

https://doi.org/10.26637/MJM0703/0036

The zero-divisor Cayley graph of the residue class ring (Z_n, \oplus, \odot)

Jangiti Devendra¹, Levaku Madhavi^{2*} and Tippaluri Nagalakshumma

Abstract

In this paper the notion of the zero-divisor Cayley graph $G(Z_n,D_0)$, where (Z_n,\oplus,\odot) is the ring of residue classes modulo $n, n \ge 1$, an integer and D_0 is the set of nonzero zero-divisors, is introduced and it is shown that $G(Z_n, D_0)$ can be decomposed into components, if *n* is a power of a single prime and it is connected, if *n* is a product of more than one prime power.

Keywords

Zero-Divisors, Symmetric set, Cayley Graph, Zero-divisor Cayley Graph

AMS Subject Classification 05C07,05C25,05C30,05C38, 05C40,20F65.

1,2*,3*Department of Applied Mathematics, Yogi Vemana University, Kadapa-516003, Andhra Pradesh, India.* ***Corresponding author**: 2 * lmadhaviyvu@gmail.com; **Article History**: Received **11** March **2019**; Accepted **27** July **2019** c 2019 MJM.

Contents

1 [Introduction](#page-0-0) . 590

- **2 [Zero-divisor Cayley graph and its properties](#page-0-1). 590**
- **3 [The disconnected property of the zero-divisor Cayley](#page-1-0) graph** $G(Z_n, D_0)$, where *n* **[is a power of a single](#page-1-0) [prime](#page-1-0) . 592**
- **4 [The connected property of the zero-divisor Cayley](#page-2-0) graph** $G(Z_n, D_0)$, where *n* **[is not a power of a single](#page-2-0) [prime](#page-2-0) . 593 [References](#page-4-0) . 594**

1. Introduction

The Cayley graph $G(X, S)$ associated with the group $(X, .)$ and its symmetric subset *S* (a subset *S* of the group $(X, .)$ is called a symmetric subset, if $s^{-1} \in S$ for every $s \in S$) is introduced to study whether given a group $(X, .)$, there is a graph Γ , whose automorphism group is isomorphic to the group $(X, .)$ [\[14\]](#page-4-1), and Frucht established this in [\[12\]](#page-4-2). For details see [\[18\]](#page-4-3). Later independent studies on Cayley graphs have been carried out by many researches [\[9,](#page-4-4) [10\]](#page-4-5). Madhavi [\[15\]](#page-4-6) introduced Cayley graphs associated with the arithmetical functions, namely, the Euler totient function $\varphi(n)$, the quadratic residues modulo a prime *p* and the divisor function $d(n)$, $n \geq 1$, an integer and obtained various properties of these graphs. Later Madhavi et al. [\[16,](#page-4-7) [17\]](#page-4-8) studied various aspects of these graphs.

The Cayley graph $G(X, S)$ associated with the group $(X, .)$ and its symmetric subset *S* is the graph, whose vertex set is X and the edge set *E* = {(*x*, *y*) : *either* xy^{-1} ∈ *S*, *or*, yx^{-1} ∈ *S*}. If $e \notin S$, where *e* is the identity element of *X*, then $G(X, S)$ is an undirected simple graph. Further $G(X, S)$ is $|S|$ - regular

and contains $\frac{|X||S|}{2}$ edges [\[15\]](#page-4-6).

2 Beck [\[8\]](#page-4-9), Akbari and Mohammadian [\[1,](#page-4-10) [2\]](#page-4-11), Anderson and Naseer [\[6\]](#page-4-12), Anderson and Livingston [\[5\]](#page-4-13), Livingston [\[19\]](#page-4-14) Smith [\[20\]](#page-4-15), Tongsuo [\[21\]](#page-4-16), and others studied the zerodivisor graphs of commutative rings. Given a commutative ring *R* with identity, they defined the zero-divisor graph $\Gamma(R)$ as the graph, whose vertex set is the set $Z(R)^*$, the set of nonzero zero-divisors of *R* and the edge set is the set of all ordered pairs (x, y) of elements $x, y \in Z(R)^*$, such that $xy = 0$ and studied the connectedness, the diameter, the girth , the automorphisms of $\Gamma(R)$ and other prperties under conditions on the ring *R*. Our attempt is to associate a Cayley graph with the set of nonzero zero-divisors of a ring $(R, +, .)$ and study these graphs, with particular reference to the ring (Z_n, \oplus, \odot) of residue classes modulo $n \geq 1$, an integer. The terminology and notions that are used in this paper can be found in [\[11\]](#page-4-17) for graph theory, [\[13\]](#page-4-18) for algebra and [\[7\]](#page-4-19) for number theory.

