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Abstract
In this paper, authors proved the generalized Ulam - Hyers stability of system of additive functional equations
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where n is a positive integer, which is originating from sum of first n, natural numbers, even natural numbers and
odd natural numbers, respectively in various Banach spaces.

(2a—1) h(z2a-1)); n>1

\\M:

Keywords

Additive functional equations, Generalized Ulam - Hyers stability, Banach spaces, 2-Banach space, Quasi 2 -
Banach space, Quasi - Beta - 2- Banach space, Fuzzy Quasi - Beta - 2 - Banach space, Random Quasi - Beta -
2 - Banach space.

AMS Subject Classification
39B52, 32B72, 32B82.

.25 Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.

3 Department of Mathematics, R.M.K. Engineering College, Kavarapettai - 601 206, TamilNadu, India.

4 Department of Mathematics, R.M.D. Engineering College,Kavaraipettai - 601 206, Tamil Nadu, India.

*Corresponding author: ' annarun2002@gmail.co.in; 2 sathya24mathematics@gmail.com; 3 karthik.sma204@yahoo.com; 4
ganagandhi@yahoo.co.in; ® namachi.siva@rediffmail.com

Article History: Received 01 December 2017; Accepted 27 December 2017 ©2017 MJM.
Contents 1. Introduction

1 Introduction.............ccooiiiiiiiiin 91 The stability of functional equations is a burning theme
2 General SOIUtiON. ....cvvviiiiiiiiiieee e 94  that has been dealt in the last seven decades. In 1940, S.M.
3 Stability Results In Banach Space ................. gq  Ulam[40], gave a spacious collection of talk before a Mathe-

o matical Colloquium at the University of Wisconsin in which
4 Stability Results In 2- Banach Space .............. 98  pe discussed the number of significant unsolved problems.
5 Stability Results In Quasi 2-Banach Space........ 99  One of them is the initial spot of a new line of investigation,
6 Stability Results In Quasi-Beta-2-Banach Space .100  the Stability Problem.

lam Problem : L H j

7 Stability Results In Fuzzy Quasi-Beta-2-Banach Space Ulam Problem : Let G be a group and H be a metric group

with metric d(. , .). Given € > 0 does there exist a & > 0 such

103
that if a function f : G — H satisfies the inequality
8 Stability Results In Random Quasi-Beta-2-Banach Space

108
REfereNCeS .. uuueeiee et iieeeiiiieeeeaeanns 111 d(f(xy), f(x)f(y) <o



Stability of system of additive functional equations in various Banach spaces: Classical Hyers methods — 92/112

for all x,y € G, then there exists a homomorphisma: G — H
with
d(f(x),a(x)) <e

forallx € G?

For the case where the answer is affirmative, the functional
equation for homomorphisms will be called stable.

The first result pertaining to the stability of functional
equations was presented by D.H.Hyers [19] in 1941. He has
comprehensively answered the question of Ulam by assum-
ing G and H are Banach Spaces. He proved the following
celebrated theorem.

Theorem 1.1. [19] Let X,Y be Banach spaces and let f :
X — Y be a mapping satisfying

1f(ety) = fl0) - fO) <e (L.1)
for all x,y € X. Then the limit
a(x) = lim A (;:x) (1.2)

exists for all x € X and a : X — Y is the unique additive
mapping satisfying

1F(x) —ax)[| <& (1.3)

Jor all x € X. Moreover; if f(tx) is continuous in t for each
fixed x € X, then the function a is linear.

This pioneer result can be expressed as “Cauchy functional
equation and it is stable for any pair of Banach spaces”. The
method which was provided by Hyers and which produces
the additive function a(x) will be called a direct method.
This method is the most important and most powerful tool for
studying the stability of various functional equations.

In 1951, T. Aoki [3] generalized the Hyers theorem for
approximately linear transformation in Banach spaces, by
weakening the condition for the Cauchy difference for sum of
powers of norms. Then Th.M. Rassias [32] in 1978, investi-
gated a similar case (see L. Maligranda [29]). Both proved the
following Hyers-Ulam-Aoki-Rassias theorem for the “sum”.

Theorem 1.2. [3, 32] Let X and Y be two Banach spaces.
Let 6 € [0,00) and p € [0,1). If a function [ : X — Y satisfies
the inequality

1FGcty) = F) = fOI <O KPP +IIIP) - a4

for all x,y € X, then there exists a unique additive mapping
T :X — Y such that

20
2-2r

1F() =Tl < Il (1.5)

Sor all x € X. Moreover; if f(tx) is continuous in t for each
fixed x € X, then the function T is linear.
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This result is known as the Modified Hyers - Ulam Sta-
bility or Generalized Hyers- Ulam Stability for the additive
functional equation.

In 1982-84, J.M. Rassias [31] replaced the sum by the
product of powers of norms. Infact, he proved the following
theorem.

Theorem 1.3. [31] Let f: E — E' be a mapping from a
normed vector space E into a Banach space E' subject to the
inequality

1 Ge43) = f(x) = F)IF < e [1x]1 [Iy]”

forall x,y € E, where € and p are constants with € > 0 and
0<p< % Then the limit

f(2"x)
on

(1.6)

L(x) = lim

n—soo

(1.7)

exists for all x € E and L : E — E' is the unique additive
mapping which satisfies

£~ LI < =55

forall x € E. If p <O, then the inequality (1.6) holds for
x,y# 0 and (1.8) for x # 0.
Ifp> % the inequality (1.6) holds for x,y € E and the limit

X
()
exists for all x € E and A : E — E' is the unique additive
mapping which satisfies

[ (1.8)

A(x) = lim 2"f

n—soo

(1.9)

&
22p 2

2
[

1£(x) —A()|| < (1.10)
forall x € E. If in addition f : E — E' is a mapping such that
the transformation t — f(tx) is continuous in t € R for each
fixed x € E, then L is R— linear mapping.

In 1994, P. Gavruta [18] generalized all the above men-
tioned results by considering the control function as a function
of variables and proved the following theorem.

Theorem 1.4. [18] Let E be a abelian group, F be a Banach
space and let ¢ : E X E — [0,00) be a function satisfying

ool
Plx,y) =), &9 (2"x72"y) < oo (1.11)
k=0

forall x,y € E. If a function [ : E — F satisfies the functional
inequality

1F(+y) =) = FO < 9(x,)

for all x,y € E. Then there exists a unique additive mapping
T : E — F which satisfies

1 () =T ()] < P(x,y)

for all x € E. If moreover f(tx) is continuous in t for fixed
x €E, then T is linear.

(1.12)

(1.13)
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This stability property is called Generalized Hyers - Ulam
- Rassias Stability of functional equation.

In 2008, a special case of Gavruta’s theorem for the un-
bounded Cauchy difference was obtained by K. Ravi, M.
Arunkumar and J.M. Rassias [34] by considering the sum-
mation of both the sum and the product of two p-norms in the
sprit of Rassias approach is called J.M. Rassias Stability of
functional equation.

Theorem 1.5. [34] Let (E, 1) denote an orthogonality normed
space with norm || . || and (F, || . ||y) is a Banach space and
f: E — F be a mapping which satisfying the inequality

[ f(mx+y)+ f(mx—y) =2f(x+y) = 2f(x—y)
—2(m* = 2)f(x) +2f )|

2 2
<e{ I Iyl + (Il + V) b .14

for all x,y € E with x 1y, where € and p are constants with
&g,p>0andeitherm>l;p<lorm<l;p>1withm#
0;m# +1;m# +v2and —1 # |m|P~! < 1.

Then the limit

0(x) = tim £

n—eo  m2n

(1.15)

exists for all x € E and Q : E — F is the unique orthogonally
Euler-Lagrange quadratic mapping such that

€

[f(x) = Q)| < WHXH? (1.16)

forallx € E.

A number is a mathematical object used to count, measure,
and label. The most familiar numbers are the natural numbers
(sometimes called whole numbers or counting numbers): 1, 2,
3, and so on. An even number is an integer that is evenly divis-
ible by two, that is divisible by two without remainder; an odd
number is an integer that is not even. (The old-fashioned term
evenly divisible is now almost always shortened to divisible.)
Equivalently, another way of defining an odd number is that it
is an integer of the form n = 2k — 1, where £ is an integer, and
an even number has the form n = 2k, where k is an integer.

The sum of first n natural numbers, sum of first n even
natural numbers and sum of first n odd natural numbers, are

N(N+1
142434+4+........ —&-N:g

24+44+6+8+........ +2N =N(N+1)

143+5+74........ +(2N—1)=N?

The above sum of observation can be taken as a functional
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equation of the following forms

SO +2x0 4+ 3x3 +4xq + - +nxy)

= 1f(x1) +2f(x2) +3f(x3) +4f(xa) + - +nf(xa)
8(2y2 +4ys + 6ys +8yg + - -+ 4 2ny2y)

=2g(y2) +4g(v4) +68(v6) +8g(ys) + - +2ng(yon)
h(lzy +323+ 525+ 7274+ -+ (2n—1)z241)

= 1h(z1) +3h(z3) +5h(z5) +Th(z7) + -+ (2n— 1)h(z20-1)

One of the most famous functional equations is the addi-
tive functional equation
Jx+y)=fx)+ 1) (1.17)
In 1821, it was first solved by A.L. Cauchy in the class of
continuous real-valued functions. It is often called an addi-
tive Cauchy functional equation in tribute of A.L. Cauchy.
The theory of additive functional equations is commonly use-
ful to the growth of theories of further functional equations.
Moreover, the properties of additive functional equations are
powerful tackle in almost every field of natural and social

sciences. Every solution of the additive functional equation
(1.17) is called an additive function.

