i*−2);*i* is odd $gcd(p+q+5i, p+q+5i-2);$ *i* is even $= 1$

Therefore, for any edge $uv \in E_1$, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. Hence there exists a graph from the class $G\hat{O}F_n$ admits edge vertex prime labeling.

Theorem 2.5. *If G*(*p*,*q*) *has an edge vertex prime labeling with* $p + q$ *is even, then there exists a graph from the class* $G\hat{O}P_n$ that admits edge vertex prime labeling.

Proof. Let $G(p,q)$ be an edge vertex prime labeling graph when $p + q$ is even with bijective function $f : V(G) \cup E(G) \rightarrow$ $\{1,2,3,..., p+q\}$ with the property that given any edge $uv \in$ $E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Consider the graph P_n with vertex set $\{w_i: 1 \leq j \leq n\}$ $i \leq n$ } and edge set $\{w_i w_{i+1} : 1 \leq i \leq n-1\}$. We superimpose one of the vertex say w_1 of P_n on selected vertex v_1 in *G*. Now, we define a new graph $G_1 = G\hat{O}P_n$ with vertex set $V_1 = V \bigcup \{w_i : 2 \leq i \leq n\}$ and edge set $E_1 = E \bigcup \{w_i w_{i+1} :$ 1 ≤ *i* ≤ *n* − 1}. Define a bijective function *g* : $V_1 \cup E_1 \rightarrow$ $\{1,2,3,..., p+q, p+q+1,..., p+q+2n-2\}$ by $g(v) = f(v)$, for all $v \in V$ and $g(uv) = f(uv)$, for all $uv \in E(G)$, $g(w_1) = 1$, $g(w_i) = p + q + 2n + 1 - 2i$ for $2 \le i \le n$, $g(w_iw_{i+1}) = p +$ *q* + 2*n* − 2*i* for $1 \le i \le n-1$. For any edge $w_i w_{i+1}$ ∈ E_1 (2 ≤ *i* ≤ *n* − 1), $gcd(g(w_1), g(w_2)) = gcd(1, p+q+2n-3) = 1$, $gcd(g(w_1), g(w_1w_2)) = gcd(1, p+q+2n-2) = 1,$ $gcd(g(w_2), g(w_1w_2)) = gcd(p+q+2n-3, p+q+2n-2) =$ $1, \gcd(g(w_i), g(w_{i+1})) = \gcd(p+q+2n+1-2i, p+q+2n-1)$ $2i-1$) = 1, $gcd(g(w_i), g(w_iw_{i+1})) = gcd(p+q+2n+1 2i, p+q+2n-2i) = 1$, $gcd(g(w_{i+1}), g(w_iw_{i+1})) = gcd(p+1)$ *q* + 2*n* − 2*i* − 1, *p* + *q* + 2*n* − 2*i*) = 1. Therefore, for any edge $uv \in E_1$, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. Hence $G\hat{O}P_n$ admits edge vertex prime labeling. \Box

Corollary 2.6. *The graph* $C_l\hat{O}K_{1,m}\hat{O}P_n$ *is an edge vertex prime labeling.*

Proof. Let $G = C_l \hat{O} K_{1,m} \hat{O} P_n$ be a graph. Then $V(G) = \{u_i :$ $1 \le i \le l$ } $\bigcup \{v, v_j : 1 \le j \le m\}$ $\bigcup \{w_k : 1 \le k \le n\}$ and $E(G) =$ $\{u_iu_{i+1}: 1 \le i \le l-1\} \cup \{u_1u_l\} \cup \{u_1v_j: 1 \le j \le m\} \cup$ $\{u_1w_{n-1}\}\bigcup\{w_kw_{k+1}: 1 \leq k \leq n-2\}$. Also, $|V(G)| = l+m+1$ $n-1$ and $|E(G)| = l + m + n - 1$. We superimpose two of the vertices say, *v* of $K_{1,m}$ and w_n of P_n on selected vertex *u*₁ in *C*_{*l*}. Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2,3,...,2(l+m+n-1)\}$ by $f(u_1) = f(v) = f(w_n) = 1$, *f*(*u*_{*i*}) = 2*i* − 1 for 2 ≤ *i* ≤ *l*, *f*(*u*_{*i*}*u*_{*i*+1}) = 2*i* for 1 ≤ *i* ≤ *l* − 1, $f(u_1u_1) = 2l$, $f(v_j) = 2l + 2j - 1$ for $1 \le j \le m$, $f(u_1v_j) =$ 2*l* + 2*j* for $1 \le j \le m$, $f(w_k) = 2(l + m + k) - 1$ for $1 \le k \le$ *n*−1, $f(w_k w_{k+1}) = 2(l+m+k)$ for $1 \le k \le n-1$. Clearly, for any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Hence $G = C_l \hat{O} K_{1,m} \hat{O} P_n$ admits edge vertex prime labeling. \Box

Parmer [5] proved that f_m is an edge vertex prime labeling . Jagadesh, Baskar Babujee [4] proved that if *G* has an edge vertex prime labeling, then there exist a graph from the class $G\hat{O}P_n$ admits edge vertex prime labeling.

