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Abstract
In this paper the notion of the zero-divisor Cayley graph G(Zn,D0) , where (Zn,⊕,�) is the ring of residue classes
modulo n, n≥ 1, an integer and D0 is the set of nonzero zero-divisors, is introduced and it is shown that G(Zn,D0)
can be decomposed into components, if n is a power of a single prime and it is connected, if n is a product of
more than one prime power.
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1. Introduction
The Cayley graph G(X ,S) associated with the group (X , .)

and its symmetric subset S (a subset S of the group (X , .) is
called a symmetric subset, if s−1 ∈ S for every s ∈ S ) is intro-
duced to study whether given a group (X , .), there is a graph Γ,
whose automorphism group is isomorphic to the group (X , .)
[14], and Frucht established this in [12]. For details see [18].
Later independent studies on Cayley graphs have been carried
out by many researches [9, 10]. Madhavi [15] introduced Cay-
ley graphs associated with the arithmetical functions, namely,
the Euler totient function ϕ(n), the quadratic residues modulo
a prime p and the divisor function d(n),n≥ 1, an integer and
obtained various properties of these graphs. Later Madhavi et
al. [16, 17] studied various aspects of these graphs.

The Cayley graph G(X ,S) associated with the group (X , .)
and its symmetric subset S is the graph, whose vertex set is X
and the edge set E = {(x,y) : either xy−1 ∈ S, or, yx−1 ∈ S}.
If e /∈ S, where e is the identity element of X , then G(X ,S) is
an undirected simple graph. Further G(X ,S) is |S|− regular

and contains |X ||S|2 edges [15].
Beck [8], Akbari and Mohammadian [1, 2], Anderson

and Naseer [6], Anderson and Livingston [5], Livingston
[19] Smith [20], Tongsuo [21], and others studied the zero-
divisor graphs of commutative rings. Given a commutative
ring R with identity, they defined the zero-divisor graph Γ(R)
as the graph, whose vertex set is the set Z(R)∗, the set of
nonzero zero-divisors of R and the edge set is the set of all
ordered pairs (x,y) of elements x,y ∈ Z(R)∗, such that xy = 0
and studied the connectedness, the diameter, the girth , the
automorphisms of Γ(R) and other prperties under conditions
on the ring R. Our attempt is to associate a Cayley graph with
the set of nonzero zero-divisors of a ring (R,+, .) and study
these graphs, with particular reference to the ring (Zn,⊕,�)
of residue classes modulo n≥ 1, an integer. The terminology
and notions that are used in this paper can be found in [11]
for graph theory, [13] for algebra and [7] for number theory.

2. Zero-divisor Cayley graph and its
properties

In this paper we study the Cayley graph associated with
the set of zero-divisors in the ring (Zn,⊕,�) of residue clasess
modulo a positive integer n. We start with some properties of
the zero-divisors of a ring that are needed in our study.

Definition 2.1. Let (R,+, .) be a commutative ring. An ele-
ment x ∈ R,x 6= 0, is called a zero-divisor in (R,+, .̇), if there
exists y∈R,y 6= 0, such that xy= 0. The set of all zero-divisors
of the ring (R,+, .) is denoted by D0.

Lemma 2.2. Let (R,+, .) be a commutative ring. The set D0
of the zero-divisors in (R,+, .) is a symmetric subset of the
group (R,+).
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Proof. Let x ∈ R be a zero-divisor in the ring (R,+, .). Then
x 6= 0 and there exists y ∈ R,y 6= 0, such that xy = 0 = yx.
Consider the inverse−x of x in the group (R,+). Then−x 6= 0
and from xy = 0, one gets (−x)y =−(xy) = 0. So −x is also
a zero-divisor (R,+, .). Hence D0 is a symmetric subset of the
group (R,+).

Lemma 2.3. Let n≥ 1, be an integer. A positive integer r is
not relatively prime to n if, and only if, r is a zero-divisor in
the ring (Zn,⊕,�).

