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Numerical solution of nonlinear fractional
integro-differential equation by Collocation method
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Abstract
In this paper, we presents the Collocation Method with the help of shifted Chebyshev polynomials and shifted
Legendre polynomials for the numerical solution of nonlinear fractional integro-differential equations (NFIDEs).
The method introduces a promising tool for solving many NFIDEs with the help of Newton’s iteration method.
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1. Introduction
It is now a days well established that several real life phe-

nomena are better described by fractional differential equa-
tions and hence the study of these type of equations is very
important due to their frequent appearance in various appli-
cations in fluid mechanics, biology, physics and engineering
see [1, 2, 4]. Most of the fractional differential equations do
not have exact analytic solutions and therefore, approximating
or numerical techniques are generally applied. Consequently,
considerable attention has been given to the solutions of frac-
tional differential equations and fractional integral equations
using different numerical methods such as Predictor Correc-
tor method, Quadrature methods, Fractional Euler, Fractional

Trapezoidal method, Legendre spline interpolation method,
Adomain decomposition method, Taylor series method, Pi-
card’s iterative method, Variational principle method, Iterative
methods, Laplace transform, Mellin transform, Collocation
method, Galerkin method and many others. Many recent pa-
pers have dealt with the solutions of fractional differential
equations by using above methods, see [5–7, 9, 14, 20, 21] and
some of the references cited therein.

As Chebyshev polynomials and Legendre polynomials are
well known family of orthogonal polynomials on the interval
[−1,1] that have many applications and widely used because of
their good properties in the approximation of functions. This
motivated to find a numerical solution of nonlinear fractional
integrodifferential equations using Collocation method with
the help of Chebyshev polynomials and Legendre polynomials
to reduce to system of nonlinear equations and which can be
solved by Newtons Iterative method.

The aim of the present paper is to determine the numerical
solution of the nonlinear fractional integrodifferential equation
of the type

Dα y(x) = g(x)+
∫ 1

0
K(x, t) f (y(t))dt, (1.1)

y(i)(0) = δ(i), i = 0,1, . . . , (1.2)

for 0 ≤ x, t ≤ 1 and n− 1 < α ≤ n ∈ N where Dα y(x) indi-
cates the α-th Caputo fractional derivatives of y(x),g(x) and
K(x, t) are given functions, x and t are real variables varying
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in the interval [0,1] and y(x) is the unknown function to be
determined.

The paper is organized as follows: Section 2, presents the
preliminaries and definitions. Section 3, dedicates the solution
of nonlinear fractional integrodifferential equation by Colloca-
tion method with the help of shifted Chebyshev polynomials.
Section 4, obtains the solution of nonlinear fractional integrod-
ifferential equation by Collocation method with the help of
shifted Legendre polynomials. Section 5, focuses on some
examples to illustrate the theory.

2. Preliminaries and Definitions
In this section we recall some definitions and properties of
fractional derivatives and fractional integrals [13, 16].

Definition 1. A real function f (x),x > 0, is said to be in the
space Cµ ,µ ∈ R, if there exists a real number p > µ such that
f (x) = xp f1(x), where f1(x) ∈C[0,1).

Definition 2. A real function f (x),x > 0, is said to be in the
space Cm

µ ,m ∈ NU{0} if and only if f (m) ∈Cµ .

Definition 3. The fractional integral of order α with the lower
limit zero for a function f is defined as

Iα f (x) =
1

Γ(α)

∫ x

0

f (t)
(x− t)1−α

dt, x > 0, α > 0, (2.1)

provided the right side is point-wise defined on [0,∞), where
Γ(·) is the gamma function.

Definition 4. The Riemann-Liouville derivative of order α

with the lower limit zero for a function f : [0,∞)→ R can be
written as

LDα f (x) =
1

Γ(n−α)

dn

dxn

∫ x

0

f (t)
(x− t)α+1−n dt, x > 0, (2.2)

for n−1 < α < n.

Definition 5. The Caputo derivative of order α for a function
f : [0,∞)→ R can be written as

Dα f (x) =


In−α f n(x), n−1 < α ≤ n, n ∈ N,

Dn f (x)
Dxn , α = n.

