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Numerical solution of time fractional non-linear
neutral delay differential equations of fourth-order
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Abstract
In this paper, we present a numerical technique for the solution of a class of time fractional nonlinear neutral
delay sub-diffusion differential equation of fourth order with variable coefficients. We constructed a numerical
scheme which is of second-order convergence in time and is based on L2-1σ formula for the temporal variable.
The stability of the scheme is proved using discrete energy method considering several auxiliary assumptions
and then we showed that our scheme is convergent in L2 norm with convergence order O(τ2 +h4), where τ and h
are temporal and space mesh sizes respectively. In the end, we provide some numerical experiments to validate
the theoretical results.
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1. Introduction
Differential equations involving fractional order deriva-

tives are useful in the modeling of the various physical phe-
nomenon in many significant scientific areas and the ability
of non-integer order models in comparison with integer or-
der models in describing the various physical phenomenon
is more accurate. These days, the interest of scientists and
researches has grown with Fractional Partial Differential Equa-
tions (FPDEs) in the areas of medicine, control systems, in
physics, signal processing and so on [1]-[12]. Since the analyt-
ical solutions for fractional partial differential equations with
delay are not so easy to obtain, therefore, it becomes necessary
to look for efficient numerical schemes. Various numerical

methods and existence and uniqueness theory of Fractional
Differential Equations (FDEs) have been studied extensively
by researchers in last few years and their study comprises of
numerical methods such as Finite Difference, Finite Volume,
Finite Element, Weighted residual method, Spectral methods,
Hybrid methods, discontinuous Galerkin method and so on
[7]-[13] and the reader can also refer to the references therein.
Nevertheless, relatively less work has been done using neu-
tral delay partial differential equations. Fractional derivative
term is represented in the sense of Caputo fractional deriva-
tive (0 < α < 1), where α is the order of fractional deriva-
tive considered in the present paper. Initially, Caputo frac-
tional derivative was approximated by using L1− f ormula
[11], which gives temporal order of convergence O(τ2−α) for
α ∈ (0,1). Recently, Alikhanov [8] introduced a new analog
for Caputo fractional derivative which improves the temporal
convergence order to O(τ3−α) for α ∈ (0,1). Therefore, in
the present paper, we seek to implement the L2−1σ formula
introduced by Alikhanov [8] in construction of our compact
difference scheme for fourth-order neutral delay partial differ-
ential equations and compact difference operator is used to
obtain the spatial convergence of order O(h4), here τ and h
are temporal and space mesh sizes respectively.
The proposed difference scheme in our paper is new for the
fourth-order neutral delay fractional differential equations
with variable coefficients and have temporal convergence or-
der as O(τ3−α) which is more efficient than with using L1-
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formula.
Rest of the manuscript is organized as follows: in next sec-

tion definitions, various lemmas are presented to be used for
the construction of the proposed compact difference scheme.
Then, in the next section proposed scheme is analyzed in
terms of unique solvability, stability, and convergence. In
the end, numerical experimentation and conclusions are pre-
sented clearly demonstrating the validity of theoretically and
numerical results.

Consider the generalized fourth order non-linear fractional
sub-diffusion neutral delayed equation with variable coeffi-
cients

∂ α u(x, t)
∂ tα

+A(x)
∂ 4u(x, t)

∂x4 +B(x)
∂ 4u(x, t− s)

∂x4

= f (x, t,u(x, t),u(x, t− s)), 0 < x < L, 0 < t < T.
(1.1)

Initial and boundary conditions are as follows:

u(x, t) = φ(x, t), 0≤ x≤ L, t ∈ [−s,0], (1.2)
u(0, t) = α1(t), u(L, t) = α2(t), 0≤ t ≤ T, (1.3)

∂ 2u(0, t)
∂x2 = β1(t),

∂ 2u(L, t)
∂x2 = β2(t),0≤ t ≤ T.

(1.4)

Here s > 0 is delay, f (x, t,u(x, t),u(x, t− s)) stands for non-
linear delayed source term, A(x), B(x), φ(x, t), α1(t), α2(t),
β1(t), β2(t) are all given and sufficiently smooth functions.
Fractional derivative ∂ α u(x,t)

∂ tα is considered in Caputo sense as
follows:

C
0 Dα

t u(x, t)≡ ∂ α u(x, t)
∂ tα

=
∫ t

0
(t−ξ )−α ∂u(x,ξ )

∂ξ
d ξ ,

0 < α < 1. (1.5)

In equation (1.1), we have two type of complexities one is
delay term and second is non-linear source term. Here, we
seek to obtain a linearized numerical scheme for (1.1)− (1.4)
which is uniquely solvable, stable and convergent. Through-
out the paper, we consider that the obtained solution u(x, t)
along with source function f (x, t,µ,ν) are sufficiently smooth
likewise considered in [13] in the following sense:

