

https://doi.org/10.26637/MJM0703/0036

The zero-divisor Cayley graph of the residue class ring (Z_n, \oplus, \odot)

Jangiti Devendra¹, Levaku Madhavi²* and Tippaluri Nagalakshumma

Abstract

In this paper the notion of the zero-divisor Cayley graph $G(Z_n, D_0)$, where (Z_n, \oplus, \odot) is the ring of residue classes modulo $n, n \ge 1$, an integer and D_0 is the set of nonzero zero-divisors, is introduced and it is shown that $G(Z_n, D_0)$ can be decomposed into components, if n is a power of a single prime and it is connected, if n is a product of more than one prime power.

Keywords

Zero-Divisors, Symmetric set, Cayley Graph, Zero-divisor Cayley Graph

AMS Subject Classification 05C07,05C25,05C30,05C38, 05C40,20F65.

^{1,2*,3} Department of Applied Mathematics, Yogi Vemana University, Kadapa-516003, Andhra Pradesh, India. *Corresponding author: ²* Imadhaviyvu@gmail.com; Article History: Received 11 March 2019; Accepted 27 July 2019

©2019 MJM.

Contents

1 Introduction 590

- 2 Zero-divisor Cayley graph and its properties.....590

1. Introduction

The Cayley graph G(X, S) associated with the group (X, .)and its symmetric subset S (a subset S of the group (X, .) is called a symmetric subset, if $s^{-1} \in S$ for every $s \in S$) is introduced to study whether given a group (X, .), there is a graph Γ , whose automorphism group is isomorphic to the group (X, .)[14], and Frucht established this in [12]. For details see [18]. Later independent studies on Cayley graphs have been carried out by many researches [9, 10]. Madhavi [15] introduced Cayley graphs associated with the arithmetical functions, namely, the Euler totient function $\varphi(n)$, the quadratic residues modulo a prime p and the divisor function $d(n), n \ge 1$, an integer and obtained various properties of these graphs. Later Madhavi et al. [16, 17] studied various aspects of these graphs.

The Cayley graph G(X, S) associated with the group (X, .)and its symmetric subset *S* is the graph, whose vertex set is X and the edge set $E = \{(x, y) : either xy^{-1} \in S, or, yx^{-1} \in S\}$. If $e \notin S$, where *e* is the identity element of *X*, then G(X, S) is an undirected simple graph. Further G(X, S) is |S| – regular and contains $\frac{|X||S|}{2}$ edges [15].

Beck [8], Akbari and Mohammadian [1, 2], Anderson and Naseer [6], Anderson and Livingston [5], Livingston [19] Smith [20], Tongsuo [21], and others studied the zerodivisor graphs of commutative rings. Given a commutative ring *R* with identity, they defined the zero-divisor graph $\Gamma(R)$ as the graph, whose vertex set is the set $Z(R)^*$, the set of nonzero zero-divisors of *R* and the edge set is the set of all ordered pairs (x, y) of elements $x, y \in Z(R)^*$, such that xy = 0and studied the connectedness, the diameter, the girth , the automorphisms of $\Gamma(R)$ and other prperties under conditions on the ring *R*. Our attempt is to associate a Cayley graph with the set of nonzero zero-divisors of a ring (R, +, .) and study these graphs, with particular reference to the ring (Z_n, \oplus, \odot) of residue classes modulo $n \ge 1$, an integer. The terminology and notions that are used in this paper can be found in [11] for graph theory, [13] for algebra and [7] for number theory.

2. Zero-divisor Cayley graph and its properties

In this paper we study the Cayley graph associated with the set of zero-divisors in the ring (Z_n, \oplus, \odot) of residue clasess modulo a positive integer *n*. We start with some properties of the zero-divisors of a ring that are needed in our study.

Definition 2.1. Let (R, +, .) be a commutative ring. An element $x \in R, x \neq 0$, is called a zero-divisor in (R, +, .), if there exists $y \in R, y \neq 0$, such that xy = 0. The set of all zero-divisors of the ring (R, +, .) is denoted by D_0 .

Lemma 2.2. Let (R, +, .) be a commutative ring. The set D_0 of the zero-divisors in (R, +, .) is a symmetric subset of the group (R, +).