2. Zero-divisor Cayley graph and its properties

In this paper we study the Cayley graph associated with the set of zero-divisors in the ring (Z_n, \oplus, \odot) of residue clasess modulo a positive integer *n*. We start with some properties of the zero-divisors of a ring that are needed in our study.

Definition 2.1. *Let* (*R*,+,.) *be a commutative ring. An element* $x \in R$, $x \neq 0$, *is called a zero-divisor in* $(R, +, :)$, *if there* e *xists* $y \in R$, $y \neq 0$, *such that* $xy = 0$. *The set of all zero-divisors of the ring* $(R, +, .)$ *is denoted by D*₀.

Lemma 2.2. *Let* $(R, +, .)$ *be a commutative ring. The set* D_0 *of the zero-divisors in* (*R*,+,.) *is a symmetric subset of the group* $(R, +)$.

Proof. Let $x \in R$ be a zero-divisor in the ring $(R, +, .)$. Then $x \neq 0$ and there exists $y \in R$, $y \neq 0$, such that $xy = 0 = yx$. Consider the inverse $-x$ of *x* in the group $(R,+)$. Then $-x \neq 0$ and from $xy = 0$, one gets $(-x)y = -(xy) = 0$. So $-x$ is also a zero-divisor $(R, +, .)$. Hence D_0 is a symmetric subset of the group $(R,+)$. П

Lemma 2.3. *Let* $n \geq 1$, *be an integer. A positive integer r is not relatively prime to n if, and only if, r is a zero-divisor in the ring* (Z_n, \oplus, \odot) .

Proof. Let $n \geq 1$, be an integer and let $r > 1$, be a positive integer less than are equal to *n* such that $(n, r) \neq 1$. Then there exists an integer $s > 1$, such that $(r, n) = s$, so that s/r and s/n . So, $n = st$ and $r = sl$, for some integers $l > 1$, $t > 1$. That is, $r = sl = (n/t)l$, or, $rt = nl$. This shows that $\overline{rt} = nl$, or, $\overline{r} \odot \overline{t} = \overline{n} \odot \overline{l} = \overline{0} \odot \overline{l} = \overline{0}$. That is, there is $\overline{t} \in Z_n$, $\overline{t} \neq 0$ such that $\bar{r} \odot \bar{t} = 0$, so that \bar{r} is a zero-divisor in the ring (Z_n, \oplus, \odot) .

Conversely, let \bar{r} be a zero-divisor in the ring (Z_n, \oplus, \odot) . Then there exists $\bar{s} \neq \bar{0}$ such that $\bar{r} \odot \bar{s} = \bar{0} = \bar{s} \odot \bar{r}$.

Suppose $(r, n) = 1$. Then there exists integers *x* and *y* such that $rx + ny = 1$. This gives $srx + sny = s$, or, $\overline{srx + sny} = \overline{s}$, or, $(\bar{s} \odot \bar{r}) \odot \bar{x} \oplus (\bar{s} \odot \bar{n}) \odot \bar{y} = \bar{s}$. Since $\bar{s} \odot \bar{r} = 0$ and $\bar{n} = 0$, we get $\bar{s} \neq 0$ and this leads to a contradiction to fact that $\bar{s} \neq 0$. So $(r, n) \neq 1$. \Box

Theorem 2.4. *For* $n \geq 1$ *, an integer, the number of zerodivisors of the ring* (Z_n, \oplus, \odot) *is n* − φ (*n*) − 1.

Proof. By the Lemma 2.3, for any positive integer $n \geq 1$, the integer $r, 1 < r < n$, is not a relatively prime to n if, and only if, *r* is a zero-divisor in the ring (Z_n, \oplus, \odot) .