• Let m be the integer satisfying ms≤ T ≤ (m+1)s. De-
fine Ir = (rs,(r+1)s), r = -1, 0, ..., m-1, Im = (ms,T ),
I =

⋃
q=−1 Iq and assume that u(x, t) ∈ C8,3([0,L]×

(0,T ]),

• the partial derivatives fµ(x, t,µ,ν) and fν(x, t,µ,ν) are
continuous in the ε0 neighborhood of the solution. De-
fine
c1 = sup | fµ(x, t,µ,ν)+ ε1,u(x, t− s)+ ε2|
c2 = sup | fν(x, t,µ,ν)+ ε1,u(x, t− s)+ ε2|

2. Notations and Preliminaries
We first divide the region Ω× [−s,T ], where Ω = [a,b].

Define Ωh = {x j = a+ j h| j = 1,2, ...,M}, where h= b−a
M and

Ωt = {tk =(k−1+σ)τ :−n≤ k≤N}, where, τ = s
n and σ =

1− α

2 . Define Ωht = Ωh×Ωt , where, Ωh = {x j|0≤ j ≤M},
Ωt = {tk|−n≤ k≤N} and N = [T

τ
]. Uk−1+σ

j = u(x j, tk−1+σ ).

V k−1+σ

j =
∂ 2u(x j ,tk−1+σ )

∂x2 . Consider the grid function space
V = {uk−1+σ

j |0≤ j ≤M,−n≤ k ≤ N} defined on Ωht .

Definition 2.1. The compact linear operator is given as fol-
lows:

(ℜu) j =

{ 1
12 (u j+1 +10u j +u j−1), 1≤ j ≤M−1,

u j, j = 0, or M.

.

Definition 2.2. Alikhanov [8] constructed a new second-
order difference analog for the Caputo-fractional deriva-
tive (called L2− 1σ ) formula. For definition follow [8].
a0 = σ1−α , al = (l +σ)1−α − (l−1+σ)1−α , l ≥ 1,
bl =

1
2−α

[(l+σ)2−α−(l−1+σ)2−α ]− 1
2 [(l+σ)1−α +(l−

1+σ)1−α ], l ≥ 1,
when k = 0, denote c(k)0 = a0
when k ≥ 1

c(k)j =

{ a0 +b1, k = 0,
ak +bk+1−bk, 1≤ j ≤ k−2,

ak−bk, j = k−1.
(2.1)

Given grid function u = {uk|−n≤ k ≤ N}, defining

C
0 Dα

t uk−1+σ

j =
τ−α

Γ(2−α)

[
c(k)0 uk−

k−1

∑
j=1

(c(k)k− j−1− c(k)k− j)u
j

− c(k)k−1u0

]
. (2.2)

as the discrete fractional derivative operator, i.e., L2− 1σ

formula. Γ(·) denotes the Gamma function. Alikhnov [8]
estimated the error of the L2−1σ formula to approximate the
Caputo fractional derivative and provided the below Lemma.

Lemma 2.3. [8] Suppose u(t) ∈C3[0, tk], it holds that

∣∣∣∣∣C0 Dα
t u(t)|t=tk−1+σ

−C
0 Dα

t uk−1+σ

j

∣∣∣∣∣
≤ (4σ −1)σ−α

12Γ(2−α)
max

t0≤t≤tk
|u(3)(t)|τ(3−α). (2.3)

Then the basic properties of the difference operator were
derived.

580



Numerical solution of time fractional non-linear neutral delay differential equations of fourth-order — 581/589

Lemma 2.4. [8] Suppose α ∈ (0,1), σ = 1− α

2 , and c(k)j (0≤
j ≤ k−1) is defined by (2.1), it holds that

c(k)j >
1−α

2
(k+σ)−α , (2.4)

c(k)0 > c(k)1 > c(k)2 ... > c(k)k−2 > c(k)k−1. (2.5)

Furthermore, there is an important estimate for the second-
order operator, which will play a key role in the analysis of
the stability and convergence of our scheme.

Lemma 2.5. [8] Suppose u = {uk| − n ≤ k ≤ N} is a grid
function defined on Ωτ , then it holds that

(σuk +(1−σ)uk−1)C0 Dα
tk−1+σ

u ≥ 1
2

C
0 Dα

tk−1+σ
(u2).