Proof. Let $x \in R$ be a zero-divisor in the ring (R, +, .). Then $x \neq 0$ and there exists $y \in R, y \neq 0$, such that xy = 0 = yx. Consider the inverse -x of x in the group (R, +). Then $-x \neq 0$ and from xy = 0, one gets (-x)y = -(xy) = 0. So -x is also a zero-divisor (R, +, .). Hence D_0 is a symmetric subset of the group (R, +).

Lemma 2.3. Let $n \ge 1$, be an integer. A positive integer r is not relatively prime to n if, and only if, r is a zero-divisor in the ring (Z_n, \oplus, \odot) .

Proof. Let $n \ge 1$, be an integer and let r > 1, be a positive integer less than are equal to n such that $(n, r) \ne 1$. Then there exists an integer s > 1, such that (r, n) = s, so that s/r and s/n. So, n = st and r = sl, for some integers l > 1, t > 1. That is, r = sl = (n/t)l, or, rt = nl. This shows that $\overline{rt} = \overline{nl}$, or, $\overline{r} \odot \overline{t} = \overline{n} \odot \overline{l} = \overline{0} \odot \overline{l} = \overline{0}$. That is, there is $\overline{t} \in Z_n$, $\overline{t} \ne 0$ such that $\overline{r} \odot \overline{t} = \overline{0}$, so that \overline{r} is a zero-divisor in the ring (Z_n, \oplus, \odot) .

Conversely, let \overline{r} be a zero-divisor in the ring (Z_n, \oplus, \odot) . Then there exists $\overline{s} \neq \overline{0}$ such that $\overline{r} \odot \overline{s} = \overline{0} = \overline{s} \odot \overline{r}$.

Suppose (r, n) = 1. Then there exists integers x and y such that rx + ny = 1. This gives srx + sny = s, or, $\overline{srx + sny} = \overline{s}$, or, $(\overline{s} \odot \overline{r}) \odot \overline{x} \oplus (\overline{s} \odot \overline{n}) \odot \overline{y} = \overline{s}$. Since $\overline{s} \odot \overline{r} = \overline{0}$ and $\overline{n} = \overline{0}$, we get $\overline{s} \neq \overline{0}$ and this leads to a contradiction to fact that $\overline{s} \neq \overline{0}$. So $(r, n) \neq 1$.

Theorem 2.4. For $n \ge 1$, an integer, the number of zerodivisors of the ring (Z_n, \oplus, \odot) is $n - \varphi(n) - 1$.

Proof. By the Lemma 2.3, for any positive integer $n \ge 1$, the integer r, 1 < r < n, is not a relatively prime to n if, and only if, r is a zero-divisor in the ring (Z_n, \oplus, \odot) .

For any positive integer $n \ge 1$, there are $\varphi(n)$ number of integers less than *n* and relatively prime to *n*. So, the number of numbers which are less than *n* and not relatively prime to *n* is equal to $n - \varphi(n)$. Also by the definition of the zero-divisor, $\overline{0}$ is not a zero-divisor in the ring (Z_n, \oplus, \odot) , so that the number of zero-divisors in the ring (Z_n, \oplus, \odot) is $n - \varphi(n) - 1$.

By the Lemma 2.2, the set D_0 of zero-divisors of the ring (Z_n, \oplus, \odot) is a symmetric subset of the group (Z_n, \oplus) . So one can think of Cayley graph associated with the group (Z_n, \oplus) and its symmetric subset D_0 and this is defined as follows.

Definition 2.5. Consider the group (Z_n, \oplus) and its symmetric subset D_0 of zero-divisors in the ring (Z_n, \oplus, \odot) . The graph G whose vertex set $V = Z_n = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}\}$ and whose edge set $E = \{(x, y) : \text{either } x - y \in D_0, \text{or}, y - x \in D_0\}$ is defined as the **zero-divisor Cayley graph** and it is denoted by $G(Z_n, D_0)$.

Lemma 2.6. The graph $G(Z_n, D_0)$ is $(n - \varphi(n) - 1)$ -regular. Moreover the number of edges in $G(Z_n, D_0)$ is given by $\frac{n}{2}(n - \varphi(n) - 1)$.

Proof. By the Theorem 1.4.5, [15]. The graph $G(Z_n, D_0)$ is $(n - \varphi(n) - 1) -$ regular and the total number of edges in $G(Z_n, D_0)$ is $\frac{|Z_n|(n - \varphi(n) - 1)}{2}$. That is, $G(Z_n, D_0)$ is $(n - \varphi(n) - 1) -$ regular and its size is $\frac{n(n - \varphi(n) - 1)}{2}$.