An *Umbrella graph* $U(m, n)$ is the graph obtained by joining a path P_n with the central vertex of a fan f_m .

Corollary 2.7. *The Umbrella graph U*(*m*,*n*) *is an edge vertex prime labeling.*

Theorem 2.8. *If G has an edge vertex prime labeling with* $p+q$ is even, then there exists a graph from the class \hat{GOC}_3 *that admits edge vertex prime labeling.*

Proof. Let *G*(*p*,*q*) be an edge vertex prime labeling graph when $p+q$ is even with bijective function from $f: V(G) \cup E(G)$ \rightarrow {1,2,3,..., *p* + *q*} with the property that given any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Consider the graph C_3 with vertex set $\{w_1, w_2, w_3\}$ and edge set $\{w_1w_2, w_2w_3, w_3w_1\}$. We superimpose one of the vertex say w_1 of C_3 on selected vertex v_1 in G . Now, we define new graph $G_1 = G\hat{O}C_3$ with vertex set $V_1 = V \cup \{w_1, w_2, w_3\}$ and edge set $E_1 = E \bigcup \{w_1w_2, w_2w_3, w_3w_1\}$. Define a bijective function $g: V_1 \cup E_1 \to \{1, 2, 3, ..., p + q, p + q + 1, p + q\}$ $q+2, p+q+3$ by $g(v) = f(v)$ for all $v \in V(G)$ and $g(uv) =$ *f*(*uv*) for all $uv \in E(G)$, $g(w_1) = 1$, $g(w_2) = p + q + 1$, $g(w_3) = 1$

 $p+q+3$, $g(w_1w_2) = p+q+2$, $g(w_2w_3) = p+q+5$ and $g(w_1w_3) = p + q + 4$. We have to prove that G_1 is an edge vertex prime labeling. Already, *G* is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$ which is not in *G*, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. For any edge $w_iw_{i+1} \leq E_1$, $gcd(g(w_1), g(w_2)) =$ $gcd(1, p+q+1) = 1, gcd(g(w_1), g(w_1w_2)) = gcd(1, p+q+1)$ $2) = 1$, $gcd(g(w_2), g(w_1w_2)) = gcd(p+q+1, p+q+2) = 1$, $gcd(g(w_2), g(w_3)) = gcd(p+q+1, p+q+3) = 1,$ $gcd(g(w_2), g(w_2w_3)) = gcd(p+q+1, p+q+5) = 1,$ $gcd(g(w_3), g(w_2w_3)) = gcd(p+q+3, p+q+5) = 1,$ $gcd(g(w_1), g(w_3)) = gcd(1, p+q+3) = 1,$ $gcd(g(w_1), g(w_1w_3)) = gcd(1, p+q+4) = 1,$ $gcd(g(w_3), g(w_1w_3)) = gcd(p+q+3, p+q+4) = 1.$

Therefore, for any edge $uv \in E_1$, the numbers $g(u)$, $g(v)$ and $g(uv)$ are pairwise relatively prime. Hence there exists a graph from the class $G\hat{O}C_3$ admits edge vertex prime labeling. \Box

Theorem 2.9. *The crown graphCn*.*K*¹ *is an edge vertex prime labeling, where n is a positive integer.*