(2.6)

Lemma 2.6. [8] Denote λ (t) = (1− t)3[5− 3(1− t)2] and
let function g(x) ∈C6[0,L]. It holds that

ℜg′′(x j) = δ
2
x g(x j)

+
h4

360

∫ 1

0
[g(6)(x j− th)+g(6)(x j + th)]λ (t)d t,

1≤ j ≤M−1. (2.7)

Now, we will begin with the construction of the compact
scheme for considered equation (1.1) and boundary condi-
tions (1.2)− (1.4) by reduced order method, that is by consid-

ering v(x, t) = ∂ 2u(x,t)
∂x2 and v(x, t− s) = ∂ 2u(x,t−s)

∂x2 , then, equa-
tions (1.1)− (1.4) are equivalent to

∂ α u(x, t)
∂ tα

+A(x)
∂ 2v(x, t)

∂x2 +B(x)
∂ 2v(x, t− s)

∂x2

= f (x, t,u(x, t),u(x, t− s)), 0 < x < L, 0 < t < T,
(2.8)

v(x, t) =
∂ 2u(x, t)

∂x2 , v(x, t− s) =
∂ 2u(x, t− s)

∂x2 ,

0 < x < L, 0 < t < T, (2.9)
u(x, t) = φ(x, t), 0≤ x≤ L, t ∈ [−s,0], (2.10)
u(0, t) = α1(t), u(L, t) = α2(t), 0≤ t ≤ T, (2.11)
v(0, t) = β1(t), v(L, t) = β2(t), 0≤ t ≤ T. (2.12)

Define the grid functions
Uk

j = u(x j, tk),V k
j = v(x j, tk), and V k−n

j = v(x j, tk − n), 0 ≤
j ≤M,−n≤ k ≤ N.
Suppose u(x, t) ∈ C(8,3)

x,t ([0,L]× [−s,T ]), now, we consider
the (2.8)− (2.12) at the grid point (x j, tk−1+σ ), we have

∂ α u(x j, tk−1+σ )

∂ tα
+A(x j)

∂ 2v(x j, tk−1+σ )

∂x2

+B(x j)
∂ 2v(x j, tk−1+σ−n)

∂x2 = f (x j, tk−1+σ ,u(x j, tk−1+σ ),

u(x j, tk−1+σ−n)),0 < j < M,1≤ k ≤ N−1, (2.13)

v(x j, tk−1+σ ) =
∂ 2u(x j, tk−1+σ )

∂x2 , (2.14)

v(x j, tk−1+σ−n) =
∂ 2u(x j, tk−1+σ −n)

∂x2 . (2.15)

Applying the average operator ℜ on both sides of the (2.13) -
(2.15) gives

ℜ
∂ α u(x j, tk−1+σ )

∂ tα
+ℜA(x j)

∂ 2v(x j, tk−1+σ )

∂x2

+ℜB(x j)
∂ 2v(x j, tk−1+σ−n)

∂x2

= ℜ f (x j, tk−1+σ ,u(x j, tk−1+σ ),u(x j, tk−1+σ−n)),
(2.16)

ℜv(x j, tk−1+σ ) = ℜ
∂ 2u(x j, tk−1+σ )

∂x2 , (2.17)

ℜv(x j, tk−1+σ−n) = ℜ
∂ 2u(x j, tk−1+σ −n)

∂x2 , (2.18)

Using Taylor’s series following expressions can be easily
obtained

u(x j, tk−1+σ ) = σu(x j, tk)+(1−σ)u(x j, tk−1)

and Uk−1+σ

j = σUk
j +(1−σ)Uk−1

j

Linearizing the non-linear source term f (x, t,u(x, t),u(x, t−
s)) using Taylor’s series gives

f (x j, tk−1+σ ) = f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j

− (1−σ)Uk−1
j ,σUk−n

j +(1−σ)Uk−n−1
j )

Using Lemma [2.6], we have

ℜ
∂ 2u(x j, tk−1+σ )

∂x2 = σℜ
∂ 2u(x j, tk)

∂x2

+(1−σ)ℜ
∂ 2v(x j, tk−1)

∂x2

+O(τ2 +h4)

= δ
2
x Uk−1+σ

j +O(τ2 +h4) (2.19)

Similarly, we have
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v(x j, tk−1+σ ) =V k−1+σ

j +O(τ2) (2.20)

v(x j, tk−1+σ −n) =V k−1+σ−n
j +O(τ2) (2.21)

ℜ
∂ 2v(x j, tk−1+σ )

∂x2 = δ
2
x V k−1+σ

j +O(τ2 +h4) (2.22)

ℜ
∂ 2v(x j, tk−1+σ −n)

∂x2 = δ
2
x V k−1+σ−n

j +O(τ2 +h4)

(2.23)

We approximate the time fractional derivative by L2−1σ for-
mula, (2.2), applying Lemma [2.3], and substitute equations
(2.19)− (2.23) into (2.16)− (2.18); then, we obtain

ℜ
C
0 Dα

tk−1+σ
U j +A jδ

2
x V k−1+σ

j +B jδ
2
x V k−1+σ−n

j

= ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j

− (1−σ)Uk−1
j ,σUk−n

j +(1−σ)Uk−n−1
j )+(R1)

k
j,

(2.24)

ℜV k−1+σ

j = δ
2
x Uk−1+σ

j +(R2)
k
j, (2.25)

ℜV k−1+σ−n
j = δ

2
x Uk−1+σ−n

j +(R3)
k
j, (2.26)

1≤ j ≤M−1, 1≤ k ≤ N−1,

where

|(R1)
k
j|+ |(R2)

k
j|+ |(R3)

k
j| ≤ ĉ(τ3−α +h4), (2.27)

0≤ j ≤M, −n≤ k ≤ N.

where ĉ is a positive constant independent of τ and h.