Example 2.7. In the ring (Z_7, \oplus, \odot) , the set D_0 of zero-divisors is the empty set and the graph contains only vertices. The graph of $G(Z_7, D_0)$ is given in Figure 1.

Example 2.8. In the ring (Z_8, \oplus, \odot) , the set D_0 of zero-divisors is the $\{\overline{2}, \overline{4}, \overline{6}\}$. Since $\overline{7} - \overline{3} = \overline{4} \in D_0$, there is an edge between $\overline{3}$ and $\overline{7}$. Also, $\overline{5} - \overline{1} = \overline{4} \in D_0$ and there is an edge between $\overline{1}$ and $\overline{5}$. Similarly other edges can be found and the graph of $G(Z_8, D_0)$ is given in Figure 2.

Example 2.9. In the ring (Z_{10}, \oplus, \odot) , the set D_0 of zerodivisors is the $\{\overline{2}, \overline{4}, \overline{5}, \overline{6}, \overline{8}\}$ and the graph of $G(Z_{10}, D_0)$ is given in Figure 3.

Lemma 2.10. For a prime p, the graph $G(Z_p, D_0)$ contains only isolated vertices.

Proof. Let *p* be a prime. Then for every $r, 1 \le r \le p-1$, (r, p) = 1 and the ring (Z_p, \oplus, \odot) has no zero-divisors, so that the edge set is empty and the graph has only isolated vertices.

3. The disconnected property of the zero-divisor Cayley graph $G(Z_n, D_0)$, where *n* is a power of a single prime

When *n* is a power of a single prime say, $n = p^r$, *p* be a prime and r > 1, the zero-divisor Cayley graph $G(Z_{p^r}, D_0)$ has an interesting property, that, it is decomposed into disjoint union of *p* components.

Remark 3.1. In the study of disconnected property of $G(Z_{p^r}, D_0)$, where p is a prime and r > 1, is an integer, the following decomposition of the vertex set Z_{p^r} of $G(Z_{p^r}, D_0)$, as $C_0, C_1, C_2, ..., C_{p-1}$ play a key role.

 $\begin{array}{l} C_{0} = \{\overline{0}, \overline{p}, ..., i\overline{p}, ..., j\overline{p}, ..., (p^{r-1}-1)\overline{p}\}, \\ C_{1} = \{\overline{1}, \overline{p}+\overline{1}, ..., i\overline{p}+\overline{1}, ..., j\overline{p}+\overline{1}, ..., (p^{r-1}-1)\overline{p}+\overline{1}\}, \\ C_{2} = \{\overline{2}, \overline{p}+\overline{2}, ..., i\overline{p}+\overline{2}, ..., j\overline{p}+\overline{2}, ..., (p^{r-1}-1)\overline{p}+\overline{2}\}, \end{array}$

Lemma 3.4. For $0 \le k \le p-1$, each C_k is a complete subgraph of $G(Z_{p^r}, D_0)$.

Proof. For this one has to show that there is an edge between every pair of distinct vertices in C_k . To see this, let $i\overline{p} + \overline{k}, j\overline{p} + \overline{k} \in C_k$ for $0 \le i < j \le p^{r-1} - 1$. Then,

$$(j\overline{p}+\overline{k})-(i\overline{p}+\overline{k})=(j-i)\overline{p}.$$

Since $(j-i)\overline{p}p^{r-1} = \overline{0}$, this shows $(j-i)\overline{p}$ is a zero divisor of (Z_{p^r}, \oplus, \odot) and $(j\overline{p} + \overline{k}) - (i\overline{p} + \overline{k}) \in D_0$, so that there is an edge between any pair of distinct vertices in C_k , proving that C_k is a complete subgraph of $G(Z_{p^r}, D_0)$.

Lemma 3.5. For
$$0 \le k < l \le p - 1, C_k \cap C_l = \phi$$
.