The solution and stability of various additive functional
equations

f2x=y)+f(x—=2y) =3f(x) =3f(¥), (1.183)
Jr+y=22)+f(2x+2y—2) =3/ (x) +3/(y) = 3/ (),

(1.19)
f(m(x+y) —2mz) + f2m(x+y) —mz)
=3m[f(x)+ f(y) - f(D) m>1, (1.20)
n—1 n—1
f (ain—2axn> +f (261 in—axn>
i=1 i=1
n—1
=3a<2f(xf>—f(xn)> n>3, (121
i=1
Sxtytz)=f(xL£y)+ f(xLz) (1.22)
fx)+ f(x) = f(2x) (1.23)
Flo) = f(y+Z)42rf(y—Z) (1.24)
=y (L) f =) 195
f) /Zl< 57 ) (1.25)
f (nxoi ix,) = Zn:f(xo +x;) (1.26)
i=1 i=1

were discussed by D.O. Lee [27], K. Ravi, M. Arunkumar
[33], M. Arunkumar [4, 5,7, 8, 11].
In this paper, authors proved the generalized Ulam - Hyers

0gl0
S0,
S5027:
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stability of system of additive functional equations
n

f<z a xq

n
g( 2ayza) ZZagyza , n>1 (1.28)

h( (2a—1) z24- 1)

where n is a positive integer, which is originating from, sum
of first n natural numbers, sum of first n even natural numbers
and sum of first n odd natural numbers in various Banach
spaces and having solutions

(1.27)

) Zn:afxa,nzl

S
I‘l= Il
—

i Cl_l ZZa—l))7

a=1

™=

n>1 (1.29)

f(x)=bx; (1.30)
g(y)=b2y; (1.31)
h(z)=b3z (1.32)

where b1, b;, b3 are constants.

In this paper, authors proved the generalized Ulam - Hyers
stability of system of additive functional equations where n
is a positive integer, which is originating from sum of first
n, natural numbers, even natural numbers and odd natural
numbers, respectively in various Banach spaces.

2. General Solution

In this section, we give the general solution of the functional
equations (1.27), (1.28) and (1.29). To prove the general
solution, we let us take A and B be real vector spaces.

The proof of the following theorems are proved by the
additive property of functions. Hence the details of the proof
are omitted.

Theorem 2.1. An additive function f : A — B satisfies the
functional equation (1.17) for all x,y € Aifand only if f : A —
B satisfies the functional equation (1.27) for all x1,x3,- -+ ,x, €
A.

Theorem 2.2. An additive function g : A — B satisfies the
functional equation

g(x)+g(v)

forall x;y € A if and only if g : A — B satisfies the functional
equation (1.28) for all yy,ya,-- -,y € A.

glx+y)= @1

Theorem 2.3. An additive function h : A — B satisfies the
functional equation

h(x+y) =h(x)+h(y) (2.2)

forall x,y € A if and only if h : A — B satisfies the functional
equation (1.29) for all 71,23, -+ ,20n—1 € A.
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3. Stability Results In Banach Space

In this section, we investigate the generalized Ulam - Hyers
stability of the functional equations (1.27), (1.28) and (1.29)
in Banach spaces using Hyers Method.
Now, we give basic definitions and notations in Banach
Space.
Definition 3.1. Let X be a set. A function ||.||: X x X — [0,00)
is called a Normed Linear space on X if ||.|| satisfies the
following conditions
(i) ||x|| =0if and only if x =0 for all x € X;
(i) |]x,yl| =
(iii) ||Ax|| = |A|||x|| for all x € X and A € R;

Oifand only if x =y forall x,y € X;

(iv) [yl < |l + [yl for all x,y € X;
) |Pxzl] <}yl + [y, 2l for all x,y,z € X;

Definition 3.2. A sequence {x,} in a normed linear space X
is called a convergent sequence if there is an x € X such that
limy, e ||%; —x|| =0

Definition 3.3. A sequence {x,} in a normed linear space X
is called a Cauchy sequence if there exists a point, x,, € X
such that imy, ;e || Xy — Xm|| =0

Definition 3.4. A normed linear space is said to be Complete
if every Cauchy sequence converges.

Definition 3.5. A complete normed linear space is said to be
a Banach Space

To prove stability results, let us consider <7 and % be
Banach spaces.

Theorem 3.6. Let f,g,h: o/ — % be a mapping satisfying
the following inequalities

f(Z axa> =Y (a f(xa)|| S N(x1,x2,- xn);
a=1 a=1
3.1
g(Z ama) Y (2ag(ya))|| SE(y2,y4,-+ ym):
a=1 a=1
(3.2)

™=

d

n
(2a—1 a— 1) Z 2a—1 Z2a—1))

1

S
I

<O0(z1,23, ", 22n-1); (3.3)
forallx17x27-~~ 3 Xns Y2, Vay 3 V2n321,23, " s22n—1 € 52/; where
N:@" —[0,00), E: " — [0,00) and O : /*"~1 — [0,0)
satisfying the conditions
N(k%Y KoY e KOV
lim ( X1, X2, 5 -le) =0: (34)
Oo—ro0 K(XY

E(0%yy. 0%yy. .- 0O
llm (p y27p y47 7p y2n) — 0’ (35)
o —oo paY

[0 TOCY TOW A T(XY _

lim (t%21, 123, -, 7200 1) _ 0: (3.6)
O—roo T
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fOV all X1,X25 0 5 Xny Y2, V450 3 V203215235 3 22n—1 € o with
Y = £1. Then there exists one and only additive mapping
Ap,Ag Ay o — B satisfying (1.27), (1.28), (1.29), and

1 & N(kPrx,icBrx, - kPrx)
bt -] § MemEt,
p=="
3.7
1 &= E(pBYy’pﬁV% .. 7pﬁyy)
A — < = ;
[4g () g(y)H_pﬁ_Zly B
=7
(3.8)
1 & O(tPrg,7hre,... 2Py
Ay (2) — <- :
@ -nl< g ¥ AEREE D,
b=
(3.9)

forall x,y,z € o, respectively. The mappings Ay, Ag, Ay are
respectively defined as

e S(E®Y)
Af(x)folcl_rgo mra (3.10)
_ o 8(py)
Ag(y) —&%Wa (3.11)
. h(t*7z)
An(e) = Jim = (3.12)
Sforall x,y,z € .
Proof. Changing
(x1,%2,++ ,Xn) = (x,x,---,x) in (3.1);
()’27)’47"'7)’2n):(y7)’a"' 7)7) in (3 2)’
(217137"’7Z2n—]):(Z,Z;"'71) in 5
we arrive the following inequalities
n n
f Z ax|)— Za f(x) SN()C,X, ,.X);
a=1 a=1
(3.13)
n n
gl Y 2ay|—| Y 2a) g0)|| <EQ.y-.y):
a=1 a=1
(3.14)
n n
hY Qa—1)z|—| Y (2a—1) ] h(z)
a=1 a=1
<O0(z,z,---,2); (3.15)
for all x,y,z € 7. Define
4 1
Z QZM: in (3.13)
a=1 2
n
Y 2a=n(n+1)=p in (3.14)
a=1
n
Y (2a—-1) =1 in (3.15)
a=1
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we obtain the succeeding inequalities

||f(Kx)—Kf(x)H <N(x, 2, ,X); (3.16)
lgpy)—p g <E@y, - .y): (3.17)
l|h(z )—Th(Z)H <O0(z,z,,2); (3.18)
for all x,y,z € 7. It follows from above inequalities
f(xx) N(x,x,--,x)
" f(x) o ; (3.19)
g(py) H .25 5Y)
-8 ; (3.20)
P ( p
h
(t2) _n(o)l| < 0(z,z, ,Z); 321)
T T
for all x,y,z € 7. Replacing
x=xkx and + x in (3.19);
y=py and + p in (3.20);
z=7z and + 7T in (3.21);
we arrive the following inequalities
f(sz),f(Kx) <N(Kx,Kx2,---,Kx); (3.22)
K K K
2
p P p
h(7? h
(T2 2) _h(r2) < o(t Z,Tzé ,‘L’z); (3.24)
T T T

for all x,y,z € 7. With the help of triangle inequality from

(3.19) and (3.22); (3.20)and (3.23); (3.21) and (3.24);

we achieve the subsequent inequalities

2
H”;”f@H
fF(&2x)  frx)| | f(xx)
<|Hgd sl 1)
<,1c<N(x,x, )4 Mk x Ki’ ’Kx)); (3.25)
2
g(gzy) _g(y)
g(P*y) gpy) Hg(py) H
< _
= 2 0 + 0 g(y)
1
S(E(y’y’ 7}7) E(p yap Y ap y)>’ (326)
p p
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2