Proof. Let n ≥ 1, be an integer and let r > 1, be a positive
integer less than are equal to n such that (n,r) 6= 1. Then there
exists an integer s > 1, such that (r,n) = s, so that s/r and s/n.
So, n = st and r = sl, for some integers l > 1, t > 1. That
is, r = sl = (n/t)l, or, rt = nl. This shows that rt = nl, or,
r� t = n� l = 0� l = 0. That is, there is t ∈ Zn, t 6= 0 such
that r� t = 0, so that r is a zero-divisor in the ring (Zn,⊕,�).

Conversely, let r be a zero-divisor in the ring (Zn,⊕,�) .
Then there exists s 6= 0 such that r� s = 0 = s� r.

Suppose (r,n) = 1. Then there exists integers x and y such
that rx+ny = 1. This gives srx+ sny = s, or, srx+ sny = s,
or, (s� r)�x⊕ (s�n)�y = s. Since s� r = 0 and n = 0, we
get s 6= 0 and this leads to a contradiction to fact that s 6= 0.
So (r,n) 6= 1.

Theorem 2.4. For n ≥ 1, an integer, the number of zero-
divisors of the ring (Zn,⊕,�) is n−ϕ(n)−1.

Proof. By the Lemma 2.3, for any positive integer n≥ 1, the
integer r, 1 < r < n, is not a relatively prime to n if, and only
if, r is a zero-divisor in the ring (Zn,⊕,�).

For any positive integer n≥ 1, there are ϕ(n) number of
integers less than n and relatively prime to n. So, the number
of numbers which are less than n and not relatively prime
to n is equal to n−ϕ(n). Also by the definition of the zero-
divisor, 0 is not a zero-divisor in the ring (Zn,⊕,�), so that the
number of zero-divisors in the ring (Zn,⊕,�) is n−ϕ(n)−1.

By the Lemma 2.2, the set D0 of zero-divisors of the ring
(Zn,⊕,�) is a symmetric subset of the group (Zn,⊕). So one
can think of Cayley graph associated with the group (Zn,⊕)
and its symmetric subset D0 and this is defined as follows.

Definition 2.5. Consider the group (Zn,⊕) and its symmetric
subset D0 of zero-divisors in the ring (Zn,⊕,�). The graph G
whose vertex set V = Zn = {0,1,2, ...,n−1} and whose edge
set E = {(x,y) : either x−y∈D0,or,y−x∈D0} is defined as
the zero-divisor Cayley graph and it is denoted by G(Zn,D0).

Lemma 2.6. The graph G(Zn,D0) is (n−ϕ(n)−1)−regular.
Moreover the number of edges in G(Zn,D0) is given by n

2 (n−
ϕ(n)−1).

Proof. By the Theorem 1.4.5, [15]. The graph G(Zn,D0) is
(n− ϕ(n)− 1)− regular and the total number of edges in
G(Zn,D0) is |Zn|(n−ϕ(n)−1)

2 . That is, G(Zn,D0) is (n−ϕ(n)−
1)− regular and its size is n(n−ϕ(n)−1)

2 .

Example 2.7. In the ring (Z7,⊕,�), the set D0 of zero-divisors
is the empty set and the graph contains only vertices . The
graph of G(Z7,D0) is given in Figure 1.

Figure 1: G(Z7,D0)

Example 2.8. In the ring (Z8,⊕,�), the set D0 of zero-divisors
is the {2,4,6}. Since 7−3= 4∈D0, there is an edge between
3 and 7. Also, 5−1 = 4 ∈ D0 and there is an edge between 1
and 5. Similarly other edges can be found and the graph of
G(Z8,D0) is given in Figure 2.

Figure 2: G(Z8,D0)

Example 2.9. In the ring (Z10,⊕,�), the set D0 of zero-
divisors is the {2,4,5,6,8} and the graph of G(Z10,D0) is
given in Figure 3.

Figure 3: G(Z10,D0)

Lemma 2.10. For a prime p, the graph G(Zp,D0) contains
only isolated vertices.