For any positive integer $n \geq 1$, there are $\varphi(n)$ number of integers less than *n* and relatively prime to *n*. So, the number of numbers which are less than *n* and not relatively prime to *n* is equal to $n - \varphi(n)$. Also by the definition of the zerodivisor, 0 is not a zero-divisor in the ring (Z_n, \oplus, \odot) , so that the number of zero-divisors in the ring (Z_n, \oplus, \odot) is $n - \varphi(n) - 1$. □

By the Lemma 2.2, the set D_0 of zero-divisors of the ring $(Z_n, ⊕, ⊙)$ is a symmetric subset of the group $(Z_n, ⊕)$. So one can think of Cayley graph associated with the group (Z_n, \oplus) and its symmetric subset D_0 and this is defined as follows.

Definition 2.5. *Consider the group* (Z_n, \oplus) *and its symmetric subset* D_0 *of zero-divisors in the ring* (Z_n, \oplus, \odot) *. The graph G whose vertex set* $V = Z_n = {\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}}$ *and whose edge set E* = {(*x*, *y*): *either x*−*y* ∈ *D*0,*or*, *y*−*x* ∈ *D*0} *is defined as the zero-divisor Cayley graph and it is denoted by* $G(Z_n, D_0)$ *.*

Lemma 2.6. *The graph* $G(Z_n, D_0)$ *is* $(n - \varphi(n) - 1)$ –*regular. Moreover the number of edges in* $G(Z_n, D_0)$ *is given by* $\frac{n}{2}(n \varphi(n)-1$).

Proof. By the Theorem 1.4.5, [\[15\]](#page-4-6). The graph $G(Z_n, D_0)$ is $(n - \varphi(n) - 1)$ – regular and the total number of edges in *G*(*Z_n*,*D*₀) is $\frac{|Z_n|(n-\phi(n)-1)}{2}$. That is, *G*(*Z_n*,*D*₀) is (*n*− $\phi(n)$ − 1) – regular and its size is $\frac{n(n-\varphi(n)-1)}{2}$.

Example 2.7. In the ring (Z_7, \oplus, \odot) , the set D_0 of zero-divisors *is the empty set and the graph contains only vertices . The graph of* $G(Z_7, D_0)$ *is given in Figure 1.*

Example 2.8. *In the ring* (Z_8, \oplus, \odot) , *the set* D_0 *of zero-divisors is the* $\{\overline{2}, \overline{4}, \overline{6}\}$ *. Since* $\overline{7} - \overline{3} = \overline{4} \in D_0$ *, there is an edge between* $\overline{3}$ and $\overline{7}$. Also, $\overline{5} - \overline{1} = \overline{4} \in D_0$ and there is an edge between $\overline{1}$ *and* 5*. Similarly other edges can be found and the graph of G*(*Z*8,*D*0) *is given in Figure 2.*

Example 2.9. In the ring (Z_{10}, \oplus, \odot) , the set D_0 of zero*divisors is the* $\{\overline{2}, \overline{4}, \overline{5}, \overline{6}, \overline{8}\}$ *and the graph of* $G(Z_{10}, D_0)$ *is given in Figure 3.*

Lemma 2.10. For a prime p, the graph $G(Z_p, D_0)$ contains *only isolated vertices.*

Proof. Let *p* be a prime. Then for every $r, 1 \le r \le p - 1$, $(r, p) = 1$ and the ring (Z_p, \oplus, \odot) has no zero-divisors, so that the edge set is empty and the graph has only isolated vertices. П

3. The disconnected property of the zero-divisor Cayley graph $G(Z_n,D_0)$, **where** *n* **is a power of a single prime**

When *n* is a power of a single prime say, $n = p^r$, *p* be a prime and $r > 1$, the zero-divisor Cayley graph $G(Z_{p^r}, D_0)$ has an interesting property, that, it is decomposed into disjoint union of *p* components.