(2.3)

3. Solution of NFIDEs by Collocation
method with the help of shifted

Chebyshev polynomials
The well known Chebyshev polynomials are defined on the
interval [−1,1] and can be determined with the use of the
following recurrence formula

Tn(z) = 2zTn−1(z)−Tn−2(z), n = 2,3, . . .

with

T0(z) = 1, T1(z) = z.

The analytic form of the Chebyshev polynomials Tn(z) of
degree n is given by

Tn(z) = n
[ n

2 ]

∑
i=0

(−1)i2n−2i−1 (n− i−1)!
(i)!(n−2i)!

zn−2i (3.1)

where [ n
2 ] denotes the integer part of n/2.

The orthogonality condition is

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =


π, f or i = j = 0;
π

2
, f or i = j 6= 0;

0, f or i 6= j.

(3.2)

In order to use these polynomials on the interval [0,1] we
define the so called shifted Chebyshev polynomials by intro-
ducing change of variables z = 2x−1. The shifted Chebyshev
polynomials Tn(2x−1) be denoted by T ∗n (x). Then T ∗n (x)can
be obtained as follows

T ∗n (x) = 2(2x−1)T ∗n−1(x)−T ∗n−2(x), (3.3)

for n = 2,3, . . . with initial conditions

T ∗0 (x) = 1, T ∗1 (x) = 2x−1. (3.4)

The analytic form of shifted Chebyshev polynomials T ∗n (x) of
degree n is given by

T ∗n (x) = n
n

∑
k=0

(−1)n−k 22k(n+ k−1)!
(2k)!(n− k)!

xk, (3.5)

for n = 2,3, . . .
The function y(x), which is square integrable functions in [0,1],
may be expressed in terms of shifted Chebyshev polynomials
as

y(x) =
∞

∑
i=0

aiT ∗i (x), (3.6)

where the coefficients ai are given by

a0 =
1
π

∫ 1

0

y(x)T ∗0 (x)√
x− x2

dx, ai =
2
π

∫ 1

0

y(x)T ∗i (x)√
x− x2

dx,

for i = 1,2, . . .. In practice, only the first (n+ 1) terms of
shifted Chebyshev polynomials are considered. Then we have

yn(x)∼=
n

∑
i=0

aiT ∗i (x), 0≤ x≤ 1. (3.7)

Theorem 3.1 (Chebyshev Truncation Theorem). [12] The
error in approximating y(x) by the sum of its first n terms is
bounded by the sum of the absolute values of all the neglected
coefficients. If

yn(x)∼=
n

∑
k=0

akT ∗k (x), (3.8)
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then

ET (n) = |y(x)− yn(x)| ≤
∞

∑
k=n+1

|ak| (3.9)

for all y(x), all n and all x ∈ [−1,1].

The main approximate formula of the fractional derivative
of yn(x) is given in the following theorem.

Theorem 3.2. [12] Let y(x)be approximated by shifted Cheby-
shev polynomials and also suppose α > 0, then

Dα(yn(x)) =
n

∑
i=dαe

i

∑
k=dαe

aiw
(α)
i,k xk−α (3.10)

where w(α)
i,k is given by

w(α)
i,k = (−1)i−k 22ki(i+ k−1)!Γ(k+1)

(i− k)!(2k)!Γ(k+1−α)
(3.11)

The numerical solution of nonlinear fractional integrodif-
ferential equation (1.1) using collocation method with the help
of shifted Chebyshev polynomials is discussed below. This
method is based on approximating the unknown function y(x)
as

yn(x)∼=
n

∑
i=0

aiT ∗i (x), 0≤ x≤ 1 (3.12)

where T ∗i (x) is the shifted Chebyshev polynomial and ai, i =
0,1,2, . . . are constants.
Making use of (3.12) into (1.1), following equation is obtained

n

∑
i=dαe

i

∑
k=dαe

aiw
(α)
i,k xk−α

= g(x)+
∫ 1

0
K(x, t) f (

n

∑
i=0

aiT ∗i (t))dt (3.13)

We now collocate equation (3.13) at (n + 1− dαe) points
xp, p = 0,1, . . .n−dαe as

n

∑
i=dαe

i

∑
k=dαe

aiw
(α)
i,k xk−α

p

= g(xp)+
∫ 1

0
K(xp, t) f (

n

∑
i=0

aiT ∗i (t))dt (3.14)

for suitable collocation points we use roots of shifted Cheby-
shev polynomials T ∗n+1−dαe(x).
Also substituting equation (3.12) in the initial condition (1.1),
we have

n

∑
i=0

(−1)iai = 0. (3.15)

From equation (3.14) and equation (3.15), we obtain (n+1)
system of nonlinear equations in a0,a1, . . . ,an given by

F0(a0,a1, . . . ,an) = 0
F1(a0,a1, . . . ,an) = 0

...
Fn(a0,a1, . . . ,an) = 0

 , (3.16)

which can be solved by using the Newton’s iteration method
for system of nonlinear equation.