Omitting the small terms Rk
1, Rk

2 and Rk
3 in (2.24)−(2.26),

respectively, and taking notice of initial and boundary condi-
tions

Uk
j = φ(x j, tk), 0≤ j ≤M, −n≤ k ≤ 0, (2.28)

Uk
0 = α1(tk), Uk

M = α2(tk), 1≤ k ≤ N, (2.29)

V k
0 = β1(tk), V k

M = β2(tk) 1≤ k ≤ N. (2.30)

We derive the finite difference scheme below for the problem
(1.1)− (1.4), by replacing Uk

j with uk
j and V k

j with vk
j as

follows:

ℜ
C
0 Dα

tk−1+σ
u j +A jδ

2
x vk−1+σ

j +B jδ
2
x vk−1+σ−n

j

= ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,

σUk−n
j +(1−σ)Uk−n−1

j ), (2.31)

ℜvk−1+σ

j = δ
2
x uk−1+σ

j , ℜvk−1+σ−n
j = δ

2
x uk−1+σ−n

j , ,

(2.32)

1≤ j ≤M−1,1≤ k ≤ N−1,

uk
j = φ(x j, tk), 0≤ j ≤M, −n≤ k ≤ 0, (2.33)

uk
0 = α1(tk), uk

M = α2(tk), 1≤ k ≤ N, (2.34)

vk
0 = β1(tk), vk

M = β2(tk), 1≤ k ≤ N. (2.35)

3. Analysis of the Compact Difference
Scheme

Lemma 3.1. [14], [15] For any grid function u ∈ Vh, it holds
that

||u||2 ≤ L2

6
||δxu||2, (3.1)

||δxu||2 ≤ L2

6
||δ 2

x u||2. (3.2)

Lemma 3.2. [16] For any grid function u ∈ Vh, it holds that

1
3
||u||2 ≤ ||ℜu||2 ≤ ||u||2. (3.3)

Lemma 3.3. [16] For any grid function u ∈ Vh, it holds that

1
3
||u||2 ≤ ||ℜu||2 ≤ ||u||2. (3.4)

Proof For the proof of equation (3.4), reader can follow [16].
Inequality (3.4) can be obtained using discrete Green formula
and inverse estimates given below

||δ 2
x u||2 ≤ 4

h2 ||δxu||2,

||δxu||2 ≤ 4
h2 ||u||

2. (3.5)

Lemma 3.4. Consider that uk
j and vk

j with 0≤ j ≤M,−n≤
k≤N are solutions of the constructed difference scheme given
in (2.31)-(2.35)
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ℜ
C
0 Dα

tk−1+σ
u j +A jδ

2
x vk−1+σ

j +B jδ
2
x vk−1+σ−n

j

= ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j

− (1−σ)Uk−1
j ,σUk−n

j +(1−σ)Uk−n−1
j ), (3.6)

ℜvk−1+σ

j = δ
2
x uk−1+σ

j +Hk−1+σ

1 , (3.7)

ℜvk−1+σ−n
j = δ

2
x uk−1+σ−n

j +Hk−1+σ−n
2 , (3.8)

1≤ j ≤M−1,1≤ k ≤ N−1,

uk
j = 0, 0≤ j ≤M, −n≤ k ≤ 0, (3.9)

uk
0 = 0, uk

M = 0, (3.10)

vk
0 = 0, vk

M = 0 1≤ k ≤ N. (3.11)

Then, following inequality holds

||ℜuk||2 ≤ ||ℜu0||2 +µ

(
L4

18
max
−n≤k≤N

||gk−1+σ ||2

+

(
L4

18
−2
)

max
−n≤k≤N

||Hk−1+σ

1 ||2

+

(
L4

18
−2
)

max
−n≤k≤N

||Hk−1+σ

2 ||2
)
. (3.12)

Here, function g(x,t) is linear part of source function f(x,t,u(x,t),u(x,t-
s)).