Proof. For $0 \le k < l \le p - 1$, we have

$$C_{k} = \{\overline{k}, \overline{p} + \overline{k}, 2\overline{p} + \overline{k}, ..., i\overline{p} + \overline{k}, ..., j\overline{p} + \overline{k}, ..., (p^{r-1} - 1)\overline{p} + \overline{k}\},$$

and

$$C_{p-1} = \{\overline{p-1}, ..., i\overline{p} + \overline{p-1}, ..., j\overline{p} + \overline{2}, ..., (p^{r-1}-1)\overline{p} + \overline{p-1}\}. C_l = \{\overline{l}, \overline{p} + \overline{l}, 2\overline{p} + \overline{l}, ..., i\overline{p} + \overline{l}, ..., j\overline{p} + \overline{l}, ..., (p^{r-1}-1)\overline{p} + \overline{l}\}.$$

Lemma 3.2. For a prime p and an integer r > 1, the set D_0 of zero-divisors in the ring (Z_{p^r}, \oplus, \odot) is given by $D_0 = \{\overline{p}, 2\overline{p}, ..., i\overline{p}, ..., j\overline{p}, ..., (p^{r-1}-1)\overline{p}\}$ and the number of zero-divisors of the ring (Z_{p^r}, \oplus, \odot) is $p^{r-1} - 1$.

Proof. For each integer i, $0 \le i \le p^{r-1} - 1$, \overline{ip} is a zerodivisor of the ring (Z_{p^r}, \oplus, \odot) , since $(\overline{ip})(\overline{p^{r-1}}) = \overline{ip^r} = \overline{0}$. So, every element in the set

$$D_0 = \{\overline{p}, 2\overline{p}, \dots, i\overline{p}, \dots, j\overline{p}, \dots, (p^{r-1}-1)\overline{p}\},\$$

is a zero-divisors of ring (Z_{p^r}, \oplus, \odot) and it contains $p^{r-1} - 1$ elements. By the Theorem 2.4, the number of elements in the set D_0 of zero-divisor of (Z_{p^r}, \oplus, \odot) is equal to $p^r - \varphi(p^r) - 1$, or, $p^r - (p^r - p^{r-1}) - 1 = p^{r-1} - 1$, since $\varphi(p^r) = p^r - p^{r-1}$. This shows that the set

$$D_0 = \{\overline{p}, 2\overline{p}, ..., i\overline{p}, ..., j\overline{p}, ..., (p^{r-1}-1)\overline{p}\}$$

is the set of zero-divisors of (Z_{p^r}, \oplus, \odot) , and the number of zero-divisors of (Z_{p^r}, \oplus, \odot) , is $p^{r-1} - 1$.

Lemma 3.3. For $0 \le k \le p-1$, , each C_k contains p^{r-1} distinct vertices of $G(Z_{p^r}, D_0)$.

Proof. For $0 \le k \le p-1$, consider the subset C_k of vertices of $G(Z_{p^r}, D_0)$ is given by

$$C_k = \{\overline{k}, \overline{p} + \overline{k}, 2\overline{p} + \overline{k}, ..., i\overline{p} + \overline{k}, ..., j\overline{p} + \overline{k}, ..., (p^{r-1} - 1)\overline{p} + \overline{k}\}.$$

If possible, let $\overline{k} + i\overline{p} = \overline{k} + j\overline{p}$. For $i \neq j, 0 \leq i < j \leq p^{r-1} - 1$. Then $(j-i)\overline{p} = \overline{0}$. Since, $i \neq j, 0 \leq i < j \leq p^{r-1} - 1$, we have $0 \leq j-i \leq p^{r-1} - 1$. But o(p) in (Z_{p^r}, \oplus) is p^{r-1} . So, for any positive integer $t \leq p^{r-1}, t\overline{p} \neq \overline{0}$ and thus, $(j-i)\overline{p} = \overline{0}$ with $j-i < p^{r-1}$ leads to a contradiction. Hence our assumption that $\overline{k} + i\overline{p} = \overline{k} + j\overline{p}$, for $i \neq j, 0 \leq i < j \leq p^{r-1} - 1$, is wrong and C_k contains p^{r-1} distinct elements. If possible, assume that $C_k \cap C_l \neq \phi$. Then, there exists $u \in C_k \cap C_l$. Now $u \in C_k$ implies that $u = \overline{k} + i\overline{p}$ for some $i, 0 \leq i \leq p^{r-1} - 1$. Similarly, $u \in C_l$, implies that $u = \overline{l} + j\overline{p}$ for some $j, 0 \leq j \leq p^{r-1} - 1$. For definiteness we may assume that i < j. Then we have, $\overline{k} + i\overline{p} = u = \overline{k} + i\overline{p}$, or, $\overline{l} - \overline{k} + (j - i)\overline{p} = \overline{0}$. From this one gets $(\overline{l} - \overline{k})\overline{p^{r-1}} + (j - i)\overline{p^r} = \overline{0}$, or, $(\overline{l} - \overline{k})\overline{p^{r-1}} = \overline{0}$, since $\overline{p^r} = \overline{0}$. That is, $(l - k)\overline{p^{r-1}} = \overline{0}$, since $\overline{t} = t\overline{1}$, for any $t, 1 < t < p^{r-1}$. Now $0 \leq k < l \leq p - 1$, so that $0 \leq l - k \leq p - 1 < p$. That is, $(l - k)\overline{p^{r-1}} = \overline{0}$ with l - k < p. Since, $o(\overline{p^{r-1}}) = p$, in (Z_{p^r}, \oplus) , this leads to a contradiction. So, our assumption that $C_k \cap C_l \neq \phi$ is wrong and hence C_k and C_l are disjoint.