To develop the iterative scheme, the system of nonlinear
equation (3.16) can be written in the vector form as F(a) = 0,
where a = (a0,a1, . . . ,an) and F = (F0,F1, . . . ,Fn). The Taylor
series expansion is

F(ak+1) = F(ak)+(
∂F
∂a

)(ak+1−ak)+ · · · . (3.17)

Truncating the Taylor’s series following equation is obtained

F(ak)+(
∂F(ak)

∂a
)(ak+1−ak) = 0, (3.18)

which gives

ak+1 = ak−
(

∂F(ak)

∂a

)−1

F(ak) (3.19)

provided that the inverse of Jacobian Matrix
∂F(ak)

∂a
exists.

First we solve the equation

∂F(ak)

∂a
4 x =−F(ak) (3.20)

where

4x = ak+1−ak. (3.21)

Since
∂F(ak)

∂a
is a known matrix and F(ak) is a known vector,

the equation (3.20) is just a system of linear equations, which
can be solved efficiently and accurately. Once we have the
solution vector4x, we can obtain improved estimate ak+1 by
equation (3.21).

4. Solution of NFIDEs by Collocation
method with the help of shifted Legendre

polynomials
The well known Legendre polynomials are defined on the
interval [−1,1] and can be determined with the use of the
following recurrence formula

Ln(z) =
2n+1
n+1

zLn−1(z)−
n

n+1
Ln−2(z),
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for n = 2,3, . . .
with

L0(z) = 1, L1(z) = z.

In order to use these polynomials on the interval [0,1], we
define the so called shifted Legendre polynomials by intro-
ducing change of variables z = 2x−1. The shifted Legendre
polynomials Ln(2x−1) be denoted by L∗n(x). Then L∗n(x) can
be obtained as follows

L∗n(x) =
(2n+1)(2x−1)

n+1
L∗n−1(x)−

n
(n+1)

L∗n−2(x), (4.1)

for n = 2,3, . . .
with initial conditions

L∗0(x) = 1, L∗1(x) = 2x−1. (4.2)

The analytic form of shifted Legendre polynomials L∗n(x) of
degree n is given by

L∗n(x) =
n

∑
i=0

(−1)n+i (n+ i)!
(n− i)((i)!)2 xi, n = 2,3, . . . (4.3)

The orthogonality condition is

∫ 1

0
L∗i (x)L

∗
j(x)dx =


1

2i+1
, f or i = j;

0, f or i 6= j.
(4.4)

The function y(x), which is square integrable in [0,1], may be
expressed in terms of shifted Legendre polynomials as

y(x) =
∞

∑
i=0

aiL∗i (x), (4.5)

where the coefficients ai are given by

ai = (2i+1)
∫ 1

0
y(x)L∗i (x)dx, i = 0,1,2, . . .

In practice, only the first (n+ 1) terms of shifted Legendre
polynomials are considered. Then we have

yn(x)∼=
n

∑
i=0

aiL∗i (x). (4.6)

The main approximate formula of the fractional derivative of
yn(x) is given in the following theorem.

Theorem 4.1. [3] Let y(x) be approximated by shifted Legen-
dre polynomials and suppose α > 0

Dα(yn(x)) =
n

∑
i=dαe

i

∑
k=dαe

aiw
(α)
i,k xk−α (4.7)

where w(α)
i,k is given by

w(α)
i,k = (−1)i+k (i+ k)!Γ(k+1)

(i− k)!(k!)2Γ(k+1−α)
(4.8)

The numerical solution of nonlinear fractional integrod-
ifferential equation (1.1) using collocation method with the
help of shifted Legendre polynomials is discussed below. This
method is based on approximating the unknown function y(x)
as

yn(x)∼=
n

∑
i=0

aiL∗i (x), 0≤ x≤ 1 (4.9)

where L∗i (x) is the shifted Legendre polynomial.
Using (4.9) in (1.1), we obtain

n

∑
i=dαe

i

∑
k=dαe

aiw
(α)
i,k xk−α

= g(x)+
∫ 1

0
K(x, t) f (

n

∑
i=0

aiL∗i (t))dt (4.10)