Proof: Taking inner product of (3.6)-(3.8) by ℜuk−1+σ

j ,
ℜvk−1+σ

j and ℜvk−1+σ−n
j respectively, then we obtain

(ℜC
0 Dα

tk−1+σ
u j,ℜuk−1+σ

j )+(A jδ
2
x vk−1+σ

j ,ℜuk−1+σ

j )

+(B jδ
2
x vk−1+σ−n

j ,ℜuk−1+σ

j ) = (ℜ f (x j, tk−1+σ ,

2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,σUk−n

j

+(1−σ)Uk−n−1
j ,ℜuk−1+σ

j ), (3.13)

(ℜvk−1+σ

j ,ℜvk−1+σ

j ) = (δ 2
x uk−1+σ

j ,ℜvk−1+σ

j )

+(Hk−1+σ

1 ,ℜvk−1+σ

j ), (3.14)

(ℜvk−1+σ−n
j ,ℜvk−1+σ−n

j ) = (δ 2
x uk−1+σ−n

j ,ℜvk−1+σ−n
j )

+(Hk−1+σ−n
2 ,ℜvk−1+σ−n

j ). (3.15)

Below given equations (3.17) and (3.18) can be obtained
easily using the fact that uk, vk ∈ Vh

(δ 2
x vk−1+σ

j ,ℜuk−1+σ

j ) =

(
δ

2
x vk−1+σ

j ,uk−1+σ

j

+
h2

12
δ

2
x uk−1+σ

j

)

= (δxvk−1+σ

j ,δxuk−1+σ

j )+
h2

12

(
δ

2
x vk−1+σ

j ,δ 2
x uk−1+σ

j

)
= (δ 2

x uk−1+σ

j ,ℜvk−1+σ

j ) (3.16)

(δ 2
x vk−1+σ

j ,ℜuk−1+σ

j ) = (δ 2
x uk−1+σ

j ,ℜvk−1+σ

j ),

(3.17)

(δ 2
x vk−1+σ−n

j ,ℜuk−1+σ−n
j ) = (δ 2

x uk−1+σ−n
j ,ℜvk−1+σ−n

j ).

(3.18)

On adding, equations (3.13)-(3.16), and using above two
identities (3.17) and (3.18), we get

(C0 Dα
tk−1+σ

ℜu,ℜuk−1+σ

j )+ ||ℜvk−1+σ

j ||2 + ||ℜvk−1+σ−n
j ||2

= (ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,

σUk−n
j +(1−σ)Uk−n−1

j ,ℜuk−1+σ

j ),ℜuk−1+σ

j )

+(Hk−1+σ

1 ,ℜvk−1+σ )+(Hk−1+σ−n
2 ,ℜvk−1+σ−n)

(3.19)

Using equations (3.7) and (3.8) we can write the following
inequality

1
2
||ℜvk−1+σ ||2 = 1

2
||δ 2

x uk−1+σ

j ||2 + 1
2
||Hk−1+σ

1 ||2

+(δ 2
x uk−1+σ

j ,Hk−1+σ

1 ), (3.20)

1
2
||ℜvk−1+σ−n||2 = 1

2
||δ 2

x uk−1+σ−n
j ||2 + 1

2
||Hk−1+σ−n

1 ||2

+(δ 2
x uk−1+σ−n

j ,Hk−1+σ−n
1 ). (3.21)

Substituting equations (3.20) & (3.21) into (3.19), we get

(C0 Dα
tk−1+σ

ℜu,ℜuk−1+σ )+ ||δ 2
x uk−1+σ

j ||2 + ||Hk−1+σ

1 ||2

+2(δ 2
x uk−1+σ

j ,Hk−1+σ

1 )+ ||δ 2
x uk−1+σ−n

j ||2

+ ||Hk−1+σ−n
2 ||2 +2(δ 2

x uk−1+σ−n
j ,Hk−1+σ−n

2 )

= (ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,

σUk−n
j +(1−σ)Uk−n−1

j ,ℜuk−1+σ

j ),ℜuk−1+σ

j )

+(Hk−1+σ

1 ,ℜvk−1+σ

j )+(Hk−1+σ−n
2 ,ℜvk−1+σ−n

j ).

(3.22)

Using Lemma [2.5], equation (3.22) becomes

1
2

C
0 Dα

tk−1+σ
||ℜu||2 + ||δ 2

x uk−1+σ

j ||2 + ||Hk−1+σ

1 ||2

+2(δ 2
x uk−1+σ

j ,Hk−1+σ

1 )+ ||δ 2
x uk−1+σ−n

j ||2

+ ||Hk−1+σ−n
2 ||2 +2(δ 2

x uk−1+σ−n
j ,Hk−1+σ−n

2 )

= (ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,

σUk−n
j +(1−σ)Uk−n−1

j ,ℜuk−1+σ

j ),ℜuk−1+σ

j )

+(Hk−1+σ

1 ,ℜvk−1+σ

j )+(Hk−1+σ−n
2 ,ℜvk−1+σ−n

j ).

(3.23)

583



Numerical solution of time fractional non-linear neutral delay differential equations of fourth-order — 584/589

Using ε-Cauchy inequality PQ≤ ε

2 P2 + 1
2ε

Q2, then equation
(3.23) becomes

1
2

C
0 Dα

tk−1+σ
||ℜu||2 +2||δ 2

x uk−1+σ

j ||2 +2||Hk−1+σ

1 ||2

+2||δ 2
x uk−1+σ−n

j ||2 +2||Hk−1+σ−n
2 ||2

≤ (ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,

σUk−n
j +(1−σ)Uk−n−1

j ,ℜuk−1+σ

j ),ℜuk−1+σ

j )

+(Hk−1+σ

1 ,ℜvk−1+σ

j )+(Hk−1+σ−n
2 ,ℜvk−1+σ−n

j ).