Proof. Let p be a prime. Then for every r,1 ≤ r ≤ p− 1,
(r, p) = 1 and the ring (Zp,⊕,�) has no zero-divisors, so
that the edge set is empty and the graph has only isolated
vertices.
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3. The disconnected property of the
zero-divisor Cayley graph G(Zn,D0),

where n is a power of a single
prime

When n is a power of a single prime say, n = pr, p be a prime
and r > 1, the zero-divisor Cayley graph G(Zpr ,D0) has an
interesting property, that, it is decomposed into disjoint union
of p components.

Remark 3.1. In the study of disconnected property of
G(Zpr ,D0), where p is a prime and r > 1, is an integer, the
following decomposition of the vertex set Zpr of G(Zpr ,D0),
as C0,C1,C2, ...,Cp−1 play a key role.
C0 = {0, p, ..., ip, ..., jp, ...,(pr−1−1)p},
C1 = {1, p+1, ..., ip+1, ..., jp+1, ...,(pr−1−1)p+1},
C2 = {2, p+2, ..., ip+2, ..., jp+2, ...,(pr−1−1)p+2},

...

Cp−1 = {p−1, ..., ip+ p−1, ..., jp+2, ...,(pr−1−1)p+ p−1}.

Lemma 3.2. For a prime p and an integer r > 1, the set
D0 of zero-divisors in the ring (Zpr ,⊕,�) is given by
D0 = {p,2p, ..., ip, ..., jp, ...,(pr−1−1)p} and the number of
zero-divisors of the ring (Zpr ,⊕,�) is pr−1−1.

Proof. For each integer i, 0 ≤ i ≤ pr−1 − 1, ip is a zero-
divisor of the ring (Zpr ,⊕,�), since (ip)(pr−1) = ipr = 0.
So, every element in the set

D0 = {p,2p, ..., ip, ..., jp, ...,(pr−1−1)p},

is a zero-divisors of ring (Zpr ,⊕,�) and it contains pr−1−1
elements. By the Theorem 2.4, the number of elements in the
set D0 of zero-divisor of (Zpr ,⊕,�) is equal to pr−ϕ(pr)−1,
or, pr−(pr− pr−1)−1 = pr−1−1, since ϕ(pr) = pr− pr−1.
This shows that the set

D0 = {p,2p, ..., ip, ..., jp, ...,(pr−1−1)p}

is the set of zero-divisors of (Zpr ,⊕,�), and the number of
zero-divisors of (Zpr ,⊕,�), is pr−1−1.

Lemma 3.3. For 0 ≤ k ≤ p− 1, , each Ck contains pr−1

distinct vertices of G(Zpr ,D0).

Proof. For 0≤ k ≤ p−1, consider the subset Ck of vertices
of G(Zpr ,D0) is given by

Ck = {k, p+k,2p+k, ..., ip+k, ..., jp+k, ...,(pr−1−1)p+k}.

If possible, let k+ ip= k+ jp. For i 6= j,0≤ i< j≤ pr−1−1.
Then ( j− i)p = 0. Since, i 6= j,0≤ i < j≤ pr−1−1, we have
0≤ j− i≤ pr−1−1. But o(p) in (Zpr ,⊕) is pr−1. So, for any
positive integer t ≤ pr−1, t p 6= 0 and thus, ( j− i)p = 0 with
j− i < pr−1 leads to a contradiction. Hence our assumption
that k+ ip = k+ jp, for i 6= j,0≤ i < j ≤ pr−1−1, is wrong
and Ck contains pr−1 distinct elements.

Lemma 3.4. For 0 ≤ k ≤ p−1, each Ck is a complete sub-
graph of G(Zpr ,D0).

Proof. For this one has to show that there is an edge between
every pair of distinct vertices in Ck. To see this,
let ip+ k, jp+ k ∈Ck for 0≤ i < j ≤ pr−1−1. Then,

( jp+ k)− (ip+ k) = ( j− i)p.

Since ( j− i)ppr−1 = 0, this shows ( j− i)p is a zero divisor
of (Zpr ,⊕,�) and ( jp+ k)− (ip+ k) ∈ D0, so that there is
an edge between any pair of distinct vertices in Ck, proving
that Ck is a complete subgraph of G(Zpr ,D0).

Lemma 3.5. For 0≤ k < l ≤ p−1,Ck ∩Cl = φ .