Remark 3.1. *In the study of disconnected property of* $G(Z_{p^r}, D_0)$, where p is a prime and $r > 1$, is an integer, the *following decomposition of the vertex set* Z_{p^r} *of* $G(Z_{p^r}, D_0)$ *, as C*0,*C*1,*C*2,...,*Cp*−¹ *play a key role.*

$$
C_0 = \{ \overline{0}, \overline{p}, ..., \overline{ip}, ..., \overline{jp}, ..., (p^{r-1}-1)\overline{p} \},
$$

\n
$$
C_1 = \{ \overline{1}, \overline{p} + \overline{1}, ..., \overline{ip} + \overline{1}, ..., \overline{jp+1}, ..., (p^{r-1}-1)\overline{p} + \overline{1} \},
$$

\n
$$
C_2 = \{ \overline{2}, \overline{p} + \overline{2}, ..., \overline{ip} + \overline{2}, ..., \overline{jp+2}, ..., (p^{r-1}-1)\overline{p} + \overline{2} \},
$$

Lemma 3.4. *For* $0 \le k \le p-1$, *each* C_k *is a complete subgraph of* $G(Z_{p^r}, D_0)$.

Proof. For this one has to show that there is an edge between every pair of distinct vertices in C_k . To see this, let $i\overline{p}+\overline{k}$, $j\overline{p}+\overline{k} \in C_k$ for $0 \leq i < j \leq p^{r-1}-1$. Then,

$$
(j\overline{p} + \overline{k}) - (i\overline{p} + \overline{k}) = (j - i)\overline{p}.
$$

Since $(j - i)\overline{p}p^{r-1} = \overline{0}$, this shows $(j - i)\overline{p}$ is a zero divisor of (Z_{p^r}, \oplus, \odot) and $(j\overline{p} + k) - (i\overline{p} + k) \in D_0$, so that there is an edge between any pair of distinct vertices in C_k , proving that C_k is a complete subgraph of $G(Z_{p^r}, D_0)$. П

Lemma 3.5. For
$$
0 \leq k < l \leq p-1
$$
, $C_k \cap C_l = \emptyset$.

Proof. For $0 \le k < l \le p-1$, we have

$$
C_k = \{\overline{k}, \overline{p} + \overline{k}, 2\overline{p} + \overline{k}, \dots, i\overline{p} + \overline{k}, \dots, j\overline{p} + \overline{k}, \dots, (p^{r-1} - 1)\overline{p} + \overline{k}\},\
$$

and

$$
C_{p-1} = \{\overline{p-1},...,\overline{ip}+\overline{p-1},...,\overline{jp}+\overline{2},...,(p^{r-1}-1)\overline{p}+\overline{p-1}\}. C_l = \{\overline{l}, \overline{p}+\overline{l}, 2\overline{p}+\overline{l},...,\overline{ip}+\overline{l},...,\overline{jp}+\overline{l},...,(p^{r-1}-1)\overline{p}+\overline{l}\}.
$$

Lemma 3.2. For a prime p and an integer $r > 1$, the set *D*⁰ *of zero-divisors in the ring* (*Z^p ^r*,⊕,) *is given by* $D_0 = {\{\overline{p}, 2\overline{p}, ..., i\overline{p}, ..., j\overline{p}, ..., (p^{r-1}-1)\overline{p}\}}$ and the number of *zero-divisors of the ring* (Z_{p^r}, \oplus, \odot) *is* $p^{r-1} - 1$ *.*

. . .

Proof. For each integer *i*, $0 \le i \le p^{r-1} - 1$, \overline{ip} is a zerodivisor of the ring (Z_{p^r}, \oplus, \odot) , since $(\overline{ip})(p^{r-1}) = \overline{ip^r} = \overline{0}$. So, every element in the set

$$
D_0 = {\overline{p}, 2\overline{p}, ..., i\overline{p}, ..., j\overline{p}, ..., (p^{r-1}-1)\overline{p}},
$$

is a zero-divisors of ring (Z_{p^r}, \oplus, \odot) and it contains $p^{r-1} - 1$ elements. By the Theorem 2.4, the number of elements in the set *D*⁰ of zero-divisor of (Z_{p^r}, \oplus, \odot) is equal to $p^r - \varphi(p^r) - 1$, or, $p^r - (p^r - p^{r-1}) - 1 = p^{r-1} - 1$, since $\varphi(p^r) = p^r - p^{r-1}$. This shows that the set

$$
D_0 = \{ \overline{p}, 2\overline{p}, \ldots, \overline{p}, \ldots, \overline{p}, \ldots, (p^{r-1} - 1)\overline{p} \}
$$

is the set of zero-divisors of (Z_{p^r}, \oplus, \odot) , and the number of zero-divisors of (Z_{p^r}, \oplus, \odot) , is $p^{r-1} - 1$.

