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1. Introduction

In this paper, we investigate the following Petrovsky equa-
tion with fractional damping terms

Ui+ Nu+0 % = |ulP u, xeQ, >0,

u(x,t) = 9”9(’;”:0, x€dQ, >0,
u(x,0) = up(x), u(x,0) =u;(x),xeQ

(1.1

where Q is a bounded domain with smooth boundary dQ in
R", v is the outer normal. The constants p > l,and —1 <
a < 1. The notation 9% stands for the Caputo’s fractional
derivative of order 1 + o with respect to the time variable
[6, 8]. It is defined as follows

I“ w(t) for —1<a <0
T w(t) =
P i) '~ "‘d—zw()for O<a<l
where I8, B > 0 is fractional integral
t
Iﬁdt —B/t—f “w(t)dr.
0

When —1 < o < 0, the term 9, % is said to be fractional
damping. Also, & = —1 and @ = 0 the term 8,1“"14 is said

to be weak damping and strong damping term, respectively.
The fractional damping term plays a dissipative role, which is
stronger than weak damping and weaker than strong damping
[3].

Messaoudi [5] studied the local existence and blow up of
the solution to the equation

= |u)" " u.

e+ Nu+ g | (1.2)

Wu and Tsai [11] obtained global existence and blow up of
the solution of the problem (1.2). Later, Chen and Zhou
[2] studied blow up of the solution of the problem (1.2) for
positive initial energy.

Li et al. [4] studied global existence and blow up of the
solution to the equation

g+ A2 — A | |1y = |ulP (1.3)

Recently, Pigkin and Polat [7] proved decay of solution of
problem (1.3).

Tatar [9] studied exponential growth of the solution to the
wave equation with fractional damping

—Au+0 % = ulP " u (1.4)

Also, he [1, 10] studied blow up of the solution to the equation
(1.4).

In this paper, we establish the blow up of the solution with
negative initial energy by using the technique of [1].

2. Preliminaries

In this section, we present some materials needed for our
main results. Furthermore we will consider only the case
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—1 < o < 0. The classical energy functional associated to
problem (1.1) is

1 2, 1 2 1
E(t) == — || Au||* = —— ||u||P" 2.1
(1) = 5 P+ 5 == @
In deriative of (2.1), we have
"( | ~(@ )y (1)ddx.

Is obtained. Now, if we define our modified energy function
as

Ee (1) 2.2)

E(t)— 8/ uudx
Q

where 0 < € < 1 and to be determined later. (2.1) replace and
a differation of (2.2) with respect to ¢ yields

/%/
78/ 4| dxf,s/ |u|p+1dx—8/ |Auf? dx
Q

—(o+1)

—(o+1)

EL (1) uz(t)dtdx

ur(7)dtdx2.3)

Also, we define the following functions for use in our theorem,

H(t) = — (e ¥ Ee (1) + uF (1) +d), (2.4)
t
F) = / / G (1 —7)e T ildxdr, 2.5)
s
and
1) = P / e Bl g 2.6)
t
where 0 = 2=~ +1 and f3, u,d are positive consants.

Lemma 2.1. If E; (0) < 0 and p is sufcifiently large, then
H () >0and H' (t) > 0.

Proof. By taking a derivative of (2.4) and (2.5), we have

H' (t)=0cee °¥Ee (t) —e ¥ E[(t)— uF'(t), (2.7)

F'(1) = BOT(—a)e o /Q Wdx

t
- / /Q (1 — 1)@ 92T 20 4t 4 BRIS)
0

86

Substituting (2.8), (2.2) and (2.3) into (2.7), we obtain

H (1) = {%eJr%*uﬁaF(fa)} e_(m./gulzdx

+ (g + 1) 86_6“./ |Au)? dx
2 Q

—og?e 0F, / uu,dx
Q

+<£—G ) 7G“/|u|p+1dx
P+
e*G&‘l ! ( +]>
o —(a
F(a)/gut.o/(t T) ur(t)dtdx

ge o t‘( ) (a+1) ( )

- —-1T) dtdx
= / u/ t—7 ur(T
(—a) Jo )

o -

+

—(a+1) e COET

urdxdt — pBRUY)

For the fifth term on the right side of (2.9), using Young
inequality, we get

t

_cst/g O/
_GE’/udx// ~(@ )y (1) dtdx

51e76£’/ uldx
Ja

A

~(@t )y (1)dtdx

IN

+ e*GEI 05+l dx.