Proof. For 0≤ k < l ≤ p−1, we have

Ck = {k, p+k,2p+k, ..., ip+k, ..., jp+k, ...,(pr−1−1)p+k},

and

Cl = {l, p+ l,2p+ l, .., ip+ l, ..., jp+ l, ...,(pr−1−1)p+ l}.

If possible, assume that Ck ∩Cl 6= φ . Then, there exists
u ∈Ck ∩Cl . Now u ∈Ck implies that u = k+ ip for some
i,0≤ i≤ pr−1−1. Similarly, u ∈Cl , implies that u = l + jp
for some j,0≤ j≤ pr−1−1. For definiteness we may assume
that i < j. Then we have, k+ ip = u = k+ ip, or, l− k+( j−
i)p = 0. From this one gets (l− k)pr−1 +( j− i)pr = 0, or,
(l− k)pr−1 = 0, since pr = 0. That is, (l− k)pr−1 = 0, since
t = t1, for any t,1 < t < pr−1. Now 0≤ k < l ≤ p−1, so that
0≤ l−k≤ p−1 < p. That is, (l−k)pr−1 = 0 with l−k < p.
Since, o(pr−1) = p, in (Zpr ,⊕) , this leads to a contradiction.
So, our assumption that Ck ∩Cl 6= φ is wrong and hence Ck
and Cl are disjoint.

Lemma 3.6. For 0≤ k < l ≤ p−1, there is no edge between
any vertex of Ck and any vertex of Cl .

Proof. For 0≤ k < l ≤ p−1, let ip+k ∈Ck and jp+ l ∈Cl .
Then ( jp+ l)− (ip+ k) = ( j− i)p+(l− k). Since 0 ≤ k ≤
p−1, and 0≤ l ≤ p−1, we have l−k≤ p−1 < p, it follows
that l−k is not a multiple of p. Hence ( j− i)p+(l−k) is not a
multiple of p so that it is not a be a zero-divisor of (Zpr ,⊕,�).
This shows that there is no edge between ip+ k ∈ Ck and
jp+ l ∈Cl .

Theorem 3.7. For a prime p and an integer r > 1, the graph
G(Zpr ,D0) contains p disjoint components of G(Zpr ,D0),
each of which is a complete subgraph of G(Zpr ,D0).

Proof. Let n = pr,r > 1, be an integer. Consider the decom-
position of the vertex set of G(Zpr ,D0) as given in Remark 3.1.
By the Lemma 3.4, there is no edge between any vertex of Ck
and any vertex of Cl , for some k, l,0≤ k < l ≤ p−1. Hence,
the graph G(Zpr ,D0) contains p number of components, and
each of which is a complete subgraph of G(Zpr ,D0).

Example 3.8. The graph G(Z9,D0) and its disjoint compo-
nents are given in Figure 4 and and Figure 5 respectively.

Example 3.9. The graph G(Z16,D0) and its disjoint compo-
nents are given in Figure 6 and Figure 7 respectively.
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Figure 4: G(Z9,D0)

Figure 5: The disjoint components of G(Z9,D0)

4. The connected property of the
zero-divisor Cayley graph G(Zn,D0),

where n is not a power of a single prime

In this section, it is shown that the graph G(Zn,D0), where n
is not a power of a single prime, is a connected graph. For
this, a decomposition of vertex set V of G(Zn,D0), similar to
that given in Remark 3.1, is considered. Let n = ∏

r
i=1 pαi

i ,
where p1 < p2 < ... < pr are primes, αi ≥ 1, 1 < i ≤ r are
integers.

Remark 4.1. Consider the following subsets of vertices
V0,V1,V2, ...,Vp1−1 of the vertex set V of G(Zn,D0).

V0 = {0, p1,2p1, ..., ip1, ...,(
n−p1

p1
)p1},

V1 = {p2, p1+ p2,2p1+ p2, ..., ip1+ p2, ...,(
n−p1

p1
)p1+ p2},

V2 = {2p2,2p1 +2p2, ..., ip1 +2p2, ...,(
n−p1

p1
)p1 +2p2},

...