 \Box

Lemma 3.3. *For* $0 \le k \le p-1$, *, each* C_k *contains* p^{r-1} *distinct vertices of* $G(\mathsf{Z}_{p^r},D_0)$ *.*

Proof. For $0 \le k \le p-1$, consider the subset C_k of vertices of $G(Z_{p^r}, D_0)$ is given by

$$
C_k = \{\overline{k}, \overline{p} + \overline{k}, 2\overline{p} + \overline{k}, \dots, i\overline{p} + \overline{k}, \dots, j\overline{p} + \overline{k}, \dots, (p^{r-1} - 1)\overline{p} + \overline{k}\}.
$$

If possible, let $\bar{k} + i\bar{p} = \bar{k} + j\bar{p}$. For $i \neq j, 0 \leq i < j \leq p^{r-1} - 1$. Then $(j-i)\overline{p} = \overline{0}$. Since, $i \neq j, 0 \leq i < j \leq p^{r-1} - 1$, we have 0 ≤ *j*−*i* ≤ *p ^r*−¹ −1. But *o*(*p*) in (*Z^p ^r*,⊕) is *p r*−1 . So, for any positive integer $t \leq p^{r-1}, t\overline{p} \neq \overline{0}$ and thus, $(j - i)\overline{p} = \overline{0}$ with $j - i < p^{r-1}$ leads to a contradiction. Hence our assumption that $\overline{k} + i\overline{p} = \overline{k} + j\overline{p}$, for $i \neq j, 0 \leq i < j \leq p^{r-1} - 1$, is wrong and C_k contains p^{r-1} distinct elements. \Box

If possible, assume that $C_k \cap C_l \neq \emptyset$. Then, there exists *u* ∈ *C*^{*k*} ∩ *C*^{*l*}. Now *u* ∈ *C*^{*k*} implies that *u* = *k* + *i* \bar{p} for some $i, 0 \le i \le p^{r-1} - 1$. Similarly, $u \in C_l$, implies that $u = \overline{l} + j\overline{p}$ for some $j, 0 \le j \le p^{r-1}-1$. For definiteness we may assume that *i* < *j*. Then we have, $\bar{k} + i\bar{p} = u = \bar{k} + i\bar{p}$, or, $\bar{l} - \bar{k} + (j - j)$ (i) $\overline{p} = \overline{0}$. From this one gets $(\overline{l} - \overline{k})p^{r-1} + (j - i)\overline{p^r} = \overline{0}$, or, $(\bar{l} - \bar{k})p^{r-1} = \bar{0}$, since $\bar{p}^r = \bar{0}$. That is, $(l - k)p^{r-1} = \bar{0}$, since $\overline{t} = t\overline{1}$, for any $t, 1 < t < p^{r-1}$. Now $0 \le k < l \le p-1$, so that 0 ≤ *l* − *k* ≤ *p* − 1 < *p*. That is, $(l-k)p^{r-1} = \overline{0}$ with *l* − *k* < *p*. Since, $o(p^{r-1}) = p$, in (Z_{p^r}, \oplus) , this leads to a contradiction. So, our assumption that $\hat{C}_k \cap C_l \neq \emptyset$ is wrong and hence C_k and C_l are disjoint.