Lemma 3.6. For $0 \le k < l \le p-1$, there is no edge between any vertex of C_k and any vertex of C_l .

Proof. For $0 \le k < l \le p-1$, let $i\overline{p} + \overline{k} \in C_k$ and $j\overline{p} + \overline{l} \in C_l$. Then $(j\overline{p} + \overline{l}) - (i\overline{p} + \overline{k}) = (j-i)\overline{p} + (\overline{l} - \overline{k})$. Since $0 \le k \le p-1$, and $0 \le l \le p-1$, we have $l-k \le p-1 < p$, it follows that l-k is not a multiple of p. Hence (j-i)p + (l-k) is not a multiple of p so that it is not a be a zero-divisor of (Z_{p^r}, \oplus, \odot) . This shows that there is no edge between $i\overline{p} + \overline{k} \in C_k$ and $j\overline{p} + \overline{l} \in C_l$.

Theorem 3.7. For a prime p and an integer r > 1, the graph $G(Z_{p^r}, D_0)$ contains p disjoint components of $G(Z_{p^r}, D_0)$, each of which is a complete subgraph of $G(Z_{p^r}, D_0)$.

Proof. Let $n = p^r$, r > 1, be an integer. Consider the decomposition of the vertex set of $G(Z_{p^r}, D_0)$ as given in Remark 3.1. By the Lemma 3.4, there is no edge between any vertex of C_k and any vertex of C_l , for some $k, l, 0 \le k < l \le p - 1$. Hence, the graph $G(Z_{p^r}, D_0)$ contains p number of components, and each of which is a complete subgraph of $G(Z_{p^r}, D_0)$.

Example 3.8. The graph $G(Z_9, D_0)$ and its disjoint components are given in Figure 4 and and Figure 5 respectively.

Example 3.9. The graph $G(Z_{16}, D_0)$ and its disjoint components are given in Figure 6 and Figure 7 respectively.

Figure 5: The disjoint components of $G(Z_9, D_0)$

4. The connected property of the zero-divisor Cayley graph $G(Z_n, D_0)$, where *n* is not a power of a single prime

In this section, it is shown that the graph $G(Z_n, D_0)$, where n is not a power of a single prime, is a connected graph. For this, a decomposition of vertex set V of $G(Z_n, D_0)$, similar to that given in Remark 3.1, is considered. Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < ... < p_r$ are primes, $\alpha_i \ge 1, 1 < i \le r$ are integers.

Remark 4.1. Consider the following subsets of vertices $V_0, V_1, V_2, ..., V_{p_1-1}$ of the vertex set V of $G(Z_n, D_0)$.

$$\begin{split} V_0 &= \{\overline{0}, \overline{p_1}, 2\overline{p_1}, ..., i\overline{p_1}, ..., (\frac{n-p_1}{p_1})\overline{p_1}\},\\ V_1 &= \{\overline{p_2}, \overline{p_1} + \overline{p_2}, 2\overline{p_1} + \overline{p_2}, ..., i\overline{p_1} + \overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + \overline{p_2}\}\\ V_2 &= \{2\overline{p_2}, 2\overline{p_1} + 2\overline{p_2}, ..., i\overline{p_1} + 2\overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + 2\overline{p_2}\}, \end{split}$$

$$V_{p_1-1} = \{(p_1-1)\overline{p_2}, ..., i\overline{p_1} + (p_1-1)\overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + (p_1-1)\overline{p_2}\}.$$

÷

Lemma 4.2. For $0 \le k \le p_1 - 1$, each V_k contains distinct vertices and the number of vertices in each V_k is $\frac{n}{p_1}$.