Vp1−1 = {(p1−1)p2, ..., ip1+(p1−1)p2, ...,(
n−p1

p1
)p1+(p1−

1)p2}.

Lemma 4.2. For 0 ≤ k ≤ p1− 1, each Vk contains distinct
vertices and the number of vertices in each Vk is n

p1
.

Proof. For 0≤ k ≤ p1−1, let

Vk = {kp2, p1 + kp2, ..., ip1 + kp2, ...,(
n− p1

p1
)p1 + kp2}.

If possible, let ip1 + kp2 = jp1 + kp2, for some i, j where
0≤ i < j ≤ n−p1

p1
< n

p1
. Then ( j− i)p1 = 0. Since j− i < n

p1
,

this implies that ( j− i)p1 < n , which leads to a contradiction.

Figure 6: G(Z16,D0)

Figure 7: The components of G(Z16,D0)

So, our assumption that ip1 + kp2 = jp1 + kp2 is wrong and
ip1 +kp2 and jp1 +kp2 are distinct. That is, each Vk contains
n−p1

p1
+1 = n

p1
distinct vertices of G(Zn,D0).

Lemma 4.3. For 0≤ k ≤ p1−1, each Vk is a complete sub-
graph of G(Zn,D0).

Proof. Let u,v ∈ Vk. Then u = ip1 + kp2 and v = jp1 + kp2
for some i, j,0≤ i < j ≤ n−p1

p1
. Then,

u−v=( jp1+kp2)−(ip1+kp2)= ( j−i)p1,0≤ i< j≤ n− p1

p1
.

Since p1 is a zero-divisor in the ring (Zn,⊕,�), rp1 is also a
zero-divisor of the ring (Zn,⊕,�) and this shows that u and v
are adjacent, so that Vk is complete subgraph of G(Zn,D0).

The following theorem establishes that, if n is not a power
of a single prime then G(Zn,D0) is connected.

Theorem 4.4. Let n > 1, be an integer, which is not a power
of a single prime. Then the graph G(Zn,D0) is a connected
graph.

Proof. Let n > 1, be an integer, which is not a power of a
single prime and let n = ∏

r
i=1 pαi

i , where p1 < p2 < ... < pr
are primes αi ≥ 1,1 < i≤ r are integers.
Case i: Let u,v ∈ Vl , for some l,0 ≤ l ≤ p1− 1. Then u =
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ip1 + l p2 and v = jp1 + l p2 for some i, j,0 ≤ i < j ≤ n−p1
p1

.
By the Lemma 3.2,

u = [ip1 + l p2]− [(i+1)p1 + l p2]− ...− [ jp1 + l p2] = v

is a path joining u and v and thus the graph G(Zn,D0) is a
connected graph.
Case ii: Let u∈Vk and v∈Vl for some k, l,0≤ k < l ≤ p1−1.
Then u = ip1 + kp2 and v = jp1 + l p2 for some i, j, 0≤ i <
j ≤ n−p1

p1
. Consider ip1 + l p2 ∈ Vl . (This is possible since

i < j ≤ n−p1
p1

). Since Vl is a complete subgraph of G(Zn,D0),

there is an edge between jp1 + l p2 and ip1 + l p2. Further
(ip1 + l p2)− (ip1 + kp2) = (l− k)p2 is also a zero-divisor of
the ring (Zn,⊕,�). So, there is an edge between ip1 + l p2
and ip1 + kp2. That is,

u = [ip1 + kp2]− [ jp1 + l p2]− [ip1 + l p2] = v

is a path joining u and v and thus the graph G(Zn,D0) is a
connected graph.

Example 4.5. In the graph G(Z10,D0), the set D0 of zero-
divisors is {2,4,5,6,8}. Here 10 = 5.2 , p1 = 2 and p2 = 5.
Now the vertex set is the union of V0 and V1, where V0 =
{0,2,4,6,8} and V1 = {3,5,7,9,1}. Consider the two ver-
tices 4 and 7. The path 4−9−7 connects 4 and 7. Similarly
the vertices 1,5 ∈V1 are connected by the edge (1,5). These
paths are shown in Figure 8, by bold face edges.