h(;z)_h(z)

h(t? h h
- (;Z)_ (zz) H (zz)_h(z)
Si(E(z,z,-~~,z)—i—E(TZ’T;’“"T)); (3.27)

for all x,y,z € . Generalizing for a positive integer o, we
arrive

F(x%*x) 1 & N(kPox,xh x,-- kP x)
T —f@)| < P Z_: B ;
p=0
(3.28)
g(P*y) 1 & E(PypPy- 0Py,
o ml<=Y 5 ;
p P 3= p
(3.29)
h(t%z 1 & o(tP 1Pz, 1Pz
(Ta ) h( )HSTZ ( Tﬁ );
=0
(3.30)

for all x,y,z € 7. It is easy to verify that the sequences

{f(zZX)};{g(zzy)};{h(zzd}

are Cauchy sequences. Indeed replacing

x=x°x and + «° in (3.28);
y=p%y and <+ p°® in (3.29);
:=17 and + 1° in (3.30);
we obtain
P f(xx)
Ka+d b
1 i N(1cB+8 x kB0 x ... kB3 y)
L KB+o
—0 as 6 — oo
g(Py) 5(Py)
pats — pé
1 i E(pPtoy,pPtoy,... pPtoy)
TP ph+e
—0 as 6 — oo
h(t%%%2)  h(tdz2)
ro+s 18
1 o T/i+8 Tﬁ+5 Z, ,7:1”5 Z)
E ; B+8
—0 as &6 — oo

96

for all x,y,z € o/. This proves the existence of Cauchy se-
quences. Since % is a Banach space, this sequences converges
to a point A r;Ag; Ay, respectively and it defined by

. f(x%x
Ar) :0%1_1& (K“ );
[0
Ag(y) = lim 8(p%y).
8 o —ro0 p(X
. h(t%
Ah(Z) :01(1120 (T(X )’

for all x,y,z € 7. Taking limit as ¢ tends to infinity in (3.28),
(3.29) and (3.30), we see that (3.7), (3.8) and (3.9) holds
respectively for all x,y,z € o/ with y=1.

To show the mappings Ay (x);Ag(y);As(z) satisfies the
functional equations (1.27), (1.28) and (1.29) by replacing

(3.3)

(x1,%2, ) = (K%x1, k%2, -+, k%x,) in (3.1)
(y27y47"'7y2n):(pay27pay4a"'apayzn) in (32)
(21,23, -, 2on-1) = (t%1,7%23, -, T%20—1) in
respectively, we arrive
n n
Af Zaxa Z aAfxa

n
Kxa> Zafoa H
a=1

,K%x,)

(Z 2a y2u> - i (2a Ag(yZu))H

a=1

E(p%y2,p%ya,+,p%2n)

n

(2a—1) ZZal) Z
n n

h Z (2a—1) 1%z, 1 2'1 (2a—1) h(t%24-1))
a=1 a=

TaZanl)

a—l A— h(Zza 1))”

Zlyr 235"

for all x1,x2, -+, X0, Y2, Y4, s Y20, 21,23, * ,Zon—1 € & . Tak-
ing limit as o tends to infinity in the above inequalities, it
proves that A ¢(x);Ag(y);Ax(z) satisfies the functional equa—
tions (1.27), (1.28) and (1.29) forall x1,x2,- -+, Xn, Y2, Y4, , Y20,
21,23, ,2m-1 € o

In order to prove the being A r(x);A4(y);Ax(2) are unique.
Let A’ (x);A5(v); A}, (z) be another additive mappings satisfy-
ing (3.10), (3.11), (3.12) and (1.27), (1.28), (1.29) respectively.

009 nn,,
5:

; ‘a’uv
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lAn () — A}, )]

< 5 1Ak (T%) ~A(%) [} + |4}, (%)~ h (%)

n

n
h Z (2a—1) z24— 1) Z ((2a—1) h(z2a-1))

a=

—_

o Tﬁﬂxz thtag . ~,Tﬁ+az) A,

Z’ ﬁ*"‘ Yoo Allzaa—1", TSR
- H }, ||Z2a 1”” +Za 11’ ||22a 1“ 'u? ny 7é 1;

—0 as o — oo (3.36)

Now the following inequalities
|47 (x) = A ()|
1 n n
< Ly () () + ) — £ ()] Hf(z) 5 (@) ||
il Broy yBroy .. (Bta =1 a=1
< 2 Z N(x x,KKﬁ:;, ,KPTOy)
p= 1 Al nAL
=0 as oo — oo ll||xaH“+Z Allxa|™, nu#1;
|4g () — A, )] (3.34)
1 n n
< 5a Ul () =g ()| +[|45 (%) — 5 (0y) |} g (Zl 2a y2a> - Z,l (2a g(yza))H
il i E(pB+ay7pB+ay7"' 7Pﬁ+ay) ),7
= phe { Y1 A2l . BAL
-0 as o — oo ITa- l}b [[y2all* + X1 Ally2al™,  np 7&(13;35)

for all x,y,z € «/. Hence the mappings Ar(x);A,(y);An(2)
are unique. Thus the theorem holds for y = 1.

. forallx17x27-~~ s Xy Y2, Y4, 5, Y2n,21,33,° 0 3 22n—1 652/; where
Also, if we replace

A and p are positive constants. Then there exists one and

X only additive mapping Ay, Ag,Ap, : &/ — P satisfying (1.27),
x= in (3.16); (1.28), (1.29), and
y .
y== in (3.17);
? A
Z
== i 3.18); _
g=_ in (3.18) ]
n ||x[*
we arrive ||Af (x) = f(x) H < Ik — K| 5 (3.37)
(n+ DA [lx]™
X x X .
lreo-xr(D)]=v(Z 25 aan x|
A
yJy y .
- =W SE|l ==, ,= ] 3.32 0
Hg(y) pg< >H‘ <p p p) G2 [
na |y
Hh —rh( )H* ( %) (3.33) |4 ) —g ()| < i (3.38)
(n+ DA Iy[I"™
for all x,y,z € of. The rest of proof is similar to that of the lp—pr#|
case Y = 1. Thus the theorem holds for y = —1 also. This A
completes the proof of the Theorem. O I
A H
Ak (2) —h(2)]| < TT _lfm; (3.39)
The following corollary is an immediate consequence of (n+ DA 2]
Theorem 3.6 concerning the Hyers - Ulam, Hyers - Ulam - %;
Rassias and J.M.Rassias stabilities of the functional equations |7 — o]

(1.27), (1.28) and (1.29).

Corollary 3.7. Let f,g.h: «f — B be a mapping satisfying ~ for all x,y,z € &, respectively.

97 X
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Proof. If we replace To prove stability results, let us consider .27 be a 2-normed
space and % be a 2-Banach space. The proof of the following
A theorem and corollary is similar lines to the of Theorem 3.6

N(x1,x2, ooy Allxal®, and Corollary 3.7.

ni
IMa= lx all* +Z 1A Il Theorem 4.3. Let f,g,h: o/ — B be a mapping satisfying
) the following inequalities

>

E()’27)’47' '7)’2n Z A‘”yZa” " N "
i Ayl 4 T Ay <f<2a&> Y @ (5. )H
a=1 a=1
A —1]® e .
0(Z1,Z37"' 7Z2n—1) = %1 )L|||‘ZZZ; ll||||“’ SN(Xl,XQ, 7xn), 4.1)
a a n n
+Xn1 Allzzat 1™ <g (Z 2ay2“> Z 2a g(y2a)) >
a=1 a=1
in Theorem 3.6, we arrive our desired result. ] <E(ya,ym):  (42)
n n
4. Stability Results In 2- Banach Space <h (Z (2a—1) zza1> Z (2a—1) h(z24-1)) ,u> ||
a=1 a=1
In this section, we establish the generalized Ulam - Hyers
- ’ . . < < Zon—1); (4.
stability of the functional equations (1.27), (1.28) and (1.29) < O(znz3, 5 2m1); (43)
in 2- Banach spaces using Hyers Method. for all x1,%2,++ X, Y2,V4," , V20,211,235 * s2on—1 € &/ and
Now, we give basic definitions and notations in 2- Banach ~ all u € %, where N : &/" — [0,00), E : &/*" — [0,e0) and
spaces. 0 : @/*"~1 — [0,) satisfying the conditions
oy L oy
Definition 4.1. Let X be a linear space of dimension greater lim N(x*x, % zi’  Kn) =0; 4.4)
than 1. Suppose ||(e,9)|| is a real-valued function on X x X oo ay a’; oy
satisfying the following conditions: li E(p*Ty2,p*"ya; -+ ,py20) —0: (4.5)
le—rgo poY ’ ’
(2N1) |(x,y) if and only if x,y are linearly dependent i O(t™z21,7%23, -+ , T2, 1) N 6
vectors, Jim a7 =0; (4.6)
(2N2) H(x7y)H :||(y7_x)‘|f0rallx,yex’ forallx17x27"'7xn7y27y47"'7y2naZ17Z37"'7Z2n—1 € o with