Lemma 3.6. *For* $0 \le k < l \le p-1$, *there is no edge between any vertex of* C_k *and any vertex of* C_l *.*

Proof. For $0 \le k < l \le p-1$, let $i\overline{p} + \overline{k} \in C_k$ and $j\overline{p} + \overline{l} \in C_l$. Then $(j\overline{p}+\overline{l})-(i\overline{p}+\overline{k})=(j-i)\overline{p}+(l-\overline{k})$. Since $0 \le k \le$ *p*−1, and $0 \le l \le p-1$, we have $l-k \le p-1 < p$, it follows that *l*−*k* is not a multiple of *p*. Hence (*j*−*i*)*p*+(*l*−*k*) is not a multiple of *p* so that it is not a be a zero-divisor of (Z_{p^r}, \oplus, \odot) . This shows that there is no edge between $i\bar{p} + k \in C_k$ and $j\overline{p}+l\in C_l$. П

Theorem 3.7. *For a prime p and an integer* $r > 1$ *, the graph* $G(Z_{p^r}, D_0)$ *contains p disjoint components of* $G(Z_{p^r}, D_0)$, *each of which is a complete subgraph of* $G(Z_{p^r}, D_0)$ *.*

Proof. Let $n = p^r$, $r > 1$, be an integer. Consider the decomposition of the vertex set of $G(\mathbb{Z}_{p^r}, D_0)$ as given in Remark 3.1. By the Lemma 3.4, there is no edge between any vertex of *C^k* and any vertex of C_l , for some $k, l, 0 \le k < l \le p-1$. Hence, the graph $G(Z_{p^r}, D_0)$ contains *p* number of components, and each of which is a complete subgraph of $G(Z_{p^r}, D_0)$. □

Example 3.8. *The graph G*(*Z*9,*D*0) *and its disjoint components are given in Figure 4 and and Figure 5 respectively.*

Example 3.9. *The graph* $G(Z_{16}, D_0)$ *and its disjoint components are given in Figure 6 and Figure 7 respectively.*

Figure 5: The disjoint components of $G(Z_9, D_0)$

4. The connected property of the zero-divisor Cayley graph *G*(*Zn*,*D*0), **where** *n* **is not a power of a single prime**

In this section, it is shown that the graph $G(Z_n, D_0)$, where *n* is not a power of a single prime, is a connected graph. For this, a decomposition of vertex set *V* of $G(Z_n, D_0)$, similar to that given in Remark 3.1, is considered. Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < ... < p_r$ are primes, $\alpha_i \geq 1, 1 < i \leq r$ are integers.

Remark 4.1. *Consider the following subsets of vertices V*₀,*V*₁,*V*₂,...,*V*_{*p*₁−1} *of the vertex set V of G*(Z_n , D_0).

$$
V_0 = \{ \overline{0}, \overline{p_1}, 2\overline{p_1}, ..., i\overline{p_1}, ..., (\frac{n-p_1}{p_1})\overline{p_1} \},
$$

\n
$$
V_1 = \{ \overline{p_2}, \overline{p_1} + \overline{p_2}, 2\overline{p_1} + \overline{p_2}, ..., i\overline{p_1} + \overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + \overline{p_2} \},
$$

\n
$$
V_2 = \{ 2\overline{p_2}, 2\overline{p_1} + 2\overline{p_2}, ..., i\overline{p_1} + 2\overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + 2\overline{p_2} \},
$$

$$
V_{p_1-1} = \{ (p_1-1)\overline{p_2}, ..., i\overline{p_1} + (p_1-1)\overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + (p_1-1)\overline{p_2} \}.
$$

. . .

Lemma 4.2. *For* $0 \le k \le p_1 - 1$ *, each* V_k *contains distinct vertices and the number of vertices in each* V_k *is* $\frac{n}{p_1}$ *.*

Proof. For
$$
0 \le k \le p_1 - 1
$$
, let

$$
V_k = \{k\overline{p_2}, \overline{p_1} + k\overline{p_2}, ..., i\overline{p_1} + k\overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + k\overline{p_2}\}.
$$

If possible, let $i\overline{p_1} + k\overline{p_2} = j\overline{p_1} + k\overline{p_2}$, for some *i*, *j* where 0 ≤ *i* < *j* ≤ $\frac{n-p_1}{p_1}$ $\frac{p_1}{p_1} < \frac{n}{p_1}$. Then $(j-i)\overline{p_1} = \overline{0}$. Since $j-i < \frac{n}{p_1}$, this implies that $(j-i)p_1 < n$, which leads to a contradiction.