461 ur(t)dt

fo-s

Writing — (o+1) = —%H —

Schwarz inequality, we have

o+l

5— and using the Cauchy-

—(a+1)

o0l / /

< 51e7‘m/u,dx—|—
Q

t
—-a) e_"”u%
/Q/ = T)(aﬂ)d’rdx‘
0

ug(t)dtdx

(2.10)
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Smilarly, we have

o

<52/ ufdx+ —

o0t / /

Sﬁze_(m./ |u|? dx
Q

t

~(@ )y (7)dtdx

2

52 /(t—r)’(‘”l)uf(r)dr dx

—(@t )y (1) dtdx

1

fUEt

tage ™ /Q / (1= 1)@y (v)de | ax,
0
—68[/ / —(a+1) (T)de)C
§52e768’C*/ |Vul? dx
—OE€T 2

bl

Used Sobolev-Poincare inequality.
For the third term on the right side of (2.9), using the
Young and Sobolev-Poincare inequalities, we get

2 1 / 2
dx+ — d
/Quu,dx 63/9\u| x—|—453 Q|u,| X

|
c*/ v 2dx+—/ 24@.12
5C. [ VuPdrt g [ P ae.2)

oc+1 dtdx (2.11)

IN

IN

By (2.9), (2.10), (2.11) and (2.12), it yields

2
o€ o€ o1
> — 4+ - —ur = —G£t./ 2d
_<2 per(-a) - G- p 2 e [ adax
+<%+1 Ee—"”/mm dx

£6,Cp,

( a)> ~oer / Vul? dx
(g p+1) "’8’/|u\p+ldx
(
—up

ce’8C), +

_|_

OH»I

) e

461

)¢~ 2dtdx

87

Adding and subtracting C1 H (), we get

H' (1)
Ci oe ¢
> ClH(t) + [2 7 5
o ar(__ _682_ s —cret/ 2
uBr(—o) 15, F(—a)} e Qu,dx

+ {(§+1)8+C1} e_(m./ |Au)? dx

£0,C
<68263CP1+1"?2 p1) —o# / \Vul? dx
+<8— C _GE> efaet./ |u|p+ldx
p+1 p+1 Q

—Clsefcet./ uu,dx
Q

*(“_(Zfs?a )// (@) 0T, 2 1 g
+(C1 = B)uF (t) +Cid

2C1H(t)+[czl+028+§

+ {(g+l)e+2} e_GS’./Q|Au|2dx

N (8 G "8) e—csr,/ P dx
p+1 p+1 Q
C
(cezsgcpl + 8‘?2 ”1) +clecp]63> e*“f./ IVl dx
(Gg)a ( // —(a+1) faer 2
- 24td
+ (“ 45, 452 ax

+(C1=B)uF (1) +Cid
We choose C; = e, 8 = & = "% and & = 1, we
obtain
H' (1)
p+1 pt2 ,. _ 2
2 H()—i2 €°Cp e Ge'./Q|Vu| dx

p+1
—¢€
2

+{ (1—¢)— B“F(—a)} e‘“’./gufdx

3
+ %86768’./ |Au)? dx

1% ego— 1
+{u(§;]%( 1+£}// —(a4D) g0t 2 iy
1
+(Cremp)ur )+ e

For the third term on the right side of (2), using the Sobolev—
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Poincare inequality, we get

H' (1)

p+1

2
> P e (1) - pte

5 €2Cp, e 7"6th2/ |Aul? dx

P et-0 - uper-o) o [ idas

3
+%8e76a./ |Au)? dx

(p—i—l) ga 1 e OET 2
+[u 2“+1F( (1+¢€) // a+1 ————~d7dx

+(”+ 6 /3) ()+pT+lsd
p+1

>——¢€H(t
e

[ 1
+ p;e(le)uﬁar(a)] e_“’./gu,zdx

[ 3— 2)eC
+ Pt (‘;—'_ )€ p]Se“’./ |Au|2dx

r (P+1) e OET 2
Rl v ey 2a+1r( 1+ // f—1T oc+1 ) drdx

+(”+ /3) Fo+ 2 e

Next, we choose § = 1 and assuming that

€ < € = min (1 p—l—3>
! "2(p+2)C,

it appears that the third coefficient is nonnegative. We can
choose U so that the second coefficient is nonnegative and

the forth coefficient greater than %. Also, if p

sufficiently large ”—He — B is positive. Consequently, we find

1 3
H (@) > p; H()+%se—m,/|Au|2dx

erl —OET 2 -

T Jarigiar(— // a+l€2r )

If we select E¢ (0) < —d, then H (0) > 0. Consequently of
(2.13), that H () > 0 and H' (1) > 0. O

Now, we state the local existence theorem.

Theorem 2.2. (Local Existence) [5]. Suppose that

I<p<oo, n=1,2,
l<p< 2", n>3.

For every initial data (ug,uy) € H3 (Q) x L*(Q), there is
T > 0 and a unique weak solution u(t) of (1.1) such that u €

C([0,T);H2 (Q))NC ([0,T): 12 (Q)) andu, € L2 ((0,T) x Q).