Y= x1. Then there exists one and only additive mapping
(2N3) ||(Ax,y)|| = [A|||(x,y)|| for all A € R and for all x,y € Ap,Ag, Ay of — B satisfying (1.27), (1.28), (1.29), and

X, 1 & N(xPrx, Py, ... 7Kﬁ7x).

lar@-r@.ull<- ¥

By ’
(2N4) [|(x+y.2)[| < [, 2) |+ (v 2) | for all x,y,z € X. p=13t «
4.7
Then ||(e,®)| is called a 2-norm on X and the pair (X, ||(e,®)]|) By By ( B)Y
is called 2-normed linear space. H(Ag ) —g(y) v”)H < % Z E(p Yappg;;. P )’);
1—
Definition 4.2. A sequence {x,} in a linear 2-normed space p=="
X is called a Cauchy sequence if there are two points y,z € X (4.8)
such that y and z are linearly independent, 1 = O(Tm’z, thrz, ... )Tﬁyz)
14 () —h (@) <= X BY ;
lim [|(x—x9)[=0  and  lim [[(x;—x,2)] =0. p=11
1, m—>o0 I, m—yoo (49)
A sequence {x,} in a linear 2-normed space X is called a  for all x,y,z € o/ and all u € B, respectively. The mappings
convergent sequence if there is an x,w € X such that Ay,Ag, Ay, are respectively defined as
_ _ _ i S(E)
Jim | (6, —x,w)|[ =0 Aplx) = lim = 2= (4.10)
: _ o 80"y

for all y € X . If {x,} converges to x, write x, — x as Ag(y) = lim T 4.11)
n — oo and call x the limit of {x,}. In this case, we also o pay
write lim, X, = X. A linear 2-normed space in which ev- An(z) = lim h(t Z); (4.12)
ery Cauchy sequence is a convergent sequence is called a a—e T
2-Banach space. forall x,y,z € o .

9 X
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Corollary 4.4. Let f,g,h: o/ — B be a mapping satisfying
the following inequalities

({5 22)-Zporer)|

< ZZIA‘”'XCHMH/J? ,u;él,
Tt A 1yl + Xy Al ™ e # 1
(4.13)
n n
(g <Z 25W2a> Z 2a g(y2a)) >||
a=1 a=1
A’?
< ZZ:] A ||y2avu||”a u 7& 1;
o1 Ay, ull* + X0y A lly2a, ul ™, np # 1
(4.14)

(g

n
Z ((2a—1)

Z2a l )H
A,

oy Allz2a—rt,ul* w1
Tl A llz2a 1wl + Xy A llz2a—1,ul™,
npL# 1;

IN

(4.15)

for all X1,X2, , Xn, Y2, V4, 3 Y20,21,23, 0+ 2201 € o and
all u € B, where A and | are positive constants. Then there
exists one and only additive mapping A, Ag, Ay : o — B
satisfying (1.27), (1.28), (1.29), and

A .

k—1|’

n ||x,ull*

[k — x|

(n+ DA [l ul ™
[k —xm|

[(Ar (x) = f () ,u) || <

(4.16)
2

nA || ,u””
(4 () =g (), w)]| < %,;uﬁ

|
(n4 DA |[y,ul|™
lp—pm|

4.17)

u
—_— 4.18
T—h| (4.18)
(n+ DA |z u]™

|[t—1m#| 7

forall x,y,z € & and all u € B, respectively.

5. Stability Results In Quasi 2-Banach
Space

In this section, we investigate the generalized Ulam - Hyers
stability of the functional equations (1.27), (1.28) and (1.29)
in Quasi 2-Banach Space using Hyers Method.

Now, we give basic definitions and notations in Quasi
2-Banach Space.

Definition 5.1. Let X be a linear space of dimension greater
than or equal to 2 . Suppose ||(e,e)|| is a real-valued function
on X x X satisfying the following conditions:

(O2N1) ||(x,y)|| = 0 if and only if x,y are linearly dependent
vectors,

(Q2N2) ||(x,9)I| = || (v, x)|| for all x,y € X,
(O2N3) ||(Ax, )| = ||| (x,¥)|| for all A € R and for all x,y €

s

(Q2N4) It exists a constant K > 1 such that

G+ 22 < K(I[(x2) [+ [1(0n 21D

forall x,y,z € X.

Then ||(e,0)|| is called a quasi 2-norm on X and the pair
(X,||(e,®)||) is called quasi 2-normed linear space. The
smallest possible number K such that it satisfies the condition
(Q2N4) is called a modulus of concavity of the quasi 2-norm

[I(e, @)1

Sometimes the condition (Q2N4) called the triangle in-
equality. Further, M. Kir and M. Acikgoz [26] gave few
examples of trivial quasi 2-normed spaces and consider the
question about completing the quasi 2-normed space. A quasi
2-normed space in which every Cauchy sequence is a conver-
gent sequence is called a quasi 2-Banach space.

To prove stability results, let us consider <7 be a Quasi
2-normed space and 4 be a Quasi 2-Banach space. The proof
of the following theorem and corollary is similar lines to the
of Theorem 3.6 and Corollary 3.7.

Theorem 5.2. Let f,g,h: o/ — % be a mapping satisfying
the following inequalities

((Bee)-Eesons)

[v]:

S
Il

SN(X],)Q,"' 7xn); (51)
n n
gl Y 2ay Z 2a g(y2a))
a=1 a=1
E()’27Y47 . 7)’2n)§ (52)

(ngE

261— 1) h(Z2a—1)) ,u) H

<

<h< (2a—1) zp4— 1>
a=1

<

fOI" allx17x27"' yXny Y2, Ydy ot
all u € B, where N : /" — [0,), E

(Z13Z37 “722}171); (53)

y¥Y2n,215235 " y22n—1 € o and

/M — [0,00) and

009 nn,,
5:

; ‘a’uv
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0 : =1 — [0,00) satisfying the conditions
N(K%Y Ky oo KO
llm ( xl7 xzﬂ b 'xl’l) — 0; (5.4)
o—»o0 KoY
E(0% vy 0%yy .. p%Y
lim (P*7y2,0%y4, -+, P y2m) _ 0: 5.5)
o—o0 pOC}’
. O(Tt™ 71'0‘7 ’...’TOW -
i 8721, 723 2n-1) _o; 5.6)
0 —soo T
forall xy,x2,+ X0, ¥2, Y4, ,Y2,21,23, "+ y22n—1 € & with

Y = £1. Then there exists one and only additive mapping
Ap,Ag,Ap: A — 2B satisfying (1.27), (1.28), (1.29), and

[ (Ay (x) = f (x),u) |

K%' = N(xBYx, kPYx, .. 1cPYx)
< : .
S — Zl—y B ;3.7
B=—="
(A () =g (), w)
Ka-1 = E(pBYy pBYy ... oBY
p poLr p
[(An (z) — R (2) ,u)]]
Ko-1 By, By, ... BY
< Z O(tP¥7,7PYz,--- .7 z); (5.9)
T =, By
B=—*

forall x,y,z € o/ and all u € B, respectively. The mappings
Ay,Ag, Ay, are respectively defined as

Ag(x) = Jim ) (”;:;x), (5.10)
A,() &gW; 5.11)
An(z) = tim P, (5.12)

forall x,y,z € .

Corollary 5.3. Let f,g,h: of — P be a mapping satisfying
the following inequalities

(o (Bon)-Erosers)

S Z:lleLhuH”a " ﬂ?é 1;
ITa1 A P ull + ooy A flva, ™, e £ 1;
(5.13)

100 X

<g ((Xn‘,l 2ayza> i (2a g(y2a)) >H

A,

S ZZ=1)’||y2aau||u7 'I.L# 1;
HZ:IA'||y2a7’/‘||“+22:1},||y2a7an” nu # 1;
(5.14)

-

H(h( (2a—1) z24— 1> Z ((2a—1) h(z2q-1) )H
A,
< Z:IAHZM*];””uv ;
et A l|z2a—1,ull® Xy A llzag—1,ull ™,
(5.15)

fOl" all X15X25 00 3 X0, Y2, Y450+ 3 Y21,21,23, "+ 3 22n—1 € o/ and
all u € B, where A and | are positive constants. Then there
exists one and only additive mapping Ag,Ag, Ay : o — B
satisfying (1.27), (1.28), (1.29), and

1(0671)L
Jk—1]
K 'nd ||x,ul*
[Ar@=r@ull <y =G
K (n+ 1) |lx,ul ™
FErI
(5.16)
Kocflk
}g"_lll’l [
nA ||y, u
A, () —g ()| < ¢ =— 2020,
i H o —pH|
K (n+ DA [ly,ul™
lp—p"H| ’
(5.17)
Kocfll.
lt—1]°
o—1 u
(A (z) = (2) )| < K”ffﬁ“”
K*  (n+ DA [[z,u]™
|T— | ’
(5.18)

forall x,y,z € & and all u € B, respectively.

6. Stability Results In
Quasi-Beta-2-Banach Space

In this section, we discussed the generalized Ulam - Hyers
stability of the functional equations (1.27), (1.28) and (1.29)
in quasi-f3-2-Banach space using Hyers Method.

Now, we give basic definitions and notations in quasi-f3-2-
Banach space.