Figure 7: The components of $G(Z_{16}, D_0)$

So, our assumption that $i\overline{p_1} + k\overline{p_2} = j\overline{p_1} + k\overline{p_2}$ is wrong and $\frac{1}{i}$ *p*₁ + *kp*₂ and $\frac{1}{j}$ *p*₁ + *kp*₂ are distinct. That is, each *V_k* contains *n*−*p*¹ $\frac{p_1}{p_1} + 1 = \frac{n}{p_1}$ distinct vertices of $G(Z_n, D_0)$. \Box

Lemma 4.3. *For* $0 \le k \le p_1 - 1$, *each* V_k *is a complete subgraph of* $G(Z_n, D_0)$.

Proof. Let $u, v \in V_k$. Then $u = i\overline{p_1} + k\overline{p_2}$ and $v = j\overline{p_1} + k\overline{p_2}$ for some $i, j, 0 \le i < j \le \frac{n-p_1}{p_1}$ $\frac{-p_1}{p_1}$. Then,

$$
u-v=(j\overline{p_1}+k\overline{p_2})-(i\overline{p_1}+k\overline{p_2})=(j-i)\overline{p_1}, 0\leq i
$$

Since $\overline{p_1}$ is a zero-divisor in the ring (Z_n, \oplus, \odot) , $r\overline{p_1}$ is also a zero-divisor of the ring (Z_n, \oplus, \odot) and this shows that *u* and *v* are adjacent, so that V_k is complete subgraph of $G(Z_n, D_0)$.

The following theorem establishes that, if *n* is not a power of a single prime then $G(Z_n, D_0)$ is connected.

Theorem 4.4. *Let* $n > 1$ *, be an integer, which is not a power of a single prime. Then the graph* $G(Z_n, D_0)$ *is a connected graph.*

Proof. Let $n > 1$, be an integer, which is not a power of a single prime and let $n = \prod_{i=1}^r p_i^{\alpha_i}$, where $p_1 < p_2 < ... < p_r$ are primes $\alpha_i \geq 1, 1 < i \leq r$ are integers.

Case i: Let $u, v \in V_l$, for some $l, 0 \le l \le p_1 - 1$. Then $u =$

 $i\overline{p_1} + l\overline{p_2}$ and $v = j\overline{p_1} + l\overline{p_2}$ for some $i, j, 0 \le i < j \le \frac{n-p_1}{p_1}$ $\frac{-p_1}{p_1}$. By the Lemma 3.2,

$$
u = \left[\overline{i}\overline{p_1} + l\overline{p_2}\right] - \left[(i+1)\overline{p_1} + l\overline{p_2}\right] - \dots - \left[j\overline{p_1} + l\overline{p_2}\right] = v
$$

is a path joining *u* and *v* and thus the graph $G(Z_n, D_0)$ is a connected graph.

Case ii: Let $u \in V_k$ and $v \in V_l$ for some $k, l, 0 \le k < l \le p_1 - 1$. Then $u = i\overline{p_1} + k\overline{p_2}$ and $v = j\overline{p_1} + l\overline{p_2}$ for some *i*, *j*, $0 \le i <$ $j \leq \frac{n-p_1}{n}$ $\frac{-p_1}{p_1}$. Consider $i\overline{p_1} + l\overline{p_2} \in V_l$. (This is possible since $i < j \leq \frac{n-p_1}{n_1}$ $\frac{-p_1}{p_1}$). Since V_l is a complete subgraph of $G(Z_n, D_0)$, there is an edge between $j\overline{p_1} + l\overline{p_2}$ and $i\overline{p_1} + l\overline{p_2}$. Further $(i\overline{p_1} + l\overline{p_2}) - (i\overline{p_1} + k\overline{p_2}) = (l - k)\overline{p_2}$ is also a zero-divisor of the ring (Z_n, \oplus, \odot) . So, there is an edge between $i\overline{p_1} + l\overline{p_2}$ and $i\overline{p_1} + k\overline{p_2}$. That is,

$$
u=[i\overline{p_1}+k\overline{p_2}]-[j\overline{p_1}+l\overline{p_2}]-[i\overline{p_1}+l\overline{p_2}]=v
$$

is a path joining *u* and *v* and thus the graph $G(Z_n, D_0)$ is a connected graph. \Box