(3.24)

Using Lemma 3.1 and 3.2, we have

||ℜuk−1+σ

j ||2 ≤ L4

36
||δ 2

x uk−1+σ

j ||2, (3.25)

(ℜ f (x j, tk−1+σ ,2σUk+1
j +(2−3σ)Uk

j − (1−σ)Uk−1
j ,

σUk−n
j +(1−σ)Uk−n−1

j ),ℜuk−1+σ

j )

≤ 18
L4 ||ℜuk−1+σ ||2 + L4

18
||ℜ f (x j, tk−1+σ ,2σUk+1

j

+(2−3σ)Uk
j − (1−σ)Uk−1

j ,σUk−n
j

+(1−σ)Uk−n−1
j )||2

≤ 1
2
||δ 2

x uk−1+σ

j ||2 + L4

18
(||gk−1+σ

j ||2

+3(1−σ)||uk
j||2 + ||uk−n+σ−1

j ||2), (3.26)

(Hk−1+σ

1 ,ℜvk−1+σ

j )≤ 18
L4 ||ℜvk−1+σ ||2

+
L4

18
||Hk−1+σ

1 ||2

≤ 1
2
||δ 2

x uk−1+σ

j ||2 + L4

18
||Hk−1+σ

1 ||2, (3.27)

(Hk−1+σ−n
2 ,ℜvk−1+σ−n

j )≤ 18
L4 ||ℜvk−1+σ−n||2

+
L4

18
||Hk−1+σ−n

2 ||2

≤ 1
2
||δ 2

x uk−1+σ−n
j ||2

+
L4

18
||Hk−1+σ−n

2 ||2. (3.28)

Using equations (3.25)-(3.28), we get

1
2

C
0 Dα

tk−1+σ
||ℜu||2 + ||δ 2

x uk−1+σ

j ||2 + ||δ 2
x uk−1+σ−n

j ||2

≤
(

L4

18
−2
)
||Hk−1+σ

1 ||2 +
(

L4

18
−2
)
||Hk−1+σ−n

2 ||2

+
L4

18
(||gk−1+σ

j ||2 +3(1−σ)||uk
j||2 + ||uk−n+σ−1

j ||2).
(3.29)

Equation (3.30) can be rewritten as follows

Ck
0||ℜuk||2 ≤

k−1

∑
j=1

(Ck
k− j−1−Ck

k− j)||ℜu j||2 + ck
k−1||ℜuk||2

+µ

(
− 16

h4 ||u
k−1+σ

j ||2− 24
h4 ||u

k−1+σ−n
j ||2

+
L4

18
(||gk−1+σ

j ||2 +3(1−σ)||uk
j||2 + ||uk−n+σ−1

j ||2)

+

(
L4

18
−2
)
||Hk−1+σ

1 ||2 +
(

L4

18
−2
)
||Hk−1+σ−n

2 ||2
)
.

+
L4

18
(||gk−1+σ

j ||2 +3(1−σ)||uk
j||2 + ||uk−n+σ−1

j ||2),
(3.30)

where,

µ = τ
α

Γ(2−α) = T α
Γ(1−α)(1−α)N−α

< T α
Γ(1−α)(1−α)

(
k− α

2

)−α

< 2Ck
k−1T α

Γ(1−α). (3.31)

From Lemma 2.4, we know that

Ck
k−1 >

1−α

2

(
k−1− α

2

)−α

>
1−α

2

(
k− α

2

)−α

,

1≤ k ≤ N. (3.32)

Denote

D = |ℜu0||2 +µ

(
L4

18
max
−n≤k≤N

(||gk−1+σ

j ||2

+3(1−σ)||uk
j||2 + ||uk−n+σ−1

j ||2)

+

(
L4

18
−2
)

max
−n≤k≤N

||Hk−1+σ

1 ||2

+

(
L4

18
−2
)

max
−n≤k≤N

||Hk−1+σ−n
2 ||2

)
. (3.33)

Equation (3.30) becomes

Ck
0||ℜuk||2 ≤

k−1

∑
j=1

(Ck
k− j−1−Ck

k− j)||ℜu j||2 +Ck
k−1 D

− 40
h4 ||u

k
j||2. (3.34)

Below given inequality can be proved easily by induction
and same can be followed in [16]

||ℜuk||2 ≤ D, 1≤ k ≤ N, (3.35)

Ck
0||ℜuk||2 ≤Ck

0D. (3.36)
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Above inequality holds obviously for k = 0, and we assume
that this is valid for k = 1,2,...,M-1, i.e.,

||ℜuk||2 ≤ D, 1≤ k ≤M−1. (3.37)

Then, for 2≤ m≤ N from (3.34), we have

Ck
0||ℜuk||2 ≤

k−1

∑
j=1

(Ck
k− j−1−Ck

k− j)||ℜu j||2 +Ck
k−1 D

− 40
h4 ||u

k
j||2

≤
k−1

∑
j=1

(Ck
k− j−1−Ck

k− j)D+Ck
k−1 D =Ck

0D. (3.38)

Which completes the proof.