Definition 6.1. Let X be a linear space of dimension greater
than or equal to 2. Suppose ||(e,®)|| is a real-valued function
on X x X satisfying the following conditions:

pu#1
np#1;
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(QB2NI) [[(x,y)|| =

vectors,

(QB2N2) ||(x; )| = [|(y:x)l| for all x,y € X,

if and only if x,y are linearly dependent

(OB2N3) ||(Ax,y)|| = |A|B||(x,y)|| for all A € R and for all x,y €
X where B3 is a a real number with 0 < § < 1

(OB2N4) If exists a constant K > 1 such that ||(x +y,2)|| <

K(l[(x )|+ 1[0 2)|]) for all x,y,z € X.

The pair (X,||(e,e)||) is called quasi-B-normed space if
[|(o,@)|| is a quasi-B-2-norm on X. The smallest possible K

is called the modulus of concavity of || - ||.

Definition 6.2. A quasi-f-2-Banach space is a complete

quasi-f-normed space.

To prove stability results, let us consider &7 as a quasi-f3-
2-Banach space and 4 as a quasi-3-2-Banach space.

Theorem 6.3. Let f,g,h: o/ — 9B be a mapping satisfying

the following inequalities

n n
a=1 a=1
SN(xlaXZa"'; n), (61)
n n
8 Z 2a y24 | — Z (2a g(y2a)) ,u
a=1 a=1
<E(y2,y4, " Y2n); (6.2)
Y (2a—1) 2244
a=1
n
Z ((2a—1) h(z24-1)
a=1
SO(Zlvz?’?"' 7Z2n71)7 (63)
fOi" all X1,X2, X0, Y2, V45 3 Y20521523,° " y22n—1 € o/ and
all u € B, where N : /" — [0,00), E : &/*" — [0,00) and
0 : &/*"~! — [0,) satisfying the conditions
N(K% %1 k% o KO
hm (K 'xl?K x2? 7K xﬂ) :0; (6.4)
Oo—>o0 KV
E(p™ys, p®y,. - p%Tys,
llm (p y27p y43 ’p y21) :0’ (65)
o—roo pOW
Otz T, T2 1)
Olll_rgo o7 =0; (6.6)
fOl" allx17x27' Xy Y2, V4, 3 V20,215,235 5 22n—1 € o with

Y= =l

Then there exists one and only additive mapping

Ap,Ag Ay o — P satisfying (1.27), (1.28), (1.29), and

[(Ar (x) = f () ,u)
Ko & N(kMx, kM, -+ kM 7x)
<—3 Zl 7 ; (6.7)
_ 1=y
n=-—-
(A () —g (), )|
Kl & E(py,py,---,p"y)
) ) 9 . 68)
i p
[(An (2) =R (2),u)
Ka_l b O(TT"J/Z?TUYZ’ .. J-TWZ)
< p Zl o : 6.9)
n=-7"

forall x,y,z € o/ and all u € B, respectively. The mappings
Ay, Ag, Ay, are respectively defined as

K
Ap(x) = lim ALSIEIN
a—o KOV
ay
Ay(y) = lim s(p y);
O—ro0 poﬂf
. h(1%77)
An(z) = lim ==
forall x,y,z € .
Proof. Changing
(xla-x27 toe 7xn) = ()C7)C, cee
(y27y47”' 7y2n) = (yay7' o
(Zlaz3a"' a12n71) = (Z,Z7"'7

we arrive the following inequalities

for all x,y,z € &7. Define

Za:n(n—H):K in
a=1 2

n

ZZa: (n+1)=p in
a=1

n

Z(Zafl) =17 in
a=1

101

(5+) (29

(6.10)
(6.11)
(6.12)
,x) in (6.1);
,y) in (6.2);
z) in (6.3);
< N(x, ,X);
(6.13)
SEW,y, - ,y);
(6.14)
(2a—1)> h(z)|| < 0(z,z,
(6.15)
(6.13)
(6.14)
(6.15)
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we obtain the succeeding inequalities

”f(Kx)_Kf(x)H SN()C,X,'--,X); (6.16)
18P y) =P gWI <E(y,--,¥); (6.17)
||/’l(TZ)—Th(Z)|| SO(LZ,,Z), (618)
for all x,y,z € <. It follows from above inequalities
N X, X, X
LS| B (6.19)
H y7y, EQy-0), (6.20)
H 0, e 0@z 3, (6.21)
for all x,y,z € </. Replacing
x=kx and Kk in (6.19);
y=py and + p in (6.20);
z=7z and + 1T in (6.21);
we arrive the following inequalities
f(sz)if(Kx) N(Kx,Kx,~~,Kx); 6.22)
K K KPx
2 B ’ :
p p prp
h(t?
(7%2) _h(t2) O(tz,7z, ,’L’z); (6.24)
72 T Bt

for all x,y,z € /. With the help of triangle inequality from

(6.19) and (6.22); (6.20) and (6.23); (6.21) and (6.24);

we achieve the subsequent inequalities

2

[0

<’ﬂﬁﬂ_fw ‘me H

- K2 K K

< 55 (W g MERERED )

(6.25)

2
p?

. g(pzy)_g(f;y) +H8(PY)_ (y)H

h 2
(;d_h@
h(t*z) h(t2) h(tz)
< 2 —&-‘ . —h(z)
< TEB (E(z,z,-~~ )+ E(T”TZT)) . (6.27)

for all x,y,z € &7. Generalizing for a positive integer o, we
arrive
f(x%x) KU & N(x" x, kM x,- kM x)
il B T :
n=0
(6.28)
g(pay) H K%~ : i Eprly7prly7...7prly).
pe [ pn
(6.29)
h(t® Koc 1 o n n n
(t z)_h H Z o(t" z,7 z, T z),
T —

(6.30)

for all x,y,z € «7. The rest of proof is similar lines to the of
Theorem 3.6. O

Corollary 6.4. Let f,g,h: of — P be a mapping satisfying
the following inequalities
p#1

((5-)-gore
a=1
=t Al M+ Xhoy Al ul™ - np # 1

a=1

)
S ZZI)LHX!MMH#v

6.31)
| <g<z 20y2a> Z 2a g(y24)) )H
a=1 a=1
A,
< ZZ:])L”yZaau”“7 ,u;él,
1:l A ||y2a,l/t||’u +ZZ:1 A ||y2(l7an#) np 7& 1;
(6.32)
H( (Z (2a—1) ng]> - Y (2a—1) h(zZal)),u> H
a=1 a=1

A,
a1 A llz2a—1,ul* w#1;
N R P T I N o [y
(6.33)

<

fOV all X13X2, 3 Xn, Y2, V4, Y20,21,23,°* 322n—1 € o and
all u € B, where A and L are positive constants. Then there
exists one and only additive mapping Ay,A,,Ap : o/ — 93

102
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satisfying (1.27), (1.28), (1.29), and

K* "2k
kBl —1]"
K% 'nhx|x,ul*

i

[[(Ar () = f(x),u) || <

KBk — kM|
K% (n+ 1)&K||x,u||"”'
kP |k — Kkt ’
(6.34)

Kafllp.
Rl
“'nAp |y u
(Ae(0) —g () )| < { K nrplbel”.
s | pPlp — pH|
Kt DAp Iy ™

phlp —p| ’
(6.35)

K% 'At
Blr—1|’
K 'nAt||z,ul*

b}

R R

K% (n+ DATzu™
|7 — nm|

(6.36)

forall x,y,z € & and all u € B, respectively.

7. Stability Results In Fuzzy
Quasi-Beta-2-Banach Space

In this section, we investigate the generalized Ulam - Hyers
stability of the functional equations (1.27), (1.28) and (1.29)
in fuzzy quasi-3-2-Banach spaces using Hyers Method.

Now, we give basic definitions and notations in Fuzzy
quasi-fB-2-Banach space.

Definition 7.1. Let X be a linear space of dimension greater
than or equal to 2 . A function N : X x X x R — [0, 1] is said
to be a fuzzy quasi-B-2-norm on X if for all x,y,z € X and all
s,t € R,

(20BFN1) N(x,z,c)=0forc <0;

(20BFN2) x=0ifand only if N(x,z,c) = 1 for all ¢ > 0;
(20BFN3) N(cx,z,t) =N (x,z, ﬁ) if c # 0 where B is a
a real number with 0 < 8 <1

(20BFN4) N(x+y,z,s+t) > min{N(x,z,Ks),N(y,z,Kt)};
a constant K > 1

(20BFN5)  N(x,z,-) is a non-decreasing function on R and
limy N (x,,2,1) = 1;

(20BFN6)  forx # 0,N(x,z,-) is (upper semi) continuous
on R.

The pair (X,X,N) is called a fuzzy quasi-3-2-Banach space.
Example 7.2. Let X be a linear space. Then

t
— t>0, x,z€X,

N(x,z,0)= { t+]x]l

0, 1 <0, x,zeX

103

is a fuzzy quasi-B-2-normed space on X.

Example 7.3. Let X be a linear space. Then
0, <0,

N (x,z2,t) = 0<r<|ir,zeX

t
(|
1, > |x[,zeX

is a fuzzy quasi-B-2-normed space on X.