Proof. For
$$0 \le k \le p_1 - 1$$
, let

$$V_k = \{k\overline{p_2}, \overline{p_1} + k\overline{p_2}, ..., i\overline{p_1} + k\overline{p_2}, ..., (\frac{n-p_1}{p_1})\overline{p_1} + k\overline{p_2}\}.$$

If possible, let $i\overline{p_1} + k\overline{p_2} = j\overline{p_1} + k\overline{p_2}$, for some i, j where $0 \le i < j \le \frac{n-p_1}{p_1} < \frac{n}{p_1}$. Then $(j-i)\overline{p_1} = \overline{0}$. Since $j-i < \frac{n}{p_1}$, this implies that $(j-i)p_1 < n$, which leads to a contradiction.

Figure 7: The components of $G(Z_{16}, D_0)$

So, our assumption that $i\overline{p_1} + k\overline{p_2} = j\overline{p_1} + k\overline{p_2}$ is wrong and $i\overline{p_1} + k\overline{p_2}$ and $j\overline{p_1} + k\overline{p_2}$ are distinct. That is, each V_k contains $\frac{n-p_1}{p_1} + 1 = \frac{n}{p_1}$ distinct vertices of $G(Z_n, D_0)$.

Lemma 4.3. For $0 \le k \le p_1 - 1$, each V_k is a complete subgraph of $G(Z_n, D_0)$.

Proof. Let $u, v \in V_k$. Then $u = i\overline{p_1} + k\overline{p_2}$ and $v = j\overline{p_1} + k\overline{p_2}$, for some $i, j, 0 \le i < j \le \frac{n-p_1}{p_1}$. Then,

$$u - v = (j\overline{p_1} + k\overline{p_2}) - (i\overline{p_1} + k\overline{p_2}) = (j - i)\overline{p_1}, 0 \le i < j \le \frac{n - p_1}{p_1}.$$

Since $\overline{p_1}$ is a zero-divisor in the ring (Z_n, \oplus, \odot) , $r\overline{p_1}$ is also a zero-divisor of the ring (Z_n, \oplus, \odot) and this shows that *u* and *v* are adjacent, so that V_k is complete subgraph of $G(Z_n, D_0)$.

The following theorem establishes that, if *n* is not a power of a single prime then $G(Z_n, D_0)$ is connected.

Theorem 4.4. Let n > 1, be an integer, which is not a power of a single prime. Then the graph $G(Z_n, D_0)$ is a connected graph.

Proof. Let n > 1, be an integer, which is not a power of a single prime and let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < ... < p_r$ are primes $\alpha_i \ge 1, 1 < i \le r$ are integers. Case i: Let $u, v \in V_l$, for some $l, 0 \le l \le p_1 - 1$. Then u =

 $i\overline{p_1} + l\overline{p_2}$ and $v = j\overline{p_1} + l\overline{p_2}$ for some $i, j, 0 \le i < j \le \frac{n-p_1}{p_1}$. By the Lemma 3.2,

$$u = [i\overline{p_1} + l\overline{p_2}] - [(i+1)\overline{p_1} + l\overline{p_2}] - \dots - [j\overline{p_1} + l\overline{p_2}] = v$$

is a path joining u and v and thus the graph $G(Z_n, D_0)$ is a connected graph.

Case ii: Let $u \in V_k$ and $v \in V_l$ for some $k, l, 0 \le k < l \le p_1 - 1$. Then $u = i\overline{p_1} + k\overline{p_2}$ and $v = j\overline{p_1} + l\overline{p_2}$ for some $i, j, 0 \le i < j \le \frac{n-p_1}{p_1}$. Consider $i\overline{p_1} + l\overline{p_2} \in V_l$. (This is possible since $i < j \le \frac{n-p_1}{p_1}$). Since V_l is a complete subgraph of $G(Z_n, D_0)$, there is an edge between $j\overline{p_1} + l\overline{p_2}$ and $i\overline{p_1} + l\overline{p_2}$. Further $(i\overline{p_1} + l\overline{p_2}) - (i\overline{p_1} + k\overline{p_2}) = (l-k)\overline{p_2}$ is also a zero-divisor of the ring (Z_n, \oplus, \odot) . So, there is an edge between $i\overline{p_1} + l\overline{p_2}$ and $i\overline{p_1} + l\overline{p_2}$.

$$u = [i\overline{p_1} + k\overline{p_2}] - [j\overline{p_1} + l\overline{p_2}] - [i\overline{p_1} + l\overline{p_2}] = v$$

is a path joining u and v and thus the graph $G(Z_n, D_0)$ is a connected graph.