3.1 Stability
Theorem 3.5. (Stability) With the help of Lemma 3.4, follow-
ing theorem can be written as follows:
The proposed compact difference scheme (2.31)-(2.35) is un-
conditionally stable for given function φ(x, t) and the source
function f (x, t,u(x, t),u(x, t− s)).

3.2 Solvability
Theorem 3.6. (Solvability) The established compact differ-
ence scheme (2.31)-(2.35) is uniquely solvable. From [16], it
needs only to prove uniqueness of linear homogeneous system
as given below has an only trivial solution.

ℜ
C
0 Dα

tk−1+σ
u j +A jδ

2
x vk−1+σ

j +B jδ
2
x vk−1+σ−n

j = 0,
(3.39)

ℜvk−1+σ

j = δ
2
x uk−1+σ

j ,ℜvk−1+σ−n
j = δ

2
x uk−1+σ−n

j ,

1≤ j ≤M−1,1≤ k ≤ N−1, (3.40)

uk
j = 0, 0≤ j ≤M, −n≤ k ≤ 0, (3.41)

uk
0 = 0, uk

M = 0, vk
0 = 0, vk

M = 0, 1≤ k ≤ N.
(3.42)

Proof Using Theorem 1 from [16] and Lemma 3.4; equations
(2.31)-(2.35) possesses a unique solution.

3.3 Convergence
Theorem 3.7. (Convergence)([16]) Suppose {Uk

j |0 ≤ j ≤
M,−n≤ k ≤ N} and {uk

j|0≤ j ≤M,−n≤ k ≤ N} are solu-
tions of the equations (1.1)-(1.4) and the constructed differ-
ence scheme (2.31)-(2.35), then it holds that

||ek|| ≤ c(τ3−α +h4). (3.43)

where ek
j =Uk

j −uk
j and êk

j =V k
j − vk

j.
Proof Subtracting equations (1.2)-(2.1) from (2.31)-(2.35), we
get the following error equations as given below

ℜeα
tk−1+σ

u j +A jδ
2
x êk−1+σ

j +B jδ
2
x êk−1+σ−n

j = 0,
(3.44)

ℜêk−1+σ

j = δ
2
x ek−1+σ

j , (3.45)

ℜêk−1+σ−n
j = δ

2
x ek−1+σ−n

j ,

1≤ j ≤M−1, 1≤ k ≤ N−1, (3.46)

ek
j = 0, 0≤ j ≤M, −n≤ k ≤ N, (3.47)

ek
0 = 0, ek

M = 0, êk
0 = 0, êk

M = 0, 1≤ k ≤ N,
(3.48)

Using Lemma 3.4 we get the following inequality

||ℜek||2 ≤ ||ℜe0||2 +µ

(
L4

18
max
−n≤k≤N

||gk−1+σ ||2

+

(
L4

18
−2
)

max
−n≤k≤N

||Hk−1+σ

1 ||2

+

(
L4

18
−2
)

max
−n≤k≤N

||Hk−1+σ

2 ||2
)
. (3.49)

Using Lemma 3.2, we can easily obtain claimed inequality
(3.43) and equation (3.49).

4. Numerical validation

This section discusses the theoretical and numerical results
through examples. Here, we considered an example with de-
lay term s=0.1(¿0) whose exact solution is known and is used
for verification with our obtained numerical results. The effi-
ciency of the scheme is numerically examined by taking suffi-
ciently small spatial and temporal steps. Tables [1] and [2] pro-
vides the temporal and spatial rate of convergence orders and
hence proves the validity of our theoretical results with tem-
poral and spatial order of convergence are O(τ2) and O(h4)
respectively. A good agreement between theoretical and nu-
merical results is obtained. Let EL2(h,τ) = max

1≤k≤N
||uk−Uk||,

E∞(h,τ) = max
1≤k≤N

||uk−Uk||∞, Order(τ) = log2

(
EL2 (h,2τ)

EL2 (h,τ)

)

and Order(h) = log2

(
EL2 (2h,τ)
EL2 (h,τ)

)
.
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Example 4.1.

f (x, t,u(x, t),u(x, t− s)) = u(x, t)2−u(x, t−0.1)
+G(x, t).

where G(x, t) =
1
6

Γ(α +4)sin(2πx)t3+α

+16π
4xsin(2πx)t3+α

+16π
4(x2 +1)sin(2πx)(t−0.1)3+α

+(sin(2πx)t3+α)2− sin(2πx)(t−0.1)3+α ,

A(x) = x,B(x) = x2 +1,

φ(x, t) = sin(2πx)t3+α ,0≤ x≤ 1, t ∈ [−0.1,0]
α1(t) = 0,α2(t) = 0,β1(t) = 0,β2(t) = 0,0≤ t ≤ 1,

The exact solution of the Example 4.1 is u(x, t)= sin(2πx)t3+α .