Definition 7.4. Let X be a fuzzy quasi-f3-2-normed space. Let
Xxp be a sequence in X. Then x, is said to be convergent if
there exists x,z € X such that lim N(x, —x,z,t) = 1 for all
n—oo
t > 0. In that case, x is called the limit of the sequence x, and
we denote it by N — lim x, = x.
n—oo

Definition 7.5. A sequence x, in X is called Cauchy if for
each € > 0 and each t > O there exists ny such that for all
n>ng and all p >0, we have N(X,qp —Xy,2,1) > 1 —€.

Definition 7.6. Every convergent sequence in a fuzzy quasi-
B-2-normed space is Cauchy. If each Cauchy sequence is
convergent, then the 2- norm is said to be complete and the
fuzzy quasi-B-2-normed space is called a fuzzy quasi-f3-2-
Banach space.

To prove stability results, let us consider 7 is a fuzzy
quasi-f3-2-normed space and 4 is a fuzzy quasi-f3-2-Banach
space.

Theorem 7.7. Let f,g,h: o/ — % be a mapping satisfying
the following inequalities

>’/V/(N(x17x27 7xn)7u7t)’ (71)
N <<g <Z 261)’2a> - Z (2(1 g(ym))#) 7t)

a=1 a=1
> N (E(y2,54, -+ ,Y2n), Us1); (7.2)

N <<h y (2a—1) z2a1> - Zn: ((2a—1) h(zgal)),u> ,t>
a=1 a=1

ZJV/(O(ZlaZ%"'712n—1)auat); (73)

Jorall x1,x2,+++ ,Xn,Y2,¥4, Y2, 21,23, "+ sZan—1 € o/ and
allu € B andt >0, where N : /" — [0,0), E : o/ *" — [0, 00)
and O : /"1 — [0,00) satisfying the conditions

lim " (N(KOWXI’ K*xy, e, K.oc)/xn)’ u, Kayt) =1;

Praes
(7.4)

Jim A7 (E(p™y2,p™ya, e, p yan) 1, p 1) = 1;
(7.5)

ol(i_r)r;JV’(O(r"‘yzl,TWzbm T 20p-1),u, Tt) = 1
(7.6)
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with the conditions

N (N(K%xp, K%, k%X, u,t)
=N (VEN(x1,%2, -+, Xn), Uy1); (7.7)
N (E(p%y2,p%Ya,+,p%Y20),u,1)
=N (VEE(y2,y4," ,y2m), Us1) 5 (7.8)
JV/(O(TO‘Z1,TOCZ3,"' ,Taz2n7|),u,t)
=N (v*O(z1,23, s200-1), U, 1) ; (7.9)
Sor all x1,x2,-+ ,Xp,¥2,Y4, . Y20,21,23,"** s22n—1 € & all

uec B andt >0 with y==£1. Then there exists one and
only additive mapping Ay,A,,Ap 1 &/ — B satisfying (1.27),
(1.28), (1.29), and

N ((Af(x) —f(x),u) ,t)

> (N(xpc,--- ,x),u,K;cﬁ*‘hc—v\t); (7.10)
N ((Ag (y) —g (), u),1)
> A (Ery ) uKpP o —vir): (74D
N ((An(z) = h(2),u),1)
> (0(z,z,~-~,Z),u,KTﬁ_1|7:—v|t); (7.12)

forall x,y,z € o and all u € B and t > 0O, respectively. The
mappings Ay, A, Ay, are respectively defined as

im o (a0 - 2579 ) =1 33
(4700 ) )

0—roo K%Y
lim A <(Ag(y)g(g‘;‘:y),u> ,t> —1; (7.4
(;g;/((Ah(y)—W,u),r) —1; (715

forall x,y,z € & and allu € B andt > 0.
Proof. Changing
(-xla-x2"“7-xn):(-x7-x,"',-x) in (7.1),

(}’27)’47' o 7y2n) = (y’y, te ,y) in (72),
(21,23, yz2om-1) = (2,2, ,2) in (7.3);

we arrive the following inequalities

for all x,y,z € & and all u € % and all t > 0. Define

L 1

Za:n(n+ ):K‘ in (7.16);
a=1 2

Y 2a=n(n+1)=p in (7.17);
a=1

Y Qa-1)=r=1 in (7.18);

S
Il
—_

we obtain the succeeding inequalities

N ((f(kx) =& £(x),u),t) > A (N(x,x,-,x),u,t);

(7.19)
N ((g(py)—p g(y),u),t) >N (E(y,y,---,y),u,t);
(7.20)
JV((h(T Z)*Th(z),u),l‘) Z :/V/(O(LZ,”' ,Z),l/l,t);
(7.21)

for all x,y,z € o/ and all u € 2 and ¢t > 0. Using (2QBFN?3)
it follows from above inequalities

W((Mf(x%u) ,t) >N (N(X,x,m 7x)7u7k.ﬁt>;

K
(7.22)
N ((g(gy) —g(y),u) at> 2*/1// (E(y7y7 7y)7u7pﬁt);
(7.23)
N ((h(iZ)_h(Z)ﬂ't) 7t> Zf/V/ (O(Z,Z,"' ,Z),M,Tﬁl‘);
(7.24)

for all x,y,z € & and all u € % and ¢ > 0. Replacing, using
and substituting

x=Kk%x, (20BFN3),(7.7) in (7.22) and t = v*Pt in (7.22);
y=p*y, (20BFN3),(7.8) in (7.23) and t = v*Pt in (7.23);
z=1%x, (20BFN3),(7.9) in (7.24) and t = v*Pt in (7.24);

we arrive the following inequalities

F(&*x)  f(k%) veBy
'/V<< Ko+l e U T eaf

> (N(x,x7--~ 7)c),uﬂcﬁt); (7.25)
y <<g (ZZ:E ) g(g:‘y) u) | ‘:;[;t>
> A (B 9)upPt): (7.26)
(M) )
> (0(z,z7 cee 7)), Tﬁt) ; (7.27)
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for all x,y,z € o/ and all u € # and t > 0. It is easy to see
that

o a—1 Ko+l c
f(:ax) f( ) — Ggof (KCH_I 'x) _ f(EGX)7 (728)
o o—1 o+1 o
g(gay) o= o g (26“ ) g(KKGy); (7.29)
h(k® a—1 h Tc-&-l h(z°
(:a ) _hip) = ) (15“ 3) (; ). .30

for all x,y,z € & and all u € %8 and ¢t > 0. From

(7.28) and (7.25); (7.29) and (7.26);

(7.30) and (7.27);
we achieve the subsequent inequalities
£ (%) 1o,
(e £
Ko+l % c
> min U { (( preas] —f(:;x),u>a
"Gﬁt > K«Pr); (731
o XK KPr); (1.31)
8(p%) _ ) 5 v
oa—1 G+1
g y) &(p°y)
> min U{ (( (p"+1 ) _ o ,u>,

Ny,y, Y )M,Kpﬁt); (7.32)

%) al yoB;
N —h
(( pz (z),u> ,GZ:‘,O e )
o h(t°hz)  h(1%%)
meU {JV(( e L E
=0
KvoPy

)} Z JV/ (N<Z7Z,"' ?Z)vuvK Tﬁt>; (733)

forall x,y,z € & and all u € Z and t > 0. It is easy to verify
that the sequences

{f(zZX)};{g(zZy)};{h(zz Z)}

are Cauchy sequences. Indeed, changing

x = k% x and using (20BFN3),(7.7) in (1.31);
y=p® y and using (20BFN3),(7.8) in (7.32);
z=1° z and using (20BFN3),(7.9) in (7.33);

we have
f (Koc+5x) f (K5x)
A << P praub KU
kPt
/ .
>N N(x,x, ,X),M,m 5 (7.34)
(c+0)B
(8P 0y) 8 (p%)
poH-S o p5 |t
/ KpPt |
2N NGy, ) sy 5 pesrrl (7.35)
o=0 p(6+6)ﬁ
h(t%%z)  h(7%2)
<4 << o Pl Bl
, K Pt .
> N N(Z,Z, .. ,Z),u,m ) (7.36)
T(G+5)ﬁ

for all x,y,z € o/ andallu € # andr > 0 and all o, > 0.
Since

o
and Z (%)G < oo

O<v<k
c=0
a /y\©
O<v<p and Z() < oo
o=0 P
\% (2
O<v<r and Z(T) < o0}

o=0

the Cauchy criterion for convergence and (2QBFNS) implies
that our sequences are Cauchy sequences. Due to the com-
pleteness of 4, this sequences converges to some points
Ay Ag; Ay tespectively and its is defined by