Proof. Let $G = C_n.K_1$ be a graph. The degree of the vertices of a crown graph is either 3 or 1. Consider u_1, u_2, \ldots, u_n be the vertices with degree 3 and $v_1, v_2, ..., v_n$ be the vertices with degree 1. The edges of the crown graph are $\{u_i v_i : 1 \le i \le n\}$ n } $\bigcup \{u_i u_{i+1} : 1 \le i \le n-1\} \bigcup \{u_1 u_n\}$. Here $|V(G)| = 2n$ and $|E(G)| = 2n$. Define a bijective function $f: V(G) \cup E(G) \rightarrow$ {1,2,...,4*n*}. For any edge $1 \le i \le \lfloor \frac{n}{2} \rfloor - 2$, $f(u_{3i-2}) = 12i -$ 11, *f*(*v*3*i*−2) = 12*i*−9, *f*(*u*3*i*−1) = 12*i*−7, *f*(*v*3*i*−1) = 12*i*−5, $f(u_{3i-2}u_{3i-1}) = 12i-8, f(u_{3i-1}u_{3i}) = 12i-4,$ $f(u_{3i-2}v_{3i-2}) = 12i - 10, f(u_{3i-1}v_{3i-1}) = 12i - 6,$ $f(u_{3i}v_{3i}) = 12i - 2.$ Consider the following cases. Case (i). When *n* is even. For each $1 \le i \le \lfloor \frac{n}{2} \rfloor - 3$, $f(u_{3i}) = 12i - 1$, $f(v_{3i}) = 12i - 3$. **Case (ii).** When n is odd. For each $1 \le i \le \lfloor \frac{n}{2} \rfloor - 2$, $f(u_{3i}) = 12i - 1$, $f(v_{3i}) = 12i - 3$, $f(u_1u_n) = 4n$. Next, we show that the edge vertex prime labeling. $gcd(f(u_1), f(u_n)) = gcd(1, 4n-3) = 1$, $gcd(f(u_1), f(u_1u_n)) = gcd(1, 4n) = 1,$ $gcd(f(u_n), f(u_1u_n)) = gcd(4n-3, 4n) = 1,$ $gcd(f(u_{3i-2}), f(u_{3i-1})) = gcd(12i-11, 12i-7) = 1,$ $gcd(f(u_{3i-2}), f(u_{3i-2}u_{3i-1})) = gcd(12i-11, 12i-8) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i-2}u_{3i-1})) = gcd(12i-7, 12i-8) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i})) = gcd(12i-7, 12i-1) = 1,$ $gcd(f(u_{3i-1}), f(u_{3i-1}u_{3i})) = gcd(12i-7, 12i-4) = 1$, $gcd(f(u_{3i}), f(u_{3i-1}u_{3i})) = gcd(12i-1, 12i-4) = 1,$ $gcd(f(u_{3i-2}), f(v_{3i-2})) = gcd(12i-11, 12i-9) = 1,$ $gcd(f(u_{3i-2}), f(u_{3i-2}v_{3i-2})) = gcd(12i-11, 12i-10) = 1,$ $gcd(f(v_{3i-2}), f(u_{3i-2}v_{3i-2})) = gcd(12i-9, 12i-10) = 1,$ $gcd(f(u_{3i-1}), f(v_{3i-1})) = gcd(12i-7, 12i-5) = 1$, $gcd(f(u_{3i-1}), f(u_{3i-1}v_{3i-1})) = gcd(12i-7, 12i-6) = 1,$ $gcd(f(v_{3i-1}), f(u_{3i-1}v_{3i-1})) = gcd(12i-5, 12i-6) = 1,$ $gcd(f(u_{3i}), f(v_{3i}) = gcd(12i-1, 12i-3) = 1,$ $gcd(f(u_{3i}), f(u_{3i}v_{3i})) = gcd(12i-1, 12i-2) = 1$,

 $gcd(f(v_{3i}), f(u_{3i}v_{3i})) = gcd(12i-3, 12i-2) = 1.$ Therefore, for any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Hence the crown graph C_n . K_1 is an edge vertex prime labeling. \Box

Theorem 2.10. *The graph* $C_n \bigcup C_n \bigcup C_n$, $n \geq 3$ *and* $n \equiv 0 \pmod{3}$ *is an edge vertex prime labeling.*

Proof. Let $G = C_n \bigcup C_n \bigcup C_n$, $n \geq 3$ and $n \equiv 0 \pmod{3}$ be a graph. Then $V(G) = \{v_i : 1 \le i \le 3n\}$ and $E(G) = \{v_i v_{i+1} :$ 1 ≤ *i* ≤ *n* − 1} $\bigcup \{v_1v_n\} \bigcup \{v_iv_{i+1} : n+1 \le i \le 2n-1\} \bigcup$ $\{v_{n+1}v_{2n}\}\bigcup\{v_iv_{i+1}: 2n+1 \le i \le 3n-1\}\bigcup\{v_{2n+1}v_{3n}\}.$ Also, $|V(G)| = 3n$ and $|E(G)| = 3n$. Define a bijective function $f: V(G) \cup E(G) \to \{1, 2, 3, ..., 6n\}$ as follows.