88

3. Blow up

In this section, we state and prove the blow up result for
negative initial energy.

Theorem 3.1. Assume that —1 < o <0,
E(0) <0and / uiupdx > 0.
JQ
Then the solution u of the problem (1.1) blow up in finite time
for sufficiently large values of p.

Proof. Set
W(t)=H"7(1)+ pe o, / uudx
Q
where
p—1
2(p+1)
and ¢ is a positive constant to be determined later. Our goal

is to show that W (r) satisfies a differential inequality of the
form

’}/:

W (1) < KW (1).

This, of course, will lead to a blow up result in finite time.
Now, by taking a derivative of ¥ (¢) and using (1.1), we
have

W (1) = (1= ) H Y (1) H' (1) — poee O, /Q witydx

+(P€_6£t‘ (/ utzdx—l—/ uu,,dX>
Q Q

— (1= H (1) H' (1) — poee %, / witydx
Q

+ e o {/ |u\”+1dx—|—/ |Aul? dx

~(@t)y (t)dtdx

+(pe_68t/gut2dx.

By using the inequalities (2.12) and (2.11) with the constant
84,05 > 0 we obtain

W0 = (=) H (O (1)~ poesie . [ juPdx

_i_(Pefcrst./ |u|p+ldx
Q

(pGSe_G’St B
fT/Qufder(pe GE'./QM,de

5 —Oét
+(pe7081./ |Au|2dx—(pL/ |u|* dx
- o

455 // —(a+1) _G”u%d‘rdx.
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The last term of this inequality is derived from the (2.13), we  Also, we take

see
_ p+3 o1 B 4(p+3)

(1) P apry BT R ES B = L ),

I(—
> [(I—Y)Hy(t)—(p(a)g} H' (1) to get

26

@ (p+1)I(—a)e? (p+1)e\ &
LT U s ) a0
"“P(l (p+1)e )ecgt./ufdx and
864 o o 1 p—1

_’_(pefcst_/ |u\p+ldx p+1 B 4(P+1).
JQ

s 5 ! s The fifth coefficient is nonnegative as soon as € and C, is
+@ [1 — (p+3)I(~a)e — (p—|— €8+ > )) Cp} chosen small enough, namely

855 2 F(*(X
2
e [ 1Al dx. _(P+3)8 . p+1 y >
e /Q| ul? dx T Te8i+LHY (1)) C, 2 0.
We pick 85 = LI'(—ot)H (t) , we have Consequently, we have
(- /
() = ((1=y) - |H T ()H (1) 3.1
| ZL} W (1) > 2/ Pt P +1 /|u|1’+‘dx (3.4)

2
$ 2P VE vy

(p+1)e On the other hand, from the ¥ (¢) , we have
+o(1--2 e~O¢! / 12dx (3.2)
854 Q

1
1 T—y
(pe—ost/ P+ dx H(t)+ o7 (/Quu,dx) ] (3.5)
Q

‘o {1 _ (p+3) 8)2 B (pw; 1 €8s+ LH" (t)) Cp] By the Cauchy-Schwarz and Holder inequalities, we have

8LHY (1
.e_‘m/Q|Au|2dx (3.3 yry ([)ngyy { % (/ |ut | dx+/ |“|p+ldx>} :
Adding and substracting H (¢) to the right hand side of (3.3), (3.6)
we have
W) > [(1 ) (pg:| HT (0 H (1) If K is chosen large enough so that
0 = [0=9-5 M
12 277 <K,
+ MH*YO)_‘_] H([)
* rgrtrp< K
1 1 Tebs o
(1o Pt +,_i/u;dx 2
83, 2 48 . |
2rreTiB< Pk,
<(P— ) —oet /|u\p+ldx ~4(p+1)

That is K has to be selected so that

K>2"7ma {1 2077B 4(’”11)1;1173}.
o

(p+3)¢€? p+1
S8LHY (1) ( 2

&0 / \Auf? dx -+ uF (1) +d.
Q

+o {1 - ed, +LH7(I)> Cp]

Combining (3.4) and (3.6), we have
By using the inequality

.
2L(1—7) YT (1) <K¥' (1), (3.7
E<EH=—""—
From (3.4) it is clear that ¥’ () > 0 . Hence, by the definition
and of W (¢) and the hypotheses on the initial data, we have
olpre, W(1)>¥(0 uuodx > 0
TH (1) >0. (1) > ()>(pQu1u0 x> 0.

89 X
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Thus ¥ (¢) > 0. Integrating (3.7) over (0,¢), we find

W (1) > 1

Y7 (0) — wrt=

Consequently, ¥ (¢) blows up at some time

K(1-y)¥T7(0)
y .

T <
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