Olg@%(( x )_f(:;:x)M) ,z) —1 (1.37)
Oltgr:o/t/« o )—g(g:y),u),t>:1; (7.38)
lim W(<Ah(y)h(zzy ),u) ,r) —1 (139

forall x,y,z € & and all u € Z and ¢ > 0. Letting 6 = 0 and
letting o¢ — o0 in (7.34), (7.35) and (7.36) respectively, we
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arrive /((—; (aAfr(xa))
JV((Af(x)—f(x),u),t) 1 n . ‘o Kt
>JV/( (x,x, - )uKKﬁ 1(K v)t) Kaagl( f(K a))? )» )7
(A6 0) -8 () 0).1) M};g(i”a%)
>N (E(%y, )., KpP~1(p - v)) -t t
N (A (@) ~h () w).1) - X (@6t ). 3 ) fi 043
></V’( (22, ,2),u,KTP (T — v)t)

for all x,y,z € o7 and all u € 8 and t > 0, respectively with

y=1
To show the mappings Ar(x);A,(y);Ax(z) satisfies the
functional equations (1.27), (1.28) and (1.29) by replacing

('xlax27"' 7~xl’l):(Ka'xlakax27"'7’(axn) in (71)
()72,)’4a e ay2n> = (pay27pay4a" : apayZil) in (72)
(21,23, y2on—1) = (t%21,7%3, -+, T%00—1) in (7.3)
respectively, we arrive
1 n n
c/VﬁfZaKaxa =Y (a f(x%q))u ) .t
a=1 a=1
>JV/( K%y, K%, -+, K%%),u, k%P1 ) (7.40)

( ( Z 2ap yza> Zj‘, (2a g(p*y24)) )t)
E(p ¥2.P%Va, -+ p%V2n),u, p Pt ) (7.41)
(1& (h(il 2a—1) 1 zz,”>
N

2a—1) h(t%224-1)), ),t)

t23-1),0,7%1) 5 (7.42)

—_

a=

> " (o

o o
T721,T723, ",

,Zon—1 € &/ and

for all X15X25 5 X0, Y2, Y4y " 5 Y20, 21,235 " 7

all u € A andt > 0. Now

106

_mln{JV(<Ag (;:1 2a y20>

~ee( £ 200 ))’g)
2 (- X antu)

+— azn‘,l (2a g(p%y24)) s ) Kg)
JV(pla (g <§1 2a p y2a>

—azn‘,l (2a g(P“yza))m),%)};

(7.44)
((Ah (azn:l (2a—1) ZZal)

i 2a—1 A— h(@a 1))

)1
w(( ((1)::1 (2a—1) z2a1>

1 n
— Tiah (Zl (Za— 1) Ta22al> ,I/l),
a=

= min

Kt)
((2a—1) Ap(z2a-1))

Zn: ((2a—1) h(T“Zza—l)),u),Kt

)

1
T

n
Z (261— 1) Tazza,1

a=1

e
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for all X15X257 0 3 X0, Y25 Y4570, Y21,21,23,° 0y 22n—1 € </ and Now
allu e #andt > 0. Letting ¢ — oo in

(7.43) and using (7.37),(7.55),(7.4),(20BFN2) (
(7.44) and using (7.38),(7.56),(7.5),(20BFN2) .
(7.45) and using (7.39),(7.57),(7.6),(2Q0BFN2)

we reach the following equations

C/V<<Af <ag'1axa> ; aAf xa , >7t> =4 (N(x,x7...7x),u,lm>

= min{l7 L, (N(Kaxl,K‘a)Q,--- ,Ko‘xn),u,lcaﬁt)};

W((“‘g(i 2a y24 Zn: 2a Ag(y24)) ),t) N ((Ag () = AG (v) ,u) 1)
a=1 a=1 1
</V<<a (Ay(y)A’)(y)),u>,t>
:min{Llﬂ/V/ (E(pay27pay47"' 7Pa)’2n),bt,paﬁt)}; p £ 8
Kp®B
A Zmin{w ((Agwy)—g(p“y),u), ik f)

N

W((Ah< (2a—1) Z2a1> op
=l : W((A;(P“y)—g(/?“y)yu%sz l)}
—Y (Qa—1)A—h(z24-1)), ) t>

a ZJV/ <E<pay7pay1"'1pay)7u7
= min{1717</1// (O(Tazlvraz3a"' a’razznfl)aua Taﬁf)};

KpP~'(p—v)i
2

KpP='(p—v)t
(7.48) .y (E@,y,... o p2<p>>
v
— 1 as a — oo (7.53)
n n N ((An(z) — A} (2),u) 1)
Af (aAf(x 7.49
f(flgl ) ; /i) ( ) ( Ah()) )J)
n n op
Ag<2 2ay2a> Z (2a Ag(v2a)) (7.50) zmm{ (Ah o) h(f“Z)m),KTz ;)7
a=1 a=1
n n o
A (Z e e l) 2, (am DA MGan): <(A/ (t%) — h(T“Z)’U),Krz t>}
a=1 a=1
(7.51)
Kth-l(t—v
forall xi,x2, X, Y2, ¥4, ,¥20,21,23, "+ s22n—1 € & . Thus Krﬁfl(r—v)z
Af(x);Aq(y);An(z) satisfies the functional equations (1.27), = N"E(z,2,--,2),u, e
(]28) and(129) for all X13X2, " 3 Xny Y2, Y45+, Y2n,21,235** s22n—1 €
. — 1 as a — oo (7.54)
In order to prove the being A 7(x);Ag(y); An(z) are unique.  for all xy,X2, + ,Xn,¥2, 4, ,Y2n,21,23,** ,Zon—1 € &/ and

Let A’ (x); A5 (v); A}, (z) be another additive mappings satisfy-  allu € % and ¢ > 0. Hence the mappings A7 (x); Ag(y);An(2)
ing (7.10), (7.11), (7.12) and (7.13), (7.14), (7.15) respectively.  are unique. Thus the theorem holds for y = 1.
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Also, if we replace

X
=— 7.19);
x=_in (7.19)
y .
y== in (7.20);
’ )
Z
=— 7.21);
z - in ( );
we arrive

(@ =wr () ) )

>/’( (i i%)ut) (1.55)

o ((er=re(3) ))

>/’(E<y,y,-.~,y),u,t>; (1.56)
p’p p

P ((9-(3) )

ZJV’(O(%,%,-~,%),M,I); (1.57)

for all x,y,z € o/ and all u € % and t > 0. The rest of proof is

similar to that of the case Y = 1. Thus the theorem holds for

Y= —1 also. This completes the proof of the Theorem. [

The following corollary is an immediate consequence of
Theorem 7.7 concerning the Hyers - Ulam, Hyers - Ulam -

Rassias and J.M.Rassias stabilities of the functional equations
(1.27), (1.28) and (1.29).

Corollary 7.8. Let f,g,h: of — P be a mapping satisfying
the following inequalities

a Xq
a=1
N (Au,t),
> ‘/V/ (ZZ:I)LI-X&7M|”7M,[)7 u;él,
ZN A (T A gyl + X2 A ™ 1)
ny # 1,
(7.58)
’/V <<g (Z 2ay2a> - Z (2(1 g()’h))ﬂ) 7t>
a=1 a=1
N (A, u,t),
> N (ZZ:]lb)Zavuwauvt)v “7&1’
- '/V/ (HZ=1A|Y2a,M|“+):Z:17Lb@murw#af)a
np # 1;
(7.59)
N <<l’l (Z (261— 1) ZZa—l)
a=1

108

N (A, u,t)
> ‘/V/( Z:ll|z2a717’4|#u>t>v 'u?él’
- JV’( n:l/'L|Zza71,u|u
+ oo Az, ul™ ut), np#1;
(7.60)

fOl" all X1,X2,° X0, Y2, Y4, ", Y2n,21,23,°* ,22n—1 € o/ and
allu € & andt > 0, where A and [ are positive constants.
Then there exists one and only additive mapping Ar,Ag, Ay, :
o — B satisfying (1.27), (1.28), (1.29), and

x),u) 1)

M Mmﬁ ke — \)

N (nA ], ul*u, KicP = i — v|t)

(e DA™, u, K~ i — v|¢)

(7.61)

su),1)

JV’ ) quﬁ 1|p71\t>

N (n e, ul* u, KpP V| p — v|t)

N+ DA x,ul™,u, KpP~]p — v|¢)

(7.62)

((An(z Ju),t)

JV/ A, umﬁ g — 1\;)

N (n e ul*u, KTP 1 o — v|t>

N+ DAL, ™, u, KeP |7 — v|¢)
(7.63)

forall x,y,z € o and all u € B and t > 0, respectively.

8. Stability Results In Random
Quasi-Beta-2-Banach Space

In this section, we investigate the generalized Ulam - Hyers
stability of the functional equations (1.27), (1.28) and (1.29)
in random quasi-f3-2-Banach spaces using Hyers Method.
Now, we give basic definitions and notations in random
quasi-f-2-Banach space.
From now on, AT is the space of distribution functions,
that is, the space of all mappings

F:RU{—oc0,00} — [0,1],

such that F is leftcontinuous and nondecreasing on R, F(0) =
0 and F(+o0) = 1. DT is a subset of A" consisting of all
functions F € A" for which [~ F(+e) = 1, where [~ f(x)
denotes the left limit of the function f at the point x, that is,

I7f(x) = lim f(r).

The space A' is partially ordered by the usual pointwise
ordering of functions, thatis, F < G if and only if F(¢) < G(¢)

“M,,
2; Y

‘u
40
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for all # € R. The maximal element for A" in this order is the
distribution function & given by

{

Definition 8.1. A mapping T : [0,1] x [0,1] — [0, 1] is called
a continuous triangular norm (briefly, a continuous t—norm)
if T satisfies the following conditions:

0,
1,

ift<0,
ift>0.