Now we collocate equation (4.10) at (n + 1− dαe) points
xp, p = 0,1, · · ·n−dαe as

n

∑
i=dαe

i

∑
k=dαe

aiw
(α)
i,k xk−α

p

= g(xp)+
∫ 1

0
K(xp, t) f (

n

∑
i=0

aiL∗i (t))dt. (4.11)

For suitable collocation points we use roots of shifted Legendre
polynomials L∗n+1−dαe(x) and the initial condition (1.1), we
obtain (n+1) system of nonlinear equations in a0,a1, . . . ,an.
These system of nonlinear equations can be solved by using
the Newton’s iteration method discussed above section.

5. Applications
In this section, we give some numerical examples of nonlinear
fractional integrodifferential equations to illustrate the above
results.

Example 5.1. Consider the following nonlinear fractional
integrodifferential equation

Dα y(x) = 1− 1
4

x+
∫ 1

0
xt(y(t))2dt, (5.1)

y(0) = 0. (5.2)

where 0≤ x < 1, α = 1
2 . The differential equation (5.1)-(5.2)

has the exact solution y(x) = x, if α = 1.

Method I: Collocation method with the help of shifted
Chebyshev polynomials
The suggested method is implemented for n = 3 and approxi-
mate the solution as follows

y2(x)∼=
3

∑
i=0

aiT ∗i (x), 0≤ x≤ 1. (5.3)

where T ∗i (x) is the shifted Chebyshev polynomial and ai, i =
0,1,2,3 are constants.
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An application of Collocation method with the help of shifted
Chebyshev polynomial to (5.1)-(5.2), following nonlinear sys-
tem of equations is obtained,

F0(a0,a1,a2,a3) =−0.25a2
0−0.166667a1a0

+0.166667a2a0 +0.1a3a0

−0.0833333a2
1−0.116667a2

2

−0.121429a2
3 +1.59577a1

−0.0333333a1a2−2.12769a2

+0.1a1a3−0.0714286a2a3

−0.957461a3−0.875

F1(a0,a1,a2,a3) =−0.0334936a2
0−0.0223291a1a0

+0.0223291a2a0 +0.0133975a3a0

−0.0111645a2
1−0.0156304a2

2

−0.0162683a2
3 +0.584092a1

−0.00446582a1a2−2.12769a2

+0.0133975a1a3−0.00956961a2a3

+4.07187a3−0.983253

F2(a0,a1,a2,a3) =−0.466506a2
0−0.311004a1a0

+0.311004a2a0 +0.186603a3a0

−0.155502a2
1−0.217703a2

2

−0.226589a2
3 +2.17986a1

−0.0622008a1a2 +2.12769a2

+0.186603a1a3−0.133288a2a3

+3.11441a3−0.766747
F3(a0,a1,a2,a3) = a0−a1 +a2−a3.

Using Newton’s iteration method for nonlinear system of equa-
tions, we obtain

a0 = 0.832197311166694
a1 = 0.5989063759298973
a2 =−0.14392391710534502
a3 = 0.08936701813145172,

 (5.4)

making use of the (5.4) into (5.3), following solution is ob-
tained

y(x) = 0.83219731+0.5989063759298973(2x−1)

−0.14392391(8x2−8x+1)

+0.089367(4(2x−1)3−3(2x−1)), (5.5)

which is approximate solution of (5.1)-(5.2).
In Figure 1, we plot the approximate solution obtained by
Method I and the exact solution for Example 5.1.