Figure 8: G(Z10,D0)

Acknowledgment
The authors express their thanks to Prof. L.Nagamuni Reddy
for his valuable suggestions during the preparation of this
paper.

References
[1] S. Akbari, and A. Mohammadian, On zero-divisor graphs

of finite rings, J. Algebra, (2007), 168-184.
[2] S. Akbari and A. Mohammadian, Zero-divisor graphs of

non-commutative rings, J. Algebra (2006), 462-479.
[3] D. Anderson, and M. Naseer, Beck’s Colouring of Com-

mutative Ring, J. Algebra (Grenoble), 159 (1983), 500-
514.

[4] D. F. Anderson, M. C. Axtell, and Joe A. Jr. Stickles,
Zero-divisor graphs in commutative rings, M. Fontana et
al. (eds.), Commutative Algebra: Noetherian and Non-
Noetherian 23 Perspectives, DOI 10.1007/978-1-4419-
6990-3- 2.

[5] D.F. Anderson and P.S. Livingston, The zero-divisor
graph of commutative ring, J. Algebra, 217 (1999), 434-
447.

[6] D. Anderson and M. Naseer, Beck’s Colouring of Com-
mutative Ring, J. Algebra (Grenoble), 159 (1983), 500-
514.

[7] M. Apostol, Introduction to Analytical Number Theory,
Springer International, Student Edition (1989).

[8] I. Beck , Colouring of commutative rings, J. Algebra, 116
(1998), 208-216.

[9] P. Bierrizbeitia and R. E. Giudici, Counting pure k-cycles
in sequences of Cayley graphs, Discrite math. 149, 11-18.

[10] P. Bierrizbeitia and R. E. Giudici, On cycles in
the sequence of unitary Cayley graphs, Reporte
Techico No. 01-95, universided Simon Bolivear,
Depto.DeMathematics,Caracas, Venezuela (1995)

[11] J. A. Bondy and U. S. R, Murty, Graph theory with Ap-
plications, Macillan, London (1976).

[12] R.Frucht, Graphs of degree three with a given abstract
group, Canada. J. Math, (1949), 365-378.

[13] J. A. Gallian, Contemporary Abstract Algebra, Narosa
publishing house, 9th Edition (2018).

[14] D. Konig, Theorie der endlichen and unedndlichen
Graphen, Leipzig (1936), 168-184.

[15] L. Madhavi, Studies on Domination Parameters and Enu-
meration of cycles in some arithmetic grpahs, Ph.D The-
sis, Sri Venkateswara University, Tirupati, India, (2003).

[16] B. Maheswari and L. Madhavi , Enumeration of Trian-
gles and Hamilton Cycles in Quadratic Residue Cayley
Graphs, Chamchuri Journal of Mathematics, Volume 1
(2009), 95-1036.

[17] B. Maheswari and L. Madhavi, Enumeration of Hamil-
ton Cycles and Triangles in Euler totient Cayley Graphs,
Graph Theory Notes of Newyork LIX, (2010), 28-31. The
Mathematical Association of America.

[18] K.R. Parthasarathy and A. Mohammadian, Basic graph
Theory, Tata Mc.Graw-Hill Publishing Company Limited,
(1994).

[19] P.S. Livingston, structure in zero-divisor Graphs of com-
mutative rings, J. Algebra , Masters Thesis, The Univer-
sity of Tennessee, Knoxville, TN, December (1997).

[20] N.O. Smith, Planar Zero-Divisor Graph, International
Journal of Commutative Rings, (4) (2002), 73-869.

[21] Wu. Tangsuo, On Directed Zero-Divisor Graphs of Finite
Rings, Discrete Mathematics, 296(1) (2005), 73-86.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

594

http://www.malayajournal.org

	Introduction
	Zero-divisor Cayley graph and its properties
	The disconnected property of the zero-divisor Cayley graph  G(Zn, D0 ),  where n is a power of a single  prime
	The connected property of the zero-divisor Cayley graph  G( Zn,D0) , where  n is not a power of a single prime
	References