&(t) 8.1

(a) T is commutative and associative;
(b) T is continuous;
(c) T(a,1)=aforallac|0,1];

(d) T(a,b) < T(c,d) whenever a < ¢ and b < d for all
a,b,c,d €10,1].

Typical examples of continuous ¢t —norms are Tp(a,b) =
ab, Ty (a,b) = min(a,b) and Ty, (a,b) = max(a+b—1,0) (the
Lukasiewicz t—norm). Recall (see [21, 22]) that if T is a
t—norm and x, is a given sequence of numbers in [0, 1], then
T* | Xy is defined recurrently by
Tilzlxi =x; and TL,x;=T (Ti';_llxi,x,,) for
T;Z,x; is defined as T2, x,4;. It is known [22] that, for the
Lukasiewicz t—norm, the following implication holds:

n>2.

Tim (T1)7Z 2 = 1 4= Y (1—xy) <oo

(8.2)

n=1

Definition 8.2. A random quasi-B-2-normed space is a quar-
tile (X,%,T,t), where X is a vector space, T is a continuous
t—norm, X is a mapping from X into D™ and u € D" satisfy-
ing the following conditions:

(20BRN1) Z.(u,t) = &y(u,t) for allt > 0 if and only if x = 0;

(20BRN2) R x(u,t) = Bo(u,t/|ct|P) for all x € X, and o € R
with o #£ 0;

(20BRN3) Ryiy(u,(t+5)) > T (%x(u,Kt),Zy(u,Ks)) forall x,y €
X, t,s > 0and a constant K > 1.

Example 8.3. Every normed spaces (X,||-||) defines a ran-
dom quasi-B-2-normed space (X, %, Ty, u), where

t
£+ [|x]|

K (u,t) =

and Ty is the minimum t—norm.

Definition 8.4. Let (X, %, T,u) be a random quasi-f-2-normed
space.

(1) A sequence {x,} in X is said to be convergent to a point
x € X if, for any € > 0 and A > 0, there exists a positive
integer N such that %y, —x(€) > 1—A foralln > N.
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(2) A sequence {x,} in X is called a Cauchy sequence if,
for any € > 0 and A > 0, there exists a positive integer
N such that %, —x,, (€) > 1—A foralln >m > N and
allt > 0.

(3) A random quasi-PB-2-normed space (X,%,T,u) is said
to be complete if every Cauchy sequence in X is conver-
gent to a point in X.

(4) A complete random quasi-f-2-normed space (X, %,T,u)
is is called random quasi-B-2-Banach space.

To prove stability results, let us consider ./ be a ran-
dom quasi-f-2-normed space and % be a random quasi-f3-2-
Banach space.

Theorem 8.5. Let f,g,h: o/ — P be a mapping satisfying
the following inequalities

Br(xr, ava)-xy(a fxa) W61 Z By gy (1)

f
(8.3)
/ .
‘%Jg(ZZzl 2a y24) X" (2a g(y2a)) (U,0) 2 R, 1y 1)
(8.4)
'%h(iﬁzl (2a—1) z24-1) =X, ((2a—1) h(z24-1)) (u,1)
>Ry g gy (1) (8.5)
f()r all X1,X2, 0, Xn, Y2, V4,0 3 Y2n,21,23, 2201 € o/ and

all u € % and t > 0, for which there exist a function %',
A" — DY, Rl oM Dt and Ry, : =V 5 DY with the
conditions

oo / 04 —
T(X:O‘%/V KOV, KV x,- KXV x (Lt, K Yt) =1

= Oll]glo‘%)f/i/ K*Vx, K% xp -+ K%Y X (u, Kayt); (8~6)

T::oﬁjfpavy,pavy,..7,,067), (u,p*"t) = 1

- &ﬂ‘%%pam,p“hq,---,p“ﬁ’yz” (u’payt); 8.7)

T&‘;O%’ﬁraymaya_._ ar, (u, %) =1

= lim R rary, 1orsy.... qary, (T (8.8)
forallx,y,z,x1,X2, "+, Xn, Y2, Y4, ,Y21,21,23, " y22n—1 € A

allu e % andt > 0 with y= +1. Then there exists one and
only additive mapping Ay, Ag, Ay, : o/ — B satisfying (1.27),
(1.28), (1.29), and

%Af(x)—f(x) (l/l,t) > T(;o:() ://VKayx.Kayx,~-~,K‘X7X (M,KKﬁa7t> 5

(8.9

%Ag(}v)—g(y) (u7t) > T;:()%/g’pa}’y,pa)’y,...Apon'y (uvpﬁayt) 5
(8.10)
%Ah(z)fh(z) (Lt,t) > T;:O‘@:/f]fa}’arm’z,m,rayz <u7rﬁ0€7t> 5
(8.11)
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forall x,y,z € o and all u € B and t > 0O, respectively. The
mappings Ay, A, Aj, are respectively defined as

%Af(x) (u,t) = liIIlo%ﬂKayx) (u,t); (8.12)
Py (y) (1) = hm R ypry) (U,1)5 (8.13)
Spar
%Ah(}') (u l) = olclgl,%h Tg/y‘ (u,t); (8.14)
Sforall x,y,z € of and allu € $B andt > 0.
Proof. Changing
(x1,%2,- -+ yxn) = (0, x,---,x) in (8.3);
(y2,y4>"’7y2n):(y,y;"' 7y) in (84)’
(21,23, s22n-1) = (2,2,--,2) in (8.5);
we arrive the following inequalities
Pr(s1y a )~ (52a) 1) 00 = Flp s 100);
(8.15)
‘%’g( "y 2ay)—(Xr_;2a) g(y) (u1) = ’%?lfny (1)
(8.16)
%h():a | (2a1) 2)— (X, (2a-1)) h(z) (u,1) = ‘@/ﬁz,z,-",z (u,2)
(8.17)
for all x,y,z € o7 and all u € % and all t > 0. Define
n
1
Y a= a(nt+1) = (8.15);
a=1 2
n
Y 2a=n(n+1)=p in (8.16);
a=1
n
Z (2a—1)=n*=1 in (8.17);
a=1
we obtain the succeeding inequalities
Rrf(xx)—x fi0) 1) > Ry (u1)5 (8.18)
Ky )-p o) (1) = Ry (,0):3 ®.19)
%h(r 2)—7 h(z) (u,t) > %ﬁz.z,---,z (u,t); (8.20)

forall x,y,z € o and all u € & and t > 0. Using (2QBRN?2)
it follows from above inequalities

L gy (1) 2 Ry x (u, Kﬁt> ; (8.21)
B

f%’@ oy D) = Fs (u p t) (8.22)

Bz )y ) 2 R (u, Tﬁt) ; (8.23)

for all x,y,z € & and all u € Z and ¢ > 0. The rest of proof
is similar tracing to that of Theorem 7.7. O

The following corollary is an immediate consequence of
Theorem 8.5 concerning the Hyers - Ulam, Hyers - Ulam -
Rassias and J.M.Rassias stabilities of the functional equations
(1.27), (1.28) and (1.29).
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Corollary 8.6. Let f,g,h: of — P be a mapping satisfying
the following inequalities

' (A,u,t)
2 ‘@, Z:l)’|xavu|“7uvt ) [J,?él,
Z' ([Ta=1 A a, ul* +Yo A |xq, u|™ 7u,[) . onpF#l;
(8.24)
%<<g<2 2ay2a> Z 2a g(y24)) ),t)
a=1 a=1
R’ (Asu,t)
> %, (Zgzll|y2a,u| u,t 'u'# 1;
R T2y A [yaar u* + X0y A lyaayu™ ust), g 1;
(8.25)
%(( (Z 261—1 Z2a 1) Z 261—1 Z2a 1)) >7t>
' (A, u,t)
> ‘%/(Za 17L|22a 1,u| ut) u#l1;
B %,( A’|Zzll 17u|
+Za—1)“‘22a 17u| “,M,l), nu#1;
(8.26)
for all X1,X2, -+ , X0, Y2, V45 s Y20,21523," - 1 Zon—1 € < and

all u € # and t > 0, where A and [ are positive constants.
Then there exists one and only additive mapping Ar,Ag, Ay, :
o — B satisfying (1.27), (1.28), (1.29), and

Ap(x)—f(x
%’ A, uzocﬂ 1|K‘ 1\;)
B (nA|x,ul* u, KPP~ — v|t)
Z' ((n+ DA, ul™ ,u, KxkP~ [ — v|t)
8.27)
A
Au Kpﬂ 1|p—1\t)
nx|x ul*,u, KpP~'|p — v|t)
(n+ D) Alx,ul™ u,KpP~'|p — v|t)
(8.28)
Z (2, uKrﬁ 1\r—1|t>
nAx,ulM,u, KB~ | — v|t)
52/% n+ DA |x,ul™ ,u, KtP~ l|’L'—v|t)
(8.29)

forall x,y,z € o and all u € B and t > 0, respectively.
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