Figure 1. Approximate and Exact solution of Example 5.1 by
Method I

Method II: Collocation method with the help of shifted
Legendre polynomials
The suggested method is implemented for n = 3 and approxi-
mate the solution as follows

y2(x)∼=
3

∑
i=0

aiL∗i (x), 0≤ x≤ 1. (5.6)

where L∗i (x) is the shifted Legendre polynomial and ai, i =
0,1,2,3 are constants.
An application of Collocation method with the help of shifted
Legendre polynomials to (5.1)-(5.2), following nonlinear sys-
tem of equations is obtained,

F0(a0,a1,a2,a3) =−0.25a2
0−0.166667a1a0

−0.0833333a2
1−0.05a2

2

−0.0357143a2
3 +1.59577a1

−0.0666667a1a2−1.59577a2

−0.0428571a2a3 +1.88411095∗10−15a3

−0.875

F1(a0,a1,a2,a3) =−0.0563508a2
0−0.0375672a1a0

−0.0187836a2
1−0.0112702a2

2

−0.00805012a2
3 +0.757618a1

−0.0150269a1a2−1.93131a2

−0.00966a2a3 +2.99198a3−0.971825

F2(a0,a1,a2,a3) =−0.443649a2
0−0.295766a1a0

−0.147883a2
1−0.0887298a2

2

−0.0633785a2
3 +2.12579a1

−0.118306a1a2 +1.16747a2

−0.076054a2a3 +1.8086a3−0.778175
F3(a0,a1,a2,a3) = a0−a1 +a2−a3

Using Newton’s iteration method for nonlinear system of equa-
tions, we obtain

a0 = 0.7765706927568846
a1 = 0.5681834659041213
a2 =−0.12918879599732455
a3 = 0.07919843085543878

 (5.7)
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making use of (5.7) into (5.6), following solution is obtained

y(x) = 0.776571+0.568183(2x−1)

−0.129189(6x2−6x+1)

+0.0791984(20x3−30x2 +12x−1) (5.8)

which is approximate solution of (5.1)-(5.2).
In Figure 2, we plot the approximate solution obtained by
Method II and the exact solution for Example 5.1.

Figure 2. Approximate and Exact solution of Example 5.1 by
Method II

Example 5.2. Consider the following nonlinear fractional
integrodifferential equation

Dα y(x) =
8x3/2

3 −2
√

x
√

π
− 1

1260
x+

∫ 1

0
xt(y(t))4dt,

(5.9)

y(0) = 0. (5.10)

where 0≤ x < 1, α = 1
2 . The differential equation (5.9)-(5.10)

has the exact solution y(x) = x2− x, if α = 1.

Method I: Collocation method with the help of shifted
Chebyshev polynomials
Similarly as in Example 5.1 applying the Collocation method
with the help of shifted Chebyshev polynomial to (5.9)-(5.10),
we obtain,

a0 =−0.12500000268834607

a1 =−3.2462632438396387∗10−9

a2 = 0.12499999951591143

a3 = 7.382860772130038∗10−11

 (5.11)

Hence the approximate solution of (5.9)-(5.10) is

y(x) =−0.125−3.24626∗10−9(2x−1)

+0.125(8x2−8x+1)

+7.38286∗10−11(4(2x−1)3−3(2x−1)).
(5.12)

In Figure 3, we plot the approximate solution obtained by
Method I and the exact solution for Example 5.2.

Figure 3. Approximate and Exact solution of Example 5.2 by
Method I

Method II: Collocation method with the help of shifted
Legendre polynomials
Similarly as in Example 5.1 applying the Collocation method
with the help of shifted Legendre polynomial to (5.9)-(5.10),
we obtained,

a0 =−0.16667380012560998

a1 = 3.971261224148561∗10−6

a2 = 0.16667060752789342

a3 =−7.16385894071834∗10−6

 (5.13)

Hence the approximate solution of (5.9)-(5.10) is

y(x) =−0.166674+3.97126∗10−6(2x−1)

+0.166671(6x2−6x+1)

−7.16386∗10−6(20x3−30x2 +12x−1). (5.14)

In Figure 4, we plot the approximate solution obtained by
Method II and the exact solution for Example 5.2.

Figure 4. Approximate and Exact solution of Example 5.2 by
Method II

6. Conclusion
The Collocation method is implemented with the help of
shifted Chebyshev polynomials and shifted Legendre poly-
nomials for solving nonlinear fractional integrodifferential
equation. The fractional derivatives are considered in the Ca-
puto sense. This method derives a good approximation and
reliable techniques to handle nonlinear fractional integrodif-
ferential equations. The properties of Chebyshev polynomials
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and Legendre polynomials are used to reduce nonlinear frac-
tional integrodifferential equation to the solution of system of
algebraic equations. The solution obtained using this method
is in excellent agreement with the exact solution and show that
this method is effective.

All numerical results are obtained using Mathematica 11.
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