Example 4.5. *In the graph* $G(Z_{10}, D_0)$ *, the set* D_0 *of zerodivisors is* $\{\overline{2}, \overline{4}, \overline{5}, \overline{6}, \overline{8}\}$ *. Here* $10 = 5.2$ *,* $p_1 = 2$ *and* $p_2 = 5$ *. Now the vertex set is the union of* V_0 *and* V_1 *, where* $V_0 =$ ${\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}}$ *and* $V_1 = {\{\overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{1}\}}$ *. Consider the two vertices* $\overline{4}$ *and* $\overline{7}$ *. The path* $\overline{4} - \overline{9} - \overline{7}$ *connects* $\overline{4}$ *and* $\overline{7}$ *. Similarly the vertices* $\overline{1}, \overline{5} \in V_1$ *are connected by the edge* $(\overline{1}, \overline{5})$ *. These paths are shown in Figure 8, by bold face edges.*

Acknowledgment

The authors express their thanks to Prof. L.Nagamuni Reddy for his valuable suggestions during the preparation of this paper.

References

- [1] S. Akbari, and A. Mohammadian, On zero-divisor graphs of finite rings, *J. Algebra*, (2007), 168-184.
- [2] S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, *J. Algebra* (2006), 462-479.
- [3] D. Anderson, and M. Naseer, Beck's Colouring of Commutative Ring, *J. Algebra (Grenoble)*, 159 (1983), 500- 514.
- [4] D. F. Anderson, M. C. Axtell, and Joe A. Jr. Stickles, Zero-divisor graphs in commutative rings, *M. Fontana et al. (eds.), Commutative Algebra: Noetherian and Non-Noetherian 23 Perspectives,* DOI 10.1007/978-1-4419- 6990-3- 2.
- [5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of commutative ring, *J. Algebra*, 217 (1999), 434- 447.
- [6] D. Anderson and M. Naseer, Beck's Colouring of Commutative Ring, *J. Algebra (Grenoble)*, 159 (1983), 500- 514.
- [7] M. Apostol, Introduction to Analytical Number Theory, *Springer International*, Student Edition (1989).
- [8] I. Beck , Colouring of commutative rings, *J. Algebra*, 116 (1998), 208-216.
- [9] P. Bierrizbeitia and R. E. Giudici, Counting pure k-cycles in sequences of Cayley graphs, *Discrite math.* 149, 11-18.
- [10] P. Bierrizbeitia and R. E. Giudici, On cycles in the sequence of unitary Cayley graphs, Reporte Techico No. 01-95, universided Simon Bolivear, *Depto*.*DeMathematics*,*Caracas*, Venezuela (1995)
- [11] J. A. Bondy and U. S. R, Murty, Graph theory with Applications, *Macillan*, London (1976).
- [12] R.Frucht, Graphs of degree three with a given abstract group, *Canada. J. Math*, (1949), 365-378.
- [13] J. A. Gallian, Contemporary Abstract Algebra, Narosa *publishing house*, 9th Edition (2018).
- [14] D. Konig, Theorie der endlichen and unedndlichen Graphen, *Leipzig* (1936), 168-184.
- [15] L. Madhavi, Studies on Domination Parameters and Enumeration of cycles in some arithmetic grpahs, Ph.D Thesis, Sri Venkateswara University, Tirupati, India, (2003).
- [16] B. Maheswari and L. Madhavi , Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs, *Chamchuri Journal of Mathematics,* Volume 1 (2009), 95-1036.
- [17] B. Maheswari and L. Madhavi, Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, *Graph Theory Notes of Newyork LIX,* (2010), 28-31. The Mathematical Association of America.
- [18] K.R. Parthasarathy and A. Mohammadian, Basic graph Theory, *Tata Mc.Graw-Hill Publishing Company Limited*, (1994).
- [19] P.S. Livingston, structure in zero-divisor Graphs of commutative rings, *J. Algebra* , Masters Thesis, The University of Tennessee, Knoxville, TN, December (1997).
- [20] N.O. Smith, Planar Zero-Divisor Graph, *International Journal of Commutative Rings*, (4) (2002), 73-869.
- [21] Wu. Tangsuo, On Directed Zero-Divisor Graphs of Finite Rings, *Discrete Mathematics,* 296(1) (2005), 73-86.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$