Case 1. $n \equiv 0 \pmod{3}$ and *n* is not congruent to 6 modulo 15.

f(*v*_{*i*}) = 2*i* − 1 for $1 \le i \le 3n$, $f(v_i v_{i+1}) = 2i$ for $1 \le i \le n-1$, $f(v_1v_n) = 2n$, $f(v_{n+1}v_{2n}) = 4n$, $f(v_iv_{i+1}) = 2i$ for $n+1 \leq$ *i* ≤ 2*n* − 1, $f(v_{2n+1}v_{3n}) = 6n$, $f(v_iv_{i+1}) = 2i$ for $2n+1 \le i \le$ 3*n*−1.

Case 2. $n \equiv 6 \pmod{15}$.

f(*v*_{*i*}) = 2*i* − 1 for $1 \le i \le 2n$, $f(v_{2n+1}) = 4n+3$, $f(v_{2n+2}) =$ $4n + 1$, $f(v_i) = 2i$ for $2n + 3 \le i \le 3n$, $f(v_i v_{i+1}) = 2i$ for 1 ≤ *i* ≤ *n*−1, *f*(*v*1*vn*) = 2*n*, *f*(*vn*+1*v*2*n*) = 4*n*, *f*(*vivi*+1) = 2*i* for *n* + 1 ≤ *i* ≤ 2*n* − 1, $f(v_{2n+1}v_{3n}) = 6n$, $f(v_iv_{i+1}) = 2i$ for $2n + 1 \leq i \leq 3n - 1$. Clearly, for any edge $uv \in E(G)$, the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Hence $G = C_n \bigcup C_n \bigcup C_n$, $n \ge 3$ and $n \equiv 0 \pmod{3}$ is an edge vertex prime labeling. \Box

Theorem 2.11. *The graph* $C_n \cup C_n \cup ... \cup C_n$ *n* $n \equiv 0 \pmod{5}$ *is an edge vertex prime labeling.*

Proof. Let $G = C_n \bigcup C_n \bigcup ... \bigcup C_n$, $n \equiv 0 \pmod{5}$ be a graph. Then $V(G) = \{v_{ij} : 1 \le i \le m, 1 \le j \le 5\}$ and $E(G) = \{v_{ij}v_{ij+1} : 1 \le i \le m, 1 \le j \le 5\}$ $1 \le i \le m, 1 \le j \le 4$ } $\bigcup \{v_{i5}v_{i1} : 1 \le i \le m\}$. Also, $|V(G)| =$ 5*m* and $|E(G)| = 5m$. Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., 10m\}$ by $f(v_{ij}v_{ij+1}) = 10(i -$ 1) + 2*j* for $1 \le i \le m, 1 \le j \le 4$, $f(v_i, v_i) = 10(i-1) +$ 2*n* for $1 \le i \le m$, $f(v_{ii}) = 10(i-1) + 2j - 1$ for $1 \le i \le$ *m*, 1 ≤ *j* ≤ 5. Clearly, for any edge *uv* ∈ *E*(*G*), the numbers $f(u)$, $f(v)$ and $f(uv)$ are pairwise relatively prime. Hence $G =$ $C_n \cup C_n \cup ... \cup C_n$, $n \equiv 0 \pmod{5}$ is an edge vertex prime labeling. \Box

References

- [1] R. Balakrishnan and K. Ranganathan, Text Book of Graph Theory, *Second Edition, Springer, New York*, (2012).
- [2] J. A. Gallian, A Dynamic Survey of Graph Labeling, *Electronic Journal of Combinatorics,* (2015), DS6.
- [3] R. Jagadesh and J. Baskar Babujee, Edge Vertex Prime Labeling for some class of Graphs, *National Conference on Recent Trends in Mathematics and its Applications, SRM University, Vadapalani, Chennai, India.* (2017), 24– 25.

- [4] R. Jagadesh and J. Baskar Babujee, On Edge Vertex Prime Labeling, *International Journal of Pure and Applied Mathematics,* 114(2017), 209–218.
- [5] Y. Parmar, Edge Vertex Prime Labeling for Wheel, Fan and Friendship Graph, *International Journal of Mathematics and Statistics Invention,* 5(2017), 23–29.
- [6] Y. Parmar, Vertex Prime Labeling for *K*2,*ⁿ* and *K*3,*ⁿ* Graphs, *Mathematical Journal of Interdisciplinary Sciences,* 6(2018), 167–180.
- [7] A. Tout, A. N. Dabboucy and K. Howalla, Prime Labeling of Graphs, *National Academy Science, Letters,* 11(1982), 365–368.
- [8] M. Simaringa, S. Muthukumaran, Edge Vertex Prime Labeling of Some Graphs, *Malaya Journal of Matematik,* 7(2)(2019), 264–268.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