Example 4.5. In the graph $G(Z_{10}, D_0)$, the set D_0 of zerodivisors is $\{\overline{2}, \overline{4}, \overline{5}, \overline{6}, \overline{8}\}$. Here 10 = 5.2, $p_1 = 2$ and $p_2 = 5$. Now the vertex set is the union of V_0 and V_1 , where $V_0 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ and $V_1 = \{\overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{1}\}$. Consider the two vertices $\overline{4}$ and $\overline{7}$. The path $\overline{4} - \overline{9} - \overline{7}$ connects $\overline{4}$ and $\overline{7}$. Similarly the vertices $\overline{1}, \overline{5} \in V_1$ are connected by the edge $(\overline{1}, \overline{5})$. These paths are shown in Figure 8, by bold face edges.

Acknowledgment

The authors express their thanks to Prof. L.Nagamuni Reddy for his valuable suggestions during the preparation of this paper.

References

- ^[1] S. Akbari, and A. Mohammadian, On zero-divisor graphs of finite rings, *J. Algebra*, (2007), 168-184.
- ^[2] S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings, *J. Algebra* (2006), 462-479.
- [3] D. Anderson, and M. Naseer, Beck's Colouring of Commutative Ring, J. Algebra (Grenoble), 159 (1983), 500-514.

- [4] D. F. Anderson, M. C. Axtell, and Joe A. Jr. Stickles, Zero-divisor graphs in commutative rings, *M. Fontana et al. (eds.), Commutative Algebra: Noetherian and Non-Noetherian 23 Perspectives*, DOI 10.1007/978-1-4419-6990-3-2.
- [5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of commutative ring, J. Algebra, 217 (1999), 434-447.
- [6] D. Anderson and M. Naseer, Beck's Colouring of Commutative Ring, J. Algebra (Grenoble), 159 (1983), 500-514.
- [7] M. Apostol, Introduction to Analytical Number Theory, Springer International, Student Edition (1989).
- [8] I. Beck, Colouring of commutative rings, *J. Algebra*, 116 (1998), 208-216.
- ^[9] P. Bierrizbeitia and R. E. Giudici, Counting pure k-cycles in sequences of Cayley graphs, *Discrite math.* 149, 11-18.
- P. Bierrizbeitia and R. E. Giudici, On cycles in the sequence of unitary Cayley graphs, Reporte Techico No. 01-95, universided Simon Bolivear, *Depto.DeMathematics, Caracas*, Venezuela (1995)
- ^[11] J. A. Bondy and U. S. R, Murty, Graph theory with Applications, *Macillan*, London (1976).
- ^[12] R.Frucht, Graphs of degree three with a given abstract group, *Canada. J. Math*, (1949), 365-378.
- ^[13] J. A. Gallian, Contemporary Abstract Algebra, Narosa *publishing house*, 9th Edition (2018).
- ^[14] D. Konig, Theorie der endlichen and unedndlichen Graphen, *Leipzig* (1936), 168-184.
- [15] L. Madhavi, Studies on Domination Parameters and Enumeration of cycles in some arithmetic grpahs, Ph.D Thesis, Sri Venkateswara University, Tirupati, India, (2003).
- [16] B. Maheswari and L. Madhavi, Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs, *Chamchuri Journal of Mathematics*, Volume 1 (2009), 95-1036.
- [17] B. Maheswari and L. Madhavi, Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, *Graph Theory Notes of Newyork LIX*, (2010), 28-31. The Mathematical Association of America.
- [18] K.R. Parthasarathy and A. Mohammadian, Basic graph Theory, *Tata Mc.Graw-Hill Publishing Company Limited*, (1994).
- [19] P.S. Livingston, structure in zero-divisor Graphs of commutative rings, J. Algebra, Masters Thesis, The University of Tennessee, Knoxville, TN, December (1997).
- [20] N.O. Smith, Planar Zero-Divisor Graph, International Journal of Commutative Rings, (4) (2002), 73-869.
- [21] Wu. Tangsuo, On Directed Zero-Divisor Graphs of Finite Rings, *Discrete Mathematics*, 296(1) (2005), 73-86.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********