First we fix h = 1
50 and keep varying τ . In table 1, error is

presented in L2 norm (E2(τ,h)) and L∞ norm (E∞(τ,h)). It is
observed that temporal accuracy of order O(τ2) is achieved
conforming the theoretical results.
Next we fix τ = 1

50 and keep varying h. In table 2, error is
presented in L2 norm (E2(τ,h)) and L∞ norm (E∞(τ,h)). It
is observed that spatial accuracy of order O(h4) is achieved
conforming the theoretical results.

The efficiency of the scheme is numerically examined by
taking sufficiently small spatial and temporal steps. The re-
sults illustrate that our scheme has temporal accuracy of O(h4)
and temporal convergence of order O(τ2). A good agreement
between theoretical and numerical results is obtained.

First we fix h = 1
50 and keep varying τ . In table 1, error is

presented in L2 norm (E2(τ,h)) and L∞ norm (E∞(τ,h)). It is
observed that temporal accuracy of order O(τ2) is achieved
conforming the theoretical results.
Next we fix τ = 1

50 and keep varying h. In table 2, error is
presented in L2 norm (E2(τ,h)) and L∞ norm (E∞(τ,h)). It
is observed that spatial accuracy of order O(h4) is achieved
conforming the theoretical results.
Exact and numerical solution surface plot are given in Figure
1 and 2 with α = 0.3, h = τ = 1

50 and a good agreement
between numerical and exact solution can be observed.

Table 1. Comparison of temporal convergence order with
L1-formula [9],[11] and computational error using L1−norm
and L∞−norm for example 4.1.
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Figure 1. Exact solution surface with h = τ = 1
50
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Table 2. The computational error and convergence orders in
space for example 4.1.
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Figure 2. Numerical solution surface with h = τ = 1
50

Example 4.2. Example 4.2 is considered with non-local ini-
tial and boundary conditions. A positive delay quantity (s=0.1)
is assumed. Numerical results are calculated using the pro-
posed compact difference scheme and obtained results are
found in good agreement with theoretical results. Tables 3
and 4 shows the temporal and spatial convergence orderers

and hence confirming the theoretical results.

∂ α u(x, t)
∂ tα

=
∂ 4u(x, t)

∂x4 +
∂ 4u(x, t−0.1)

∂x4 +G(x, t),

G(x, t) = exp(x)Γ(α +4)
t3

6
−2t exp(x)

− exp(x)(t3+α +(t−0.1)3+α)+
1
10

exp(x)

u(x, t) = exp(x)(t3+α + t), 0≤ x≤ 1, t ∈ [−0.1,0]

u(0, t) = t3+α + t, u(1, t) = e(t3+α + t), 0≤ t ≤ 1,

∂ 2u(0, t)
∂x2 = t3+α + t,

∂ 2u(1, t)
∂x2 = e(t3+α + t),0≤ t ≤ 1.

The exact solution of the problem is u(x, t) = exp(x)(t3+α + t).

The efficiency of the scheme is numerically examined by
taking sufficiently small spatial and temporal steps. The re-
sults illustrate that our scheme has temporal accuracy of O(h4)
and temporal convergence of order O(τ2). A good agreement
between theoretical and numerical results is obtained.

First we fix h = 1
50 and keep varying τ . In table 3, error is

presented in L2 norm (E2(τ,h)) and L∞ norm (EL∞
(τ,h)). It

is observed that temporal accuracy of order O(τ2) is achieved
conforming the theoretical results.
Next we fix τ = 1

50 and keep varying h. In table 4, error is
presented in L2 norm (E2(τ,h)) and L∞ norm (EL∞

(τ,h)). It
is observed that spatial accuracy of order O(h4) is achieved
conforming the theoretical results.

Table 3. The computational error and convergence orders in
time for example 4.2.
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Table 4. The computational error and convergence orders in
space for example 4.2.
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Exact and numerical solution surface plot are given in
Figure 3 and 4 with α = 0.3, h= τ = 1

50 and a good agreement
between numerical and exact solution can be observed.
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Figure 3. Exact solution surface with h = τ = 1
50
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Figure 4. Numerical solution surface with h = τ = 1
50

5. Conclusion
This paper presents a second-order compact difference

scheme for time variable and of fourth order for the spatial
variable for fourth order non-linear neutral delay sub-diffusion
wave equation with variable coefficients. Using the discrete
energy method, stability and convergence of the proposed
scheme in the L2-norm are proved. Numerical calculations
of the test problem confirm the reliability of the theoretical